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Abstract: To be able to provide appropriate services in social and human application contexts,
smart cyber-physical systems (S-CPSs) need ampliative reasoning and decision-making (ARDM)
mechanisms. As one option, procedural abduction (PA) is suggested for self-managing S-CPSs. PA is
a knowledge-based computation and learning mechanism. The objective of this article is to provide a
comprehensive description of the computational framework proposed for PA. Towards this end, first
the essence of smart cyber-physical systems is discussed. Then, the main recent research results related
to computational abduction and ampliative reasoning are discussed. PA facilitates beliefs-driven
contemplation of the momentary performance of S-CPSs, including a ‘best option’-based setting of
the servicing objective and realization of any demanded adaptation. The computational framework
of PA includes eight clusters of computational activities: (i) run-time extraction of signals and data by
sensing, (ii) recognition of events, (iii) inferring about existing situations, (iv) building awareness of
the state and circumstances of operation, (v) devising alternative performance enhancement strategies,
(vi) deciding on the best system adaptation, (vii) devising and scheduling the implied interventions,
and (viii) actuating effectors and controls. Several cognitive algorithms and computational actions are
used to implement PA in a compositional manner. PA necessitates not only a synergic interoperation
of the algorithms, but also an objective-dependent fusion of the pre-programmed and the run time
acquired chunks of knowledge. A fully fledged implementation of PA is underway, which will make
verification and validation possible in the context of various smart CPSs.

Keywords: smart cyber-physical systems; self-generated intelligence; ampliative reasoning
mechanism; procedural abduction; data-driven system control; run-time acquired data;
computational functions; self-adaptation capability; human/socially-centered applications

1. Introduction

1.1. An Evolutionary View on Cyber-Physical Systems

The aspiration for having cyber-physical systems (CPSs) emerged more than 60 years ago [1].
However, the principles of their practical manifestation were formulated just a decade ago [2] and
the enabling technologies are becoming available nowadays [3]. At the time of inception, CPSs
were seen as large-scale, distributed, self-controlling, software integrated application systems, which
combine the functionalities and technological enablers of embedded control systems, advanced robotic
systems, networked distributed systems, real-time control systems, and collaborative software agents
systems [4]. Their operations were supposed to be coordinated, controlled, and monitored by a digital
computing, communication and control core [5]. Interestingly, this novel system paradigm has been
going through changes from both theoretical and practical points of view in the last years [6]. And
this process will go on [7]. Some envisage even a kind of metamorphosis of the paradigm due to new
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technological affordances provided by, for instance, massive data networking technologies, cloud
computing, artificial system intelligence, and cognitive system engineering technologies [8–10].

The almost infinite number of networked sources of sensor data, the databases residing on servers
in the cloud, the growing availability of massive data flows, the development of smart data analytics
approaches, the emergence of run time adapting system controls, and the other technologies shown in
Figure 1, are the main enablers of the radical paradigm shift that is already observable in the academic
research [11,12]. This shift encourages us to look at smart CPSs as the transformative systems of the
near future. Nevertheless, it is worth pointing out that the traditional definitions and interpretations
of CPSs are not able to capture the essence of the above circumscribed changes [13]. The main reason
is that they place the emphasis on having a predefined and deterministic tight coupling between the
physical world and the cyber-world, rather than on achieving synergism between run-time acquired
data and dynamic operational objectives [14]. By doing so, they actually restrict the paradigmatic
evolution of this family of engineered systems. This is a vital issue since S-CPSs can offer novel
functional affordances and services that cannot be provided by other systems [15].
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The understanding of the fundamentals and affordances of CPSs is more nuanced today than it
was a decade ago. Therefore, new interpretations and definitions have been proposed. For instance,
smartness has been put into a historical dimension and interpreted as a given stage of progression
with regards to having cognitive competences and operationalization of a body of knowledge (without
considering possible socialized collective intelligence of a system of systems yet). It has been identified
as a distinguishing paradigmatic feature of next generation CPSs [8]. Equipping systems with cognitive
capabilities, i.e., the process of intellectualization, is the major concern of cognitive engineering of
CPSs. However, this domain of interest is still in a premature stage. The guiding assumption is
that smart systems should be able to: (i) operate according to dynamically varying, even undefined,
circumstances and control regimes, (ii) build awareness of the operational state of their entirety,
components, and embedding environment, and (iii) adapt themselves in order to achieve the best
possible operational objectives and performance. In other words, smart operation and servicing of
CPSs require the capabilities of self-awareness, contextualized reasoning and learning, and functional
and architectural morphing [16].

Owing to context-dependent reasoning and system-level adaptation, smart CPSs can be applied
in many non-traditional human- and socially-centered applications. However it has also been
comprehended that smartness may be utilized in rather different forms in different systems, such as
smart cities, homes, transportation, clouds, manufacturing, production, and smart service systems [17],
and even smart everything [18]. These systems will eventually show largely diverse levels of
intellectualization. Evidently, implementation of smartness is inseparable from the realization
of cyber-physical computing (CPC) that intends to go beyond the classical (predefined explicit
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algorithms-based) computation that is underpinned by the von Neumann theory of computing [19].
CPC complements or replaces predefined flows of computation with run-time devised flows,
and appends run-time constructed or acquired (hidden, but learnable) implicit algorithms to the
(preprogrammed) explicit algorithms. The implicit algorithms may manifest as patterned data
structures, situated computing strategies, and context-driven reasoning mechanisms.

Obviously, an intense foundational research and a lot of system prototypes-based engineering
studies are needed to fully explore and exploit smart system behaviors and affordances [20].
In particular, for the reason that even higher level of intellectualization as smartness is supposed to be
present in third- and fourth-generation CPSs. Namely, second-generation CPSs self-generate awareness
and perform some-level of functional/architectural self-adaptation under varying conditions [21],
whereas third generation CPSs are supposed to have self-cognizance (i.e., awareness with semantic
understanding) and non-biological self-evolution capability. As ultimate realizations, fourth-generation
CPSs are assumed to have human-resembling system intelligence, which may involve computational
consciousness, dependable reasoning, decisional autonomy, and non-genetic self-reproduction [8].
Current systems science and artificial general intelligence (AGI) research are still unable to describe
and explain the above-mentioned ‘beyond-smartness’ types of system behaviors and to inform
system engineering about feasible and efficient implementations. At the same time, many recent
results validate the concept of second-generation CPSs. The feasibility and utility of specific
implementations powered by context management, machine learning and other reasoning mechanisms
have been demonstrated.

1.2. On the Background Research and the Research Issue Addressed in This Article

Apprehension of the above-mentioned novel system features calls for a progressive definition,
which puts CPSs into the position of self-managing engineered systems. Our definition claims that
smart CPSs: (i) employ the principles of cyber-physical computing, (ii) closely interact with the hosting
environment(s), (iii) deeply penetrate into physical, biological, social, cognitive, etc. processes, (iv) act
as a purposefully arranged set of adaptable actors in these contexts, and (v) possess the capability of
non-organic complexification and self-organization. According to this definition, not only the software
(middleware) establishes a tight relationship between the physical realm and the cyber realm, but also
the mentalware, which is jointly possessed by the concerned system and its stakeholders. This was the
starting point and motivation for our background research.

The reported work was conducted in the framework of the portfolio research of the Cyber-Physical
Systems Design Section of the Faculty of Industrial Design Engineering at the Delft University of
Technology. The shared theme of all related research projects is cognitive engineering of smart
cyber-physical systems. The more than ten interrelated projects of staff members and PhD students
addressed issues such as: (i) capturing and inferring from dynamic contexts representations,
(ii) building system awareness real-time, (iii) computational mechanisms for reasoning, (iv) strategies
for functional/architectural adaptation, (v) dynamic system messaging, and (vi) specific applications
of smart CPSs. The main research questions for the portfolio research were:

• Based on what theoretical and methodological foundations can system-level smartness be
implemented in next generation cyber-physical systems?

• What way can dynamic context information processing be extended to provide semantically
enriched awareness representation?

• In what forms can procedural abstraction be implemented as a system-level reasoning mechanism
of smart CPSs?

