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Abstract: The course of events since 2014, including the worldwide pandemic of a coronavirus
disease, have shown that oil market fundamentals have not always been clearly anticipated and that
additional external factors, rather than those related to supply and demand, do play important roles
in signaling future price changes. Within that complex setting, this study examined the influences of
structural breaks on the long-term properties of Brent crude oil, gasoil, low-sulfur fuel oil, natural
gas, and coal over the period 2002–2018. In an effort to assess the impacts of these structural changes,
we identified time points at which structural break changes occurred and unit root properties using a
representative variety of unit root testing alternatives. From the estimation results, we observed that
only fuel oil and national balancing point (NBP) prices show evidence of mean-reverting behavior,
suggesting that shocks to these two markets are short-lived when allowing for structural breaks.
Although the idea of market forces bringing the non-renewable markets to their equilibrium in the
long run makes the role of policy-making more challenging, it highlights the importance of the policy
mix in the transition to a low-carbon energy system.

Keywords: crude oil; gasoil; fuel oil; national balancing point (NBP); coal; structural change; unit
root; energy transition

1. Introduction

In competitive markets with multiple sellers and buyers, prices are mostly driven by supply and
demand, with price itself providing signals to ensure market equilibrium. However, meaningful price
fluctuations come from exceptional events, causing distortions that may have effects on trends in the
long-term. Furthermore, the strong push from governments to allow a smooth transition between an
era dominated by fossil fuels and one focused on a low-carbon economy will continue to influence
non-renewable pricing structures to reflect environmental attributes and energy-related megatrends.

Within this framework, the study of patterns in the energy time series becomes of great interest.
This study assesses stochastic properties of the three energy commodities that account for the majority
of global energy demand, i.e., crude oil, coal, and natural gas, in addition to gasoil and fuel oil, using a
comprehensive approach. In this sense and to the best of our knowledge, this paper is the first that
addresses a systematic review of endogenous testing procedures for non-renewable energy prices.
Of separate interest are the results of the break dates estimates themselves and the insights gained
from this using each test.

Our analysis is motivated by the fact that, as it is well known, the effects of major historical events
find the balance of evidence in favor of the trend stationary hypothesis more often [1]. More specifically,
the purpose of this paper is threefold: firstly, to provide evidence for the presence of unit roots in
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time series in light of the most recent oil price crashes. Secondly, to examine the potential existence of
breaks and the nature and impacts of those shocks on price developments, and thirdly, to properly
address testing limitations providing a view towards improving modelling and forecasting techniques.

While maintaining a certain distance from the effects of the coronavirus pandemic—a rather
unique phenomenon negatively affecting expectations for growth worldwide—our study focuses on
two major events: Firstly, the credit crunch in 2008 associated with global economy uncertainty and a
sharp reduction in global demand. Secondly, the collapse of oil prices since late 2014. Figure 1 shows
the developments in the prices of oil and oil products from 2002 until the end of 2018.
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There are multiple similarities and differences among the two oil price crashes, although the
differences are possibly more revealing of how traded oil markets behave. In the first place, the 2008–2009
crash was precipitated by global events, mainly the financial crisis, with oil prices during that crash
being highly correlated with equity and exchange rate movements. Due to this interaction and the
uncertainty regarding the health of the global economy, volatility spiked in 2008. However, the impact
of shocks to equity markets on volatility during the recent crash was muted [2]. As a matter of
fact, that macroeconomic shocks are closely related to crude oil price variations does not come as a
surprise [3–8]. In the second place, the decline in the second half of 2014 was considerably sharper for
oil than for other commodities, whereas almost all commodity prices, including coal, metals, food
commodities, and agricultural raw materials, declined by similar magnitudes in 2008 [9]. The third
and perhaps the most important factor from a market point of view: although after the financial crisis
virtually all commodity prices rebounded, helped by production cuts and a strong emerging market
demand, global oil supply started building up.