• Based on what knowledge can an active engineering framework support transdisciplinary
development of compositional CPSs?

• What do human/system-in-the-loop and supervisory/operative control mean in the context of
smart CPSs?
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On the one hand, the completed research involved a comprehensive analysis of the state of the
art as well as investigation of the pioneering research initiatives. On the other hand, it included a
purposeful synthesis of underpinning theories and computational methodologies, and development
of testable prototypes.

1.3. Content and Structure of the Article

The most important scientific concerns of the background research were: (i) development of a new
reasoning model (a conceptual advancement model) concerning the generations of CPSs based on their
level of self-intelligence and self-organization, (ii) implementation of multiple demonstrative prototype
(sub)systems in various applications, and (iii) conceptualization of a robust computational framework
for procedural abduction (PA) as an ampliative system-level reasoning and adaptation mechanism for
S-CPSs. The content of this article contributes to the last concern. PA comprises a contemplation part
(that helps realize some level of system self-awareness) and an alteration part (that supports functional
and architectural self-adaptation under varying conditions). From an implementation point of view,
PA consists of a large set of computational algorithms, which are run-time activated and integrated for
reasoning and strategizing.

Though the presented results blend many research aspects of cognitive engineering of
cyber-physical systems, only the functional and architectural specification of the PA framework
is discussed in the rest of the article. The Section 2 analyses the current state of the art, considering five
perspectives: (i) theoretical understanding of mind-like behavior of artefactual systems, (ii) potential
enabling technologies for smart CPSs, (iii) achieving system-level holism in reasoning and decision
making, (iv) the logical basis of system level reasoning, and (v) recent efforts to exploit abduction
as an ampliative computational mechanism. The Section 3 provides a brief overview of the four
prototype systems that hinted at the necessary constituents of procedural abduction as a system level
reasoning mechanism. It discusses the experimental implementation of the systems for: (i) system-level
features composition and compositional system modeling, (ii) identification and forecasting failures
in a resilient cyber-physical greenhouse, (iii) representation and reasoning with dynamic context
knowledge in a fire evacuation aiding system, and (iv) reasoning and adaptation in an engagement
monitoring and enhancing system for stroke rehabilitation. The issues of synthesizing the constituents
of the PA mechanism are also considered. The Section 4 presents the computational framework of
procedural abduction. It provides a formal specification of the general workflow and the constituents,
the underpinning knowledge, and the required functionality of the enabling algorithms of PA. The
Section 5: (i) reflects on the completed work, (ii) states some vital propositions, and (iii) makes an
inventory of the immediate and future research opportunities.

2. Current State of the Art

2.1. Theoretical Understanding of Mind-Like Behavior of Artefactual Systems

Thinking about transferring human-like intelligence to artificial structures has a long tradition.
As known, this process commenced with computerization and, through informatization and
cyberization, reached the stage of intellectualization of engineered systems. The development of
software science/engineering and information/knowledge engineering proved to be the major driver
of the progress. Using the terms and the argumentation of D.M. MacKay, the essence is in the move
from ‘slave-machines’ to ‘actor-machines’ [1]. As actor-machines, intellectualized artefactual systems
are not alternatives of current digital computing systems, but something else and more. Mentioned by
the above author, the most fundamental question is “Can an artefact be made to show the behavioral
characteristics of an organism?” MacKay argued that this kind of systems should be able to perform
important functions such as (i) receiving, selecting, storing, and sending information, (ii) reacting
to changes in their 'universe', including data on their own state, (iii) reasoning deductively from
premises which are results of previous deductions and data on the different courses, (iv) observing and
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controlling their own activities, or otherwise, so as to further some goal, and (v) changing their own
pattern of behavior so as to develop quite complex and superficial characteristics capable of rational
description in purposive terms.

If we systematically replace the above phrases with our modern terms such as (i) networked
sensing, (ii) awareness building, (iii) situated reasoning, (iv) self-organization, and (v) adaptation
in context, then we can conclude that D.M. MacKay eventually described the most important
paradigmatic features of smart cyber-physical systems. It is a surprising fact since the description
happened at the very beginning of 1950s. In addition to stating that future engineered systems are
subjects of a reasonably high level of intellectualization and socialization, feature self-planned and
goal-directed activities, and potent to be self-sustaining, MacKay also called the attention to the need of
sophisticated system-level reasoning mechanisms. He proposed a probabilistic reasoning-mechanism
as a possible implementation of it. In addition, like many others, he also emphasized the importance
and necessity of the capability of abstraction (by an intellectualized system) [22].

Fifty years later, Russell, S. and Norvig, P. proposed the following taxonomy of systems
with non-natural intelligence: (i) systems that think like humans (e.g., cognitive architectures and
neural networks), (ii) systems that act like humans (e.g., natural language processing, knowledge
representation, learning, and automated reasoning systems), (iii) systems that think rationally (e.g.,
logic solvers, inference, and optimization systems), and (iv) systems that act rationally (e.g., software
agents and embodied robots with perception, planning, reasoning, learning, communicating, and
decision-making capabilities) [23]. The above taxonomy indicates the versatility of current systems
with non-natural intelligence. They typically require a correct and complete model of the problem as
well as of the application domain. However, in the case of a large problem or domain, construction of
such models is either rather difficult or not possible at all. Furthermore, if the intellectualized system
or its environment, or the set of tasks and the contexts of problem solving frequently and dynamically
change, then a steady problem model and application domain model may become inadequate or
even inappropriate [24]. In this case, run-time adaptation or complementation of the system model
is needed.

2.2. Potential Enabling Technologies for Smart CPSs

In the last sixty years, many efforts were made to develop formal reasoning and learning
mechanisms and to implement AI-based systems. Concerning the set objectives, we differentiated:
(i) ambitious (striving for ultimate intelligence and autonomy), (ii) realist (constructively exploiting
technologies), and (iii) modest (underestimating the affordances and potentials) visions of AI research.
Domingos, P. identified five approaches to creating AI-based systems, namely: (i) “symbolist”,
implementing logical reasoning based on abstract symbols, (ii) “connectionist”, building structures
inspired by the human brain, (iii) “evolutionist”, using methods inspired by Darwinian evolution,
(iv) “Bayesians”, using probabilistic inference, and (v) “analogizer”, extrapolating from similar
cases seen previously [25]. Within each approach, a large number of different realizations can
be found. For instance, symbolist/analyst approaches include (i) standard learning algorithm for
monomials, (ii) rule-based inductive algorithms, (iii) instance/pattern/evidence-based algorithms,
(iv) search space/decision tree-based algorithms, and (v) probabilistic/fuzzy/non-monotonic
algorithms. The group of sub-symbolic approaches includes, among other, (i) genetic algorithms,
(ii) neural network algorithms, (iii) support vector machines, (iv) naive Bayesian-classifier algorithms,
(v) Bayesian-learning algorithms, and (iv) extreme learning machines. As complements of purely
symbolic and sub-symbolic approaches, composite approaches are also often considered. One of the
main issues is reasoning with incomplete knowledge [26]. In addition, as discussed by Reed, S.K.
and Pease, A.; practically all systems confront obstacles when reasoning needs to be done based
on imperfect knowledge (consisting of ambiguous, conditional, contradictory, fragmented, inert,
misclassified, or uncertain parts) [27].
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Several papers have recently been published on the implementation of various levels of human
intellectual/cognitive behavior in consumer durable-type of products, as well as in cyber-physical
systems [28,29]. Though some ‘wicked-problems’ have been considered, mainstream AI research
focuses on problem solving means for reasonably well-defined problems. Based on this, it became
known that two-valued logical reasoning techniques are not sufficient in the case of systems
working with uncertainty or multiple choices [30]. However, the major issue is that integration
of problem solving means is complicated since they usually rely on different information/knowledge
representation schemata and are implemented by non-compatible algorithms. Among the limited
number of related integrative works, the effort of Lees, B. to combine a rule-based reasoning mechanism
with a case-based reasoning mechanism is worth paying attention, since it casts light on the challenge
of co-evolution of the different bodies of knowledge and the mechanisms themselves [31]. Lumer, C.
and Dove, I.J. pointed at the fact that some schemes of reasoning proposed in the literature, including
abduction, has been found defective due to the lack of an epistemological backing and, in most cases,
the inability to differentiate various degrees of uncertain justification [32].

Though the latest developments of computational learning (CL), machine learning (ML) and deep
learning (DL) gave an impetus for smart systems development, the need for explanatory learning has
also been identified [33]. This is still hardly supported by robust algorithms of near-zero learning time.
ML is mainly concerned with deriving rules, patterns or procedures that explain a body of data or
predict future data typically based on statistical processes [34]. The approaches are typically sorted into
three categories: (i) supervised learning (based on decision trees, support vector machines, production
rules inference, artificial neural network, genetic algorithms, game theory driven approaches, neural
network, etc.), (ii) unsupervised learning (generalized additive statistical methods, tree-based methods
Bayesian non-parametric approaches, semi-supervised clustering, etc.), and (iii) reinforcement learning
(model-free reinforcement learning algorithms, genetic algorithms/programming, feudal Q-learning,
adaptive heuristic critic, transfer learning methods, multi-agent reinforcement learning, real-time
dynamic programming, etc.). DL typically uses structures of large number of processing layers loosely
inspired by the human brain to explore practically the same [35]. Many of these learning technologies
have reached a high level of sophistication and increased the potentials of context-independent
problem solving [36]. For instance, extreme learning machines combine conventional artificial
learning techniques and biological learning mechanism into a suite of machine learning techniques
for feedforward neural networks with single and multiple hidden layers, in which hidden neurons
need not be tuned [37]. These and other emergent learning techniques aim at computational learning
approaches for advanced industrial systems, such as cyber-physical production systems.

2.3. Achieving System-Level Holism in Reasoning and Decision Making

System scientists claim that smartness, like safety, reliability, awareness, adaptability, security,
etc., is an overall paradigmatic feature of the systems as a whole, and is not a behavioral characteristic
of their specific components, though their functionalities are needed for the realization. This means,
smartness is not a reductionist property and cannot be realized by a simple composition of the
operations of some smartness-enabling, interface-able components. Furthermore, system smartness
cannot be regarded just as a momentary operation of the intellectual mechanisms of a given system,
but it should be considered as an always present (ubiquitous and lasting) set of capabilities (with
which the system has been equipped with by its developers, or what the system itself develops based
on the preprogrammed or the learnt/aggregated knowledge). Owing to learning, system smartness
may evolve over the life of a system. Thus, system learning is to be seen as a sustained and combined
cognitive process of knowledge acquisition and behavior adaptation.

According to Finocchiaro, M.A., reasoning is the activity of the human mind that consists
of reaching conclusions on the basis of reasons, giving reasons for conclusions, and/or drawing
consequences from premises [38]. The arguments created for reasoning by human mind are
linguistically expressed and arranged based on others. A quasi-automated generation and
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representation of arguments or decision points are seen as the major challenge for computational
reasoning. In addition, recognizing the sufficiency of argumentation and maintenance of the validity
of the arguments are additional challenges [39]. In particular generating informal proofs that are not
directly driven by logical rules or physical causalities is problematic [40]. Informal arguments typically
depend on their logical form as well as on their content and contexts. Informal proves cannot be
expressed in a general logical language (i.e., by explicitly defined well-formed formulae), and cannot
be applied successively on explicitly specified logical inference rules or axioms [41].

In the context of system-level reasoning, holism can be addressed properly only if the reasoning
strategies, reasoning mechanisms, and reasoning algorithms are simultaneously considered. Reasoning
strategies establish the logical and/semantic framework of reasoning. Reasoning mechanisms are
implementations of the strategies as computational processes. Reasoning algorithms are active
elements used in the holistic reasoning process. Håkansson, A. et al. identified eight strategies of
reasoning as dominant ones for smart CPSs, namely: (i) deductive, (ii) inductive, (iii) abductive,
(iv) analogical, (v) common sense, (vi) non-monotonic, (vii) case-based, and (viii) probabilistic
reasoning strategies [42]. The three enablers (strategies, mechanisms, and algorithms) may be:
(i) provided for, (ii) modified by, and/or (iii) developed by a smart CPS. If one strategy is not sufficient
enough, then a purposeful mix of different strategies can be considered. This raises the issue of process,
algorithm and data integration. The majority of the algorithms known from AI research is typically not
interchangeable and cannot be integrated directly into comprehensive reasoning mechanisms. Towards
this end, the standard reasoning algorithms included in a complex reasoning mechanism must be
adapted to the other related algorithms in the design time. Like customization of the mechanisms to
applications, adaptation of algorithms run time by the system itself is a complicated task.

2.4. Possible Logical Bases of System-Level Ampliative Reasoning Mechanisms

A starting point of our mechanism synthesis was the differentiation between formal and informal
reasoning. Formal reasoning (often also called deductive reasoning or logic) manipulates the statements
of evidence by evaluating them in virtue of their sentential structure and content. Deductive inference
supports only explicative inference, where the conclusion is explicitly or implicitly included in the
premises. Thus, deductive inference is enumerative since it spells out information that is already
contained in the given premises [43]. Deductive arguments provide grounds for making their
conclusions inescapable. If the premises are true, then the argument is valid for the reason of syllogism.
If all premises are true and the argument is valid, then it is sound. Informal reasoning arrives at a
conclusion by means of informed guess-work, relying on amplified evidences. Also called inductive
reasoning or logic, informal reasoning interprets the evidences in their correlations or context to arrive
at a conclusion. As the principle of reasoning, inductive arguments attempt making a conclusion
likely or probable by delivering evidences for it. Provided the premises are true and an inductive
argument succeeds in this attempt, the argument is strong. If the argument is both strong and has all
true premises, then it is regarded as cogent.

In the context of computational reasoning, the term ‘ampliative’ is used in the meaning of
‘extending’ or ‘adding to what is already known’. It refers to the fact that the conclusion of such
argument goes beyond, or amplifies upon, the premises. Actually, this type of inferences is called
ampliative and the reasoning mechanisms providing these are referred to as ampliative reasoning
engines [44]. Ampliative reasoning may produce conclusions that contain genuinely new information.
While deductive inference is enumerative, inductive inference is ampliative in the sense that it goes
beyond merely spelling out the information already contained in its supporting evidential premises.
While merely explicative (analytic) logical reasoning typically does not add anything to the content of
cognition, ampliative (synthetic) logical reasoning increases the given cognition. A characteristic of
ampliative reasoning is that the conclusions it yields may be mistaken. Thus, an ampliative argument
is not deductively valid or invalid.
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Though the idea of ampliative reasoning is well known in mathematical logics and artificial
intelligence research, the idea of ampliative system-level reasoning mechanisms is new. Both deductive
and inductive reasoning strive after rendering the best judgement in a holistic way, i.e., considering all
influencing matters. If this is not the case, then the reasoning is restricted to the available evidences
and inferring can target only the best explanation. This process of hypothesis formation and inferring
has been described as abduction. As the third kind of logical inferential reasoning, abduction proceeds
from observational data or events to a set of hypotheses, which best explains or accounts for the
data. Abduction resembles induction in that it involves a reasoning process for providing hypotheses
that explain the given facts, while induction is used to derive general rules from specific facts [45].
Peirce, C.S. argued that in spite of some resemblance, abduction may not be regarded merely as a
variant of induction, because the mental processes involved are sufficiently distinctive [46]. Abduction
involves coming up with plausible explanations for existing data, with the possibility of predicting
the existence of additional data which, if subsequently discovered in accordance with its predictions,
would tend to confirm the validity of the original hypothesis [47]. Some researchers argued that the
psychology of abduction is somewhat mysterious, since it requires creative thought and imagination.
In other words, it supposes the ability to imagine possible factual scenarios and to concentrate on just
those having the greatest salience for the task in hand. On the other hand, abduction has a strongly
ampliative character, which comes from hypothesizing. It has to be mentioned that reproduction
of human creative thought and innate imagination by a computational reasoning process is a huge
challenge that is not coped successfully by current artificial intelligence research.