In terms of the benefits provided by the study, it makes three main contributions: (i) it provides
an integrated framework in which the most representative endogenous unit root testing procedures
are evaluated; (ii) it unravels the nature of non-renewable energy resources’ prices facilitating a more
precise assessment of the effects of structural breaks in each variable using different alternatives;
(iii) it improves decision-making by taking into account climate policy interventions and clarifies the
potential for a smooth transition from fossil fuels to low-carbon energy sources. As is well-known,
if price series exhibit trend stationary properties with breaks in the trends, that would suggest that
price stabilization policies may be ineffective and difficult to implement.

The remainder of this paper is organized as follows. Section 2 briefly explains the econometric
methodology of this paper. Section 3 provides the descriptive statistics of the sample data and the
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various testing methodologies’ results. Section 4 discusses the empirical results. The final section
includes some concluding remarks.

2. Materials and Methods

2.1. Data Definition

This study considers six time series, namely, crude oil Brent (Brent), gasoil (GO), low-sulfur fuel
oil (LSFO), average Spanish gas import prices (SGP), national balancing point (NBP), and coal prices,
all of which except SGP are variables widely traded around the world, providing producers and
consumers with valuable financial products to protect themselves against the risk of price fluctuations
in their respective markets. We also introduce Spanish gas import prices to expand the scope of
investigation into oil-indexed gas supplies supported by the fact that Spain, with access to diverse,
competing sources of gas, is an ideal reference to assess relationships between crude oil and long-term
gas globally [10,11]. The data sets consist of the average monthly prices spanning from January 2002 to
December 2018 (total 204 observations). The price series are converted into the logarithmic percentage
return series for all sample indices, i.e., yt = 100 × ln (Pt/Pt−1) for t = 1, 2,..., T, where yt is the returns
for each time series at time t, P is the current price, and P is the price from the previous month.

Figure 2 shows time variations of monthly prices and absolute returns over the study period for
all the variables considered.
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As can be seen, Brent crude oil and oil products data sets share large swings in common, and
at the same time show similar upward trends in spite of the effects of shocks during 2008 and 2014
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pulling down the trend line with no clear indication of mean reversion. Common peaks anticipating
potential structural breaks were observed at the beginning of 2003 and the Iraq war, in mid-2008 as a
result of the financial crisis, and at the end of 2014. Table 1 provides of the descriptive statistics of the
natural logarithm of the series.

Table 1. Descriptive statistics of natural logarithm levels over 2002–2018.

Variable Mean Price
Level

Standard
Deviation

Coefficient of
Variation (%) Skewness Kurtosis

InSGP 1.87 0.36 0.19 −0.41 2.25
InBrent 4.13 0.47 0.11 −0.41 2.31
InGasoil 6.32 0.46 0.07 −0.55 2.66
InFuel oil 5.82 0.50 0.09 −0.23 1.95

InNBP 1.83 0.45 0.25 −0.66 2.94
InCoal 4.29 0.38 0.09 −0.31 3.56

As can be seen, on average, coefficients of variation (CV) are generally close, indicating a similar
month-to month variation in all of the prices, with gasoil showing the lowest CV. Regarding the
statistical distribution of natural logarithm levels, all variables reveal similar evidence of negative
skewness, implying that the left tail is more extreme than in the Gaussian case. It is interesting to
notice that coal shows the highest level of kurtosis among the energy products’ prices, implying that
the distribution of coal prices has a tail that is thicker than the rest.

2.2. Methodological Issues

This section is concerned with methodological issues affecting unit root estimation in the study in
the context of structural change. Our focus is on the conceptual issues about the different approaches
to better understand the potential applicability to our investigation. It is important to highlight the
impressive amount of research in the last few decades devoted to improving existing methodologies
and to overcoming potential problems. The fact that unit root processes can sometimes be viewed as
observationally equivalent to, or hardly distinguishable from, a trend stationary process with breaks
lays at the heart of the debate [12]. It has to be noted that since the seminal paper by Perron [1] was
published, several alternatives in addition to joint inference have been developed, and a complementary
strand of literature is concerned with specific issues related to the detection and estimation of structural
changes [13–18].

The basic model in the earlier articles of Perron [1] and Hamilton [19] leading to important
development afterwards, considers a univariate process yt generated by either additive (AO) or
innovational outlier (IO) models, the distinction being how the impact