In the context of smart CPSs, synthetic judgments are supposed to be system-derived elements
of reasoning. A synthetic judgment can be ampliative, if its predicate adds something new to its
subject. Ampliative reasoning is heuristic in the sense that it involves obtaining new pieces of beliefs,
which are not entailed in the given premises (not already implied by what is known by the system and
captured in the system operation/servicing model). It depends on the number and relationships of
the finite set of evidences available in the process of reasoning, and is limited by the sophistication
of the inferring capabilities of the computational reasoning mechanism concerned. Meheus, J. et al.
refer to abduction as ampliative adaptive logics [48]. In their view, abduction is non-monotonic (i.e.,
conclusions derived at some stage of the reasoning process may be modified or even rejected at a later
stage). Their research effort concentrated on a proof theory that warrants that the conclusions derived
at a given stage are justified in view of the insight in the premises at that stage. This logic-based theory
is supposed to support justified propositions even when the premises imply some sort of undecidable
conclusions. Treating abduction as a form of forward reasoning was the logical solution for ending up
with ampliative adaptive logics [49].

The above analysis suggests that ampliative reasoning cannot be else but a risk-taking strategy
when implemented by smart CPSs. Thus, an objective of the development of system-level reasoning
and adaptation mechanism is to reduce the risk of educated guess, which always accompanies decision
making by systems. Usually, there are no exact criteria, conditions or measures of when the outcome of
reasoning is approximately correct or good enough. It may well be that further evidence, which does
not affect the truth of the premises, renders the outcome of reasoning false. This is the reason of why
some traditional computational reasoning mechanisms of computer science and artificial intelligence,
such as non-monotonic logics, probabilistic logics, reasoning by circumscription, and default reasoning,
are not considered as fully-fledged implementations of system-level reasoning and adaptation.

2.5. Recent Efforts to Exploit Abduction as an Ampliative Computational Mechanism

Abduction has multiple interpretations and views [45]. Peirce, S.C. described it as a mode of
reasoning that justifies beliefs about the probable truth of theories [46]. It is also seen as a recipe for
generating new theoretical discoveries as well as a mode of reasoning that justifies beliefs about the
probable truth of theories [47]. Other authors understood it as the process of forming an explanatory
supposition [48] or a speculative reasoning strategy [49]. It is the only logical operation which
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introduces any new idea and a type of hypothesis formation and logical inference akin to guessing [50].
Abduction may have its suppositions in logic or in knowledge [51] [52]. Hermann, M. and Pichler, R.
formally described logic-based abduction as follows: Given a logical theory T formalizing an
application, a set M of manifestations, and a set H of hypotheses, find an explanation S for M,
i.e., a suitable set S ⊆ H such that T ∪ S is consistent and logically entails M [53]. In addition to
reasoning in science, abduction has also been considered as a reasoning strategy in engineering and
design contexts. As early as 1993, Kean, A.C. described a comprehensive framework for a domain
independent abductive reasoning system and proposed to separate inference from domain dependent
problem solvers in a computational reasoning framework [54]. This leads to domain independent
inference engines, which are portable and applicable to many application domains, and reduce the
repetitive efforts to build inference engines.

Computational implementation of abduction has been part of artificial intelligence research.
Eiter, T. et al. defined a general abduction model for logic programming to allow the user to define
the inference operator (i.e., the programming semantics to be applied on programs) [55]. Gottlob et al.
showed that identifying explanations for a given set of observations algorithmically is intractable in
the case of logically-based abduction [56]. Therefore, they suggested achieving tractability by reducing
the underlying clausal theory so as to have a bounded width for the search tree. However, they
also found that turning the theoretical principles of tractability into practically efficient algorithms
is very problematic. Though several criteria for selection of explanations have been proposed in the
literature, as Poole and Rowen discussed in the context of medical reasoning, several of these criteria
are conflicting [57]. Though the efforts to consider uncertainty in computational abductive reasoning
proved to be useful, the various approaches were restricted in handling complex, multi-component
reasoning problems and in terms of the efficiency of knowledge representation [58]. For example, when
used in a smart CPS, one limitation of the Bayesian belief network is that it requires the generation of a
network and instantiation of the nodes to be able to explore the posterior probability by some methods.

With regards to computability of abduction, Psillos, S. derived two conjectures: (i) the reasoning
process underlying abduction has a certain logical, though not algorithmic, structure, and (ii) the more
conceptually adequate a model of abduction becomes, the less tractable it is computationally [59]. The
latter finding puts conceptual richness and computational tractability into juxtapositions. He also
argued that a rich conceptual model of abduction cannot be adequately programmed. Some major
attempts to provide computational models of abductive reasoning are as follows: Pagnucco, M. and
Foo, N. proposed an approach to computational abduction based on clausal conceptual graphs, and
pointed at some limitations originating, e.g., in the influences of the syntactic restrictions of the graphs
and the lack of criteria for selecting the best abduction from among those derived [60]. The abduction
model presented by Boutilier, C. and Becher, V. non-monotonically generates explanations that predict
an observation, but require some deductive relationship between explanation and observation [61].
Kakas, A.C. et al. used abductive logic programming to develop an abductive reasoning system,
called A-System, for declarative problem solving. This involves a hybrid computational model that
implements the abductive search in (i) the process of reducing the high level logical representation to a
lower-level constraint store, and (ii) a lower-level constraint solving process [62]. Verdoolaege, S. et al.
proposed a framework for consideration of temporal information in abductive reasoning in natural
language processing, which cannot however be applied directly in the context of CPSs [63].

2.6. Synthesis of the Major Findings

Several theories and technologies such as logic, probability, complexity, physical, biological,
cognitive, social theories and technologies, and their various combinations have been developed to
realize smart system operations. Direct integration of a bunch of technologies and algorithms does
not seem to offer a solution [64]. Since smart systems are supposed to make decisions about their
operations and services under varying conditions, they should be able to make conditional inference.
Though probability calculus offers formulas for binomial conditional deduction, they are restricted
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to dealing with the measure of logical probability. They do not capture the meaning of conditioning
and the interplay of multiple conditions [65]. However, conditional reasoning offers a principle for
it [66]. Technically, conditional reasoning expresses conditional relationships between parent and child
propositions, and then combines those conditionals with evidence about the parent propositions in
order to conclude about the child propositions.

Abduction was claimed as a powerful ampliative computational mechanism by many
researchers [67]. Abduction was also considered as a logical model of designing. What is to be
explained in design is the properness of the overall design objective or goal, and the assumptions are
the building blocks of the designs (artefacts) to be synthesized. The explanation is the design (artefact),
which is based on the background professional knowledge as well as on the dynamic knowledge
associated with design analysis and synthesis. Consistency of reasoning means that designing
was possible and that the design (artefact) provably achieved the design goal [68]. Computational
complexity was discussed as a challenging issue of abduction [69].

3. Pilot Systems Hinting at Necessary Constituents of Procedural Abduction

3.1. Forerunning Projects and their Outcomes

The idea of procedural abduction was stimulated by the results of forerunning PhD research
projects, which investigated various issues of using smart functionalities in second-generation CPSs.
They developed different testable pilot implementations for real life scenarios. Figure 2 shows
the relationship and contribution of these promotion projects. Their foci were: (i) system-level
feature-based conceptualization and integrated operational and architectural modeling of first
generation cyber-physical systems [70], (ii) exploring the role of system-initiated changes of operation
modes in failure analysis in the context of the above family of CPSs [71], (iii) developing computational
mechanisms for dynamic context information representation and inferring, context-based strategy and
action planning, and situated messaging in a second generation CPS [72], and (iv) development of a
smart reasoning mechanism, and adaptation and intervention planning for a second generation stroke
rehabilitation monitoring and enhancing cyber-physical system [73].
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procedural abduction.

A common assumption of the above studies is that S-CPSs partially self-determine their
operational objectives and system-level adaptation based on run-time collected data, using built-in
or acquired smart learning and reasoning algorithms. Relying on multiple streams of input data,
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the prototype systems build dynamic operational models, which in turn allow them to alter their
operational objectives and to adapt their functionality and (software) architecture accordingly. In the
order of mention, these studies cast light on the elements (computational activities) of a complex
system-level reasoning process, which reflects the logic and characteristics of abductive reasoning.
Consequently, this reasoning process has been called ‘procedural abduction’ (PA) [74]. The proposed
theoretical foundations of PA are being challenged currently through analytic investigations (critical
systems thinking) and computational implementation in other running PhD [75] and staff research
projects [76]. The relevant work will be concisely summarized below.

3.2. System-Level Feature-Based Conceptualization and Modeling of First Generation Cyber-Physical Systems

The objective of this research project was to develop a software toolbox (SMF-TB) for
pre-embodiment design of first-generation CPSs. The novelty of this toolbox is that it (i) tries
to cope with the inherent heterogeneity of CPSs (caused by interrelated hardware, software and
cyberware constituents) on system-level, (ii) combines operational and architectural modeling through
(transdisciplinary) system-level features (SLFs), and (iii) provides effective methodological support
for creating SLFs by using genotypes, phenotypes and instances [77]. The two main parts and the
respective components of the SMF-TB are shown in Figure 3. Likewise the workflow of modeling
using SMFs, the chunks of information needed for defining genotypes and phenotypes of SMFs have
been clarified and organized into information schema constructs (ISCs). The proposed ICSs connect
the chunks of operation and architecture information in the relational data tables of the warehouse
databases. The computational algorithms and the overall system modeling mechanisms, including the
feature instantiation-based composition mechanism, have been worked out.
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The proposed SMF-TB imposes a strictly physical view, i.e., it models system constituents in the
3D Euclidian space and captures their relationships as mereotopological relations (rather than just
representing them by abstract modeling surrogates). The ISCs for: (i) representation of operation
and architecture relations, (ii) assigning values to parameter variables, (iii) managing the meta-level
knowledge-base of the model warehouse, (iv) recording the composition and parametrization history,
and (v) recording the state, event and stream unification history of the instantiation and composition
of system constituents are discussed in [78]. The overall process of instantiation involves three cycles,
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on genotype, phenotype and instance-type level. Though the proposed information schema constructs,
tool-box functionality, system-level modeling methodology, and procedural and computational
schemata provide effective support for SMFs-based modeling of first generation CPSs, the completed
investigations cast light on various limitations and/or deficiencies with a view to context capturing and
self-awareness building, self-reasoning and self-learning, and self-adaptation and self-organization
capabilities of smart systems.

The proposed resources proved to be suitable for designing composable systems with
definitive interfaces that fulfill input assumption and output guarantee specifications. These
conventions however cannot be applied to run-time organized smart systems, which construct
their reasoning capabilities during operation and acquire knowledge from run-time processed data
streams. Consequently, this project revealed that reasoning mechanisms cannot be synthesized in a
components-based manner, that is, by directly combining existing AI/cognitive algorithms. Only
compositional synthesis, relying on a holistic knowledge processing framework, can guarantee that
the constituents of an ampliative reasoning mechanism provide a synergistic body of knowledge for
achieving the objectives of system operation under dynamically varying circumstances. On the other
hand, using highly adaptable or self-adaptive system-level (or mechanism-level) features is a reusable
idea to address composability challenges of reasoning mechanisms.

3.3. Identification and Forecasting Failures in a Resilient Cyber-Physical Greenhouse Testbed System

This research started out of the assumption that future CPSs will be characterized by growing
self-intelligence and self-organization, and considered that these abilities enable them to maintain
their operations according to the set objectives under the effects of various influential factors, such as
internal failures or external environmental disturbances. Their control regime will set their operation
modes, as well as the values of the operational parameters, to achieve the relative best output even
under irregular conditions. However, due to the run-time adjustments, they hinder an early recognition
of emergent failures. In other words, the transitions self-enabled by a resilient CPS cause uncertainty
and hamper the use of the conventional failure analysis methods.

It was hypothesized that the intensity and the trend of the changes of system operation modes
(SOMs) can be used as the basis of the diagnosis, recognition and forecasting of failures in resilient
CPSs To test this hypothesis empirically, and to contribute to the theoretical understanding of the
failure recognition and forecasting problem, a self-regulatory and self-tuning testbed greenhouse
system was developed [79]. The roles of system initiated compensatory actions and operational mode
changes were systematically investigated from the aspects of emergence and proliferation of technical
failures in this first generation CPS. However, the influence of functional and structural self-adaptation
on failure recognition and forecasting was not studied, since it would assume the implementation of
an even more sophisticatedly controlled (i.e., smartly behaving) testbed system.

The novelty of this study was that it focused on system-level behavior, rather than on the behavior
of the individual components. The input and output signals/data were interpreted on system level
(Figure 4), which made it possible to generate a set of indicators that could inform about the SOMs
that were triggered by emerging failures. For instance, certain failures pushed the testbed system
into an ‘abnormal’ operation mode, which involved a combination of component operation modes
not typical under regular circumstances. On the other hand, certain SOMs did not occur due to
the effect of failures, or specific SOMs emerged that did not occur during regular system operation.
Consequently, the main contribution of this work was providing novel means, such as the concept
of failure induced operation modes, for monitoring changes of states, events and situations of a
quasi-dynamic system [80]. The changes were captured through the observed variations in the
frequency and the duration of SOMs—that is, in the system dynamics rather than only by signal
deviations. This lent itself to a shift from timed system model-based reasoning about the system
operation to a data-driven, run-time conditions-based reasoning. Our investigations disclosed that the
above concepts could be reused for event and situation diagnoses in other first-generation CPSs and in
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feeding reasoning mechanisms with information higher than component input/output data. We also
understood that it still needs further elaboration in the case of self-adaptive second-generation systems.
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3.4. Representation and Reasoning with Dynamic Context Knowledge in a Fire Evacuation Aiding System

Smart CPSs often works under highly dynamic circumstances and need to make decisions in
dynamic contexts. Typical application examples are such as home care servicing, traffic management
on roads, and aiding fire evacuation of buildings. Therefore, it is necessary to provide fast mechanisms
for dynamic context computation (DCC) and building awareness by the system that enables it to
interpret context changes and to infer about their implications on physical processes. This PhD
research project developed a conceptual/logical framework for DCC and implemented computational
algorithms for building system awareness. The DCC mechanism was developed based on a layered
(context) knowledge model, which included (i) the layer of states (of entities and their spatial,
attributive, temporal and semantic (SATC) relationships), (ii) the layer of events (changes in the
SATC relationships), (iii) the layer of situations (logical/semantic relations of events and states), and
(iv) the layer of scenes (logical/semantic relations of interplaying situations).

The knowledge model assumes information integration on each layer, and information abstraction
to support semantic transitions between the subsequent layers. The semantic abstraction over
the integrated information constructs provides opportunity to computationally infer not-explicitly
described states, events, situations and arrangements in various forms. The data describing dynamic
contexts were arranged in a specific computational scheme called context information reference cube
(CIR-cube), which proved to be a dexterous computational means for handling spatial, attributive
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and temporal data in a cohesive manner (Figure 5) [81]. An inference mechanism was developed
that updates and (re)computes the contents of the matrices included in the CIR-cube and eventually
builds an awareness model of the time-varying process at hand. The CIR-cube is able to capture both
physical time and computational time. The procedure of awareness building includes the following
main computation steps: (i) determining the state of the concerned entities, (ii) recognition of events,
(iii) identification possible situations, (iv) judging the relevance of situations to the concerned entities,
(v) revealing the interplays of the relevant situations, and (vi) interpreting the implications of the
interplaying situations [82]. The functional scheme of the inferring mechanism for building awareness
is shown in Figure 6.
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The developed dynamic context computation mechanism is complemented with a reasoning
mechanism for operational strategy synthesis. Ultimately, this mechanism generates personalized
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action plans that make it possible to achieve the specific operational/servicing objective of a smart
CPS. Together with the implemented additional computational mechanisms for message generation
and distribution, the dynamic context computation and action plan generation mechanisms were
tested in an indoor fire evacuation guiding application. The application case was investigated based
on a high-fidelity simulation of presumed real-life fire propagation and of the behaviors of the
human, artefactual, and natural stakeholders. The experimental results proved the efficiency of the
interoperating computational mechanisms and algorithms. They also confirmed our hypothesis that
the proposed dynamic context computation mechanism was able to provide descriptive knowledge
about emergent situations as well as about the implications of the interplaying situations on the
concerned entities.

The contribution of this research to the conceptualization of the main constituents of procedural
abduction is as follows: The proposed solution uses sensor-provided and/or preprogrammed spatial,
attributive and temporal data to describe all involved entities and to characterize their varying states
in their local worlds, as a system of reference. A state was defined as a static representation of the
momentarily characteristics of an entity, whereas an event as the change of the states of an entity
at two subsequent points in time (in the computational realm). A situation is generated by the
aggregation of a series of operationally non-independent events and/or states appearing at a given
point in time. In addition to computationally combining/integrating logically related events and states,
the mechanisms were also able to extract specific meaning of combined and/or integrated events
and states by abstraction towards a higher level comprehension. The descriptive data-based context
representation is supplemented with various derived elements of semantic intelligence, which are
generated by the inferring algorithms of the proposed dynamic context management mechanism.

3.5. Reasoning and Adaptation in an Engagement Monitoring and Enhancing System for Stroke Rehabilitation

Task-oriented training exercises need to be practiced in upper limb rehabilitation after stroke.
The hypothesis of this work was that a smart cyber-physical stroke rehabilitation system (CP-SRS),
which is able to increase the motor, perceptive, cognitive, and emotional involvement of patients
during rehabilitation exercises can be a promising solution. Thus, the objective of this PhD
research project was to augment a robot-assisted upper limb rehabilitation subsystem with a
cyber-physical computation-based engagement management subsystem. Since there is no opportunity
for preprogramming in this specific application case, realization of engagement management raised
the need for run time reasoning capabilities. At the beginning of the project it was not completely
understood which factors (e.g., game difficulty, personal interest, game design, and immersiveness of
environment) are the most influential on the engagement of patients [83]. Furthermore, no quantitative
method was found to evaluate momentarily engagement. Based on the outcome of the explorative
research, the main functions and architectural elements of the CP-SRS have been defined as: (i) a
multi-modal sensor network, which monitors the states of patients, (ii) real time information processing,
which interprets the actual signals and generates engagement models, (iii) reasoning and decision
making, which provides personalized stimulation plans for different patients, and (iv) situated learning
that facilitates run time generation of a reasoning model concerning the system state/objectives and
the necessary/possible adaptation. These functionalities and system components were conceptualized
and implemented in the CP-SRS at a testable prototype level [84].

Architecturally, the CP-SRS included five subsystems: (i) an assistive robotic subsystem, (ii) a
gamification subsystem, (iii) an engagement monitoring subsystem, (iv) a smart learning mechanism
(SLM), and (v) an engagement enhancement subsystem (EES) The indicators for: (i) motor engagement
(ME), (ii) perceptive engagement (PE), (iii) cognitive engagement (CE), and (iv) emotional engagement
(EE) were monitored using: (i) MYO(TM) Armband with electromyography sensors, (ii) Eyetribe
eye tracking device, (iii) Emotiv(TM) Epoc headset (14 channel wireless electroencephalography
(EEG) device), and (iv) a web camera, and Insight device, respectively. The data from these sensors
were streamed to MATLAB via TCP/IP computer network transmission control protocol, where the
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engagement levels in the four aspects were interpreted. The workflow of information processing related
to the smart learning mechanism is shown in Figure 7. Basically, when the patient’s engagement level
decreased, the system introduced interventions. Through the interventions it was able to re-engage the
patients and to maintain their high level engagement. The interventions meant stimulations in motor,
perceptive, cognitive, and emotional aspects, depending on the actual state of the patients. Stimulation
strategies were created as a combination of stimulations in multiple aspects.
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The main findings of this research project can be summarized as follows: It has been found that
the ratio of the root mean square of the measured electromyography (EMG) signal and the velocity
of motion of the human limb was a reliable indicator of motor (function) engagement. However, the
indicators introduced for measuring the motor, perceptive, cognitive and emotional engagements
had to be taken into consideration simultaneously in order to achieve an optimal stimulation strategy.
They had also to be interrelated in order to form a distinct measure. In the process of computing the
applicable stimulation strategies, there was a need to consider the personal profiles of the patients
in addition to their motor, perceptive, cognitive, and emotional engagement indicators. A neural
network-based smart learning mechanism could be used to learn the effects of the different stimulations
strategies on different persons and to propose personalized enhancement. Continuous monitoring
of the state of the patient and learning the enhancement options lead to efficient, personalized and
self-adaptive stroke rehabilitation training.

The identified engagement indicators were useful not only for enhancing engagement, but also to
understand the limitations of the current engagement enhancing methods. Although the methodology
developed for monitoring and enhancing engagement was dedicated to rehabilitation, this approach
can be used in other fields as well, such as sports, driving, and education. The contribution of this
project to revealing constituents necessary for procedural abstraction were: (i) building situation
awareness based on input sensor data, (ii) devising a reasoning model run-time based on relative
changes of state indicators, (iii) development of possible adaptation (stimulation) strategies by machine
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learning using the state indicator-based reasoning model, and (iv) operationalization of the adaptation
plan based on changing the setting of the physical and computational effectors.

4. The Framework of Computational Implementation of Procedural Abduction

4.1. The General Workflow and the Underpinning Knowledge of Procedural Abduction

From a computational point of view, procedural abduction is seen as a recurrent sequence
of eight processing stages: (i) run-time extraction of data/signals by sensing, (ii) recognition of
change events, (iii) inferring about exiting operational situations, (iv) building awareness of the
system’s performance, (v) devising alternative performance enhancement strategies, (vi) designing
adaptation of the system as a whole, (vii) planning the implied interventions, and (viii) actuating
effectors and controls. The operational workflow (computational implementation) of procedural
abduction (PA) is graphically shown in Figure 8. The activities (i)–(iv) enable the system to capture
data about its momentary performance (outcome of system operation), to compare the data with
those representing the assumable best objective of servicing, and to define the necessary and possible
changes of the system. The activities (v)–(viii) enable the system to determine the necessary functional
and/or architectural changes, to define the adaptations to be introduced, and to set the values of
the actuator control variables accordingly. Each activity involves at least one, but typically multiple
interacting computational algorithms, which are integrated into the overall reasoning mechanism of
procedural abduction.
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The basis of implementation of the computational workflow of PA is the predefined operation
and servicing model (OSM) of the concerned CPS system, which specifies: (i) the default objectives,
(ii) the values of the operational parameters, and (iii) the initial state of the system, as a reference.
Symbolically, the OSM can be specified on a given level of resolutions as a septuplet (Equation (1)):

OSM = (IV, AC, PS, OD, AD, OV, TV) (1)

where: IV is a finite non-empty set of input variables belonging to the total of interoperating system
actors on a given level of resolution; AC is a finite non-empty set of architectural constituents realizing
the system actors on a given level of aggregation; PS is a finite non-empty set of services generated by
the system actors, OD is a finite non-empty set of operational dependences among system actors and
the provided services; AD is a finite non-empty set of architectural dependences among system actors
and the provided services; OV is a finite non-empty set of output variables describing the provided
services, and TV is a finite non-empty set of the required/possible target (interval) values of operation
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and services of the system as a whole. An explicit incorporation of the operational and architectural
dependences of the system actors is needed in view of the compositional synthesis of the system.
(Compositional synthesis means that the operational and architectural manifestation of the system
actors as constituents is simultaneously defined by the overall operational/servicing objectives of the
system as a whole and by the manifestation of the closely interoperating other constituents.)

PA is not purely a logical propositions-based reasoning, but data-, information- and
knowledge-based. The knowledge required for the implementation of the generic workflow of
procedural abduction (shown in Figure 8) has two parts: (i) static knowledge and (ii) dynamic
knowledge. The static knowledge is conveyed by the predefined OSM of the system (referred to
as OSMinitial in the rest of the article). The dynamic knowledge is derived based on the run-time
acquired data and the modified OSM (OSMactual), and thus by the change of the operational context
and objectives. The concerned algorithms of the computational mechanism blend the parts of these two
bodies of knowledge in each stages of processing. The overall scheme of using the knowledge sources
is shown in Figure 9. From the point of view of realization logical/semantic reasoning by PA, there are
four sources of knowledge considered: (i) the content of OSMinitial, (ii) the content of OSMactual,
(iii) the descriptive spatial, attributive and temporal data, semantic relations, and prescriptive
constraints included in the permanent context (PĈ) and dynamic context (DĈ) representations, and
(iv) specifications of conceptualizations in the associated system-used ontologies and data residing on
the Web. The necessity of these sources of knowledge has been proven in our research, as well as why
their sufficiency for a wide range of applications should still be tested experimentally.
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4.2. From Enabling Operators to Transforming Algorithms

The computational mechanism of procedural abduction (MPA) has been interpreted as an
arrangement of operators completing the computational activities in each stage of PA. MPA can
symbolically be represented by the following formula (Equation (2)):

MPA =
DD−→� RE−→�

FI−→� AP−→
IS−→� AA−→� DS−→� DA−→

� PI−→� AE−→ (2)

where:→ (rightward arrow) indicates an operator of the workflow; (horizontal line) is used to separate
alternative sequences of operators (i.e., operation with or without adaptation). The symbol ‘�’
indicates the orientation of the flow of information processing. The group of operators above the
horizontal line allows self-adjustment of a system, while the group of operators below the horizontal
line enables self-adaptation of a system. DD is the operator of detecting signals and elicitation
of data, RE is the operator of recognizing and monitoring events, FI is the operator of providing
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feedback information for operational control; AP is the operator of adjusting the values of operational
parameters; IS is the operator of interpretation of situations; AA is the operator of acquisition of
operational awareness; DS is the operator of devising adjustment and/or adaptation strategy; DA
is the operator of designing adaptation; PI is the operator of planning interventions; and AE is the
operator of selective actuating of effectors.

Each element of the computational process, including those belonging to its decision making
sub-process, can be implemented by two kinds of computational operators: (i) (physically-grounded)
operators handling state changes in the physical realm, and (ii) operators for processing data,
information and knowledge in the cyber realm. While the first kind of operators process changes in the
continuous space and time, the second kind of operators work with digital representation and feature
event-oriented execution. Ultimately, both capture state changes and are handled in similar manner as
computational transformations, Tx,i, where: x is any operator of PA, and i is the identifier of a particular
computational action belonging to x. The operators may include three sets of transforming algorithms,
namely basic, auxiliary and interaction algorithms. These types are identified based on the purpose of
the algorithms. Basic algorithms generate new information by reasoning/inferring, while auxiliary
algorithms maintain information, for instance, by recording digital data in files. Interfacing algorithms
avail information, e.g., receive manual data input, display data to enable human interaction, or convert
data between cooperating system modules. Due to space limitation, only the basic transformations
(sets of transforming algorithms) will be discussed.

4.3. Transforming Algorithms Needed for the Operators

The operator for detecting signals and elicitation of data (DD) includes the following
transformations (Equation (3)):

DD = (TDD,1, TDD,2, TDD,3, TDD,4, TDD,5, TDD,6, TDD,7, TDD,8) (3)

where: TDD,1 is identification of active physical and action sensors in the environment; TDD,2 is local
sensing of the attributes of material flows; TDD,3 is local sensing of the attributes of energy flows;
TDD,4 is local sensing of the attributes of information flows; TDD,4 is collecting data from linked
software sensors; TDD,6 is transferring signals on the wired/wireless network; TDD,6 is multiplexing
analogue signals; TDD,7 is converting analogue signals into digital data; and TDD,8 is cleaning/filtering
digital data.

Used for recognizing and monitoring events, the next operator (RE) includes transformation
algorithms for the analysis of the sensed and input signals/data in order to detect something that
happens or might happen at a given physical or logical place and time. The analysis considers
the operational state of the system as a whole, of the constituents, and the set operation/servicing
objectives. The recognizing and monitoring events operator is defined as (Equation (4)):

RE = (TRE,1, TRE,2, TRE,3, TRE,4, TRE,5, TRE,6, TRE,7) (4)

where: TRE,1 is detection of change trends in digital data, TRE,2 is obtaining information over operation
modes of the system, TRE,3 is detection of remarkable signal changes that may be associated with
discrete change events, TRE,4 is features-based investigation of the signal changes, TRE,5 identification
and classification of a recognized events according to their nature (space-related, attribute-related, or
time-related), TRE,6 is time stamping and recording of recognized events, and TRE,7 is monitoring the
life cycle of the recorded events. These transformations make it possible to recognize state changes in
terms of deviation from the set objective and the preferred system states, respectively.

A situation has been defined as interactions of the recognized events, not matter if they concern
the change in the objectives or in the system-internal states. The main goal of this activity is to identify
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the interacting events and to determine their relationships in space, time and logic. Thus, the operator
for interpretation of situations (IS) includes the following transformations (Equation (5)):

IS = (TIS,1, TIS,2, TIS,3, TIS,4, TIS,5, TIS,6 TIS,7) (5)

where: TIS,1 is recalling all recognized events; TIS,2 is investigation of the space of the individual
events in a considered local world based on the location of the signal provider; TIS,3 is investigation
of the time stamps and durations of the individual events in the considered operation window; TIS,4

is computation of spatial relationships of the events occurring in the considered local world; TIS,5 is
computation of temporal relationships of the events occurring in the considered time window; TIS,6

is determining the set of correlated events and recording it as a situation; and TIS,7 is monitoring the
trend of change of an identified situation.

Having a grasp on the states of system operation and objective achievement, the reasoning
mechanism intends to ‘understand’ the meaning and implication of the actual situation. This is based
on learning, which allows the knowledge-enabled mechanism to acquire additional information and to
build awareness. As discussed above, there are four sources of information: (i) the initial system model,
(ii) the run-time acquired data, (iii) the dynamic context model, and (iv) additional data repositories.
Building operational awareness allows making logical judgments and inferring conclusions. Thus, the
operator for acquisition of operational awareness (AA) is composed of the following transformations
(Equation (6)):

AA = (TAA,1, TAA,2, TAA,3, TAA,4, TAA,5, TAA,6, TAA,7, TAA,8 ,TAA,9) (6)

where: TAA,1 is operationalizing the OSMinitial; TAA,2 is determining the deviations from OSMinitial in
the given situation; TAA,3 is computation of the operation/servicing indicators; TAA,4 is generating
implicit context information; TAA,5 is generating spatial context information; TAA,6 is generating
temporal context information; TAA,7 is generating attributive context information, TAA,8 is computation
of the dynamic context model; and TAA,9 is unsupervised learning of the necessary control regime (that
is, if maintaining Oinitial is needed or if there is a possibility for a more favoring Opossible). Together
with the results of the transformations included in the operators AA and DA, the DS operator informs
the reasoning mechanism about how and why a particular set of conclusions were made. That is, the
sequence » AA » DS » DA » represents a local proposition-based abduction in the whole process of
procedural abduction.

Depending on the control regime, a proper strategy is needed to achieve the set
operational/servicing objective of the concerned CPS. This is the task of the devising adjustment
and/or adaptation strategy (DS) operator, which includes the following computational transformations
(Equation (7)):

DS = (TDS,1, TDS,2, TDS,3, TDS,4, TDS,5, TDS,6, TDS,7) (7)

where: TDS,1 is initiation of computational actions according to the control regime (‘observation’);
TDS,2 is investigation of operation/servicing indicators with regards to possible enhancement; TDS,3 is
devising. alternative operational strategies; TDS,4 is devising feasible associated adaptation strategies
(‘hypotheses’); TDS,6 is assessing the operational and adaptation strategies (‘stratagems’) considering
the resources and the context of actions; and TDS,7 is ranking the stratagems and selecting the best one.

While strategizing focusses on both the functional and logical aspects (i.e., what to change and
why to change), architecture and operation adaptation concentrates on the technical and practical
aspects of altering the system (i.e., on how to change and when to change). In this sense in produces
a technical blueprint of the system alteration together with a course adaptation plan. This plan is
the basis of intervention specification. The operator for designing adaptation (DA) is realized by the
following computational transformations (Equation (8)):

DA = (TDA,1, TDA,2, TDA,3, TDA,4, TDA,5, TDA,6, TDA,7, TDA,8, TDA,9) (8)
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where: TDA,1 is investigation of the degrees of freedom in which the system can be adapted according
to the best adaptation strategy; TDA,2 is determining the necessary/possible operation/servicing
adaptation; TDA,3 is determining the necessary/possible architecture adaptations; TDA,4 is computation
of the OSMactual based on the skeleton of OSMinitial; TDA,5 is computational simulation (pre-playing) of
the system’s operation/servicing after introducing the adaptations; TDA,6 is investigation of the impact
of adaptation on the system’s properties; TDA,7 is adjustment of OSMactual according to the findings
and enhancement of the adaptation plan; TDA,8 is identification of the outgoing and/or incoming
system resources; and TDA,9 is determining the sequence of the hardware, software and cyberware
adaptation actions. As it can be seen, this operator is one of those that require the largest number of
interoperating algorithms.

The DA operator can provide only a ‘delayed’ adaptation plan due to the necessary preliminary
computational testing of the impacts of adaptation. The possibility of adaptation is influenced by
then completion of certain operations of the CPS. This creates the need for the planning interventions
operator. The objective of this operator is to operationalize a refined adaptation plan operation- and
time-wise. Actually, it converts the adaptation blueprint into a transition blueprint, which considers
the operation/servicing of the CPS and the conditions for this. The operator for planning interventions
(PI) comprises the following transformations (Equation (9)):

PI = (TPI,1, TPI,2, TPI,3, TPI,4, TPI,5, TPI,6) (9)

where: TPI,1 is generation of a scenario for modification of the effectors; TPI,2 is computation of
control information for all motors; TPI,3 is computation of the control information for all regulators;
TPI,4 is computation of the control information for all sensors; and TPI,5 is computation of the
control information for all information handling components, and TPI,6 is computation of the control
information for all computational effectors.

Finally, the operator for selective actuation of effectors (AE) is defined as (Equation (10)):

AE = (TAE,1, TAE,2, TAE,3, TAE,4, TAE,5) (10)

where: TAE,1 is activating and setting rotary motors, stepper motors, servos and specialty motors;
TAE,2 is activating and setting linear actuators, effect transformers, regulators and transceivers; TAE,3 is
activating and setting environmental sensors, physical sensors and action sensors; TAE,4 is activating
and setting communicators, transceivers, modems, converters, cameras, and displays setting of system
parameters; TAE,5 is activating and setting computational effectors.

5. Some Conclusions and Future Research Opportunities

5.1. Reflection on the Approach

Humans typically apply the divide-and-conquer strategy combined with some informal reasoning
to solve complex practical application problems. In cyber-physical systems, the complex application
problem (e.g., providing multi-activity assistance in home care context) is to be decomposed to
tasks that can be allocated to the active nodes of the system. Decomposition of complex problem
typically needs informal (intuitive and semantics-based) reasoning. It also assumes certain level
of autonomy and collaboration of the active nodes [85]. However, as Pease, A. and Aberdein, A.
argued, a comprehensive theory of informal reasoning is not available and perhaps even not
expectable [86]. Therefore, problem solving by cognitively enabled systems needs to be based on
formal, computationally processable reasoning theories.

The objective of the presented research effort was to contribute to the progress in this field of
interest. As a computational implementation of a formal theory that provides a flexible system-level
reasoning capability for various smart CPSs, procedural abduction was proposed. Its idea emerged
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based on a conceptual synthesis of solutions for reasoning in various application contexts. The
reasoning pattern of procedural abduction is straightforward:

Some phenomenon concerning the operation of the system is observed;
If a particular explanation would be true, then the phenomenon could be a matter of course;
Hence, there is a reason to suspect that the particular explanation is proper (true).

Contrary to the above fact, implementation of the computational algorithms and data processing
for PA is a complex and challenging undertaking. One of the challenges of implementation is that the
computational reasoning should be knowledge-based, rather than just purely logics-based. On the
other hand, PA offers affordances and benefits that cannot be expected from other approaches.

In the case of a smart CPS, the observed phenomenon is the relation of the state of the system
to the set operational objective, or to a possible optimal operational objective. To generate proper
explanations about this relation, the process of reasoning should include a part that collects information
and builds awareness about the actual operational state of a system (contemplation), and another
part that reasons about the necessary/possible adaptations towards a better operational objective
(alteration). These are the functional backbones of the proposed procedural abduction mechanisms.
PA exemplifies a form of reasoning that is ampliative in the sense that it aims at extending the domain
of the actually existing system knowledge in every given state of its operation.

In principle, PA is application independent, but it should most probably be tailored according to
the specificities of the considered application domains in order to achieve the best possible performance.
By enabling deep penetration into real life processes and complementing model-based system control
regimes with non-preprogrammed, run-time data acquisition-enabled, learning and reasoning, PA may
be the reasoning mechanism for many physical, biological, medical, social, cognitive, etc. applications
which includes processes of highly dynamically changing nature. Computational realization of
PA necessitates a combination of a large number of conventional and specific artificial intelligence
algorithms, which should be interconnected in a compositional manner [87]. Achieving compositional
synergy in terms of the large number of interdependent algorithms, as well as in terms of the knowledge
flow needed for system level problem solving, is found as a challenge for implementation. This problem
is already a recognized one in the literature [88].

One of the aims of this article was to emphasize the significance of abduction as a computationally
feasible problem solving process and to propose computational framework for procedural abduction.
PA operationalizes the principle that systems and agents of cognitive problem solving should
incorporate knowledge about the world (ontological commitment) and an abstract procedure
(inferential commitment) for interpreting this knowledge towards constructing operation plans and
taking informed actions. Clearly, implementation, application and validation of procedural abduction
as an ampliative reasoning mechanism for varied cyber-physical systems are a work in progress.
However, the development of its underlying theoretical framework and computational methodology
has reached an advanced stage. At this time, it can be forecasted that its realization may come to
fruition, though a fully-fledged implementation in a form of a platform, which is applicable in multiple
CPSs in various contexts, still requires substantial work.

5.2. Future Research Opportunities

The results summarized in this article are related to the first phase of our research, which
concentrated on exploring the elements of a feasible conceptual framework for procedural abduction.
The on-going research efforts are made towards a fully-fledged computational implementation and
integration. The development activities should extend to the refinement of all algorithms chosen
or developed for system level reasoning. The ultimate objective is to use the abductive reasoning
mechanism as pluggable module of smart CPSs, which can provide application independent reasoning
and reduce the software and knowledge engineering work. Since high-fidelity computational replicas
of complex mental representations are inherently compositional, conceptual frameworks and design
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methodologies fostering compositionality of smart CPSs are highly necessary. Towards this end, the
issues associated with compositional design of reasoning mechanisms need to be addressed too. The
importance of compositionality is well recognized in the literature, but further research is needed in the
case of run time self-organizing systems. The issue of maintaining synergy between the initial system
model and the (dynamically changing) actual system model should also be addressed. Even a partial
modification of a well-tested system reasoning model by a run time developed reasoning model may
create problems with a dependability and resilient operation of CPSs. The uncertainty created by each
step of procedural abduction, such as inferring and interpreting the changing context of application,
developing adaptation strategies, and performing adaptation of system models, should be treated with
outmost care. Further explorative research is needed in this field too. Furthermore, specific methods
that are able to verify adjusted system operation models at run-time are also needed. They should be
able to investigate and forecast the effects of various operation strategies and system adaptations on the
performance and behavior of CPSs in changing contexts. Real time formal verification of operational
strategies is an essential feature of procedural abduction. While addressing formal verification at
run time is in the focus of CPS research, methods have to be developed that would help address the
concomitant challenges.
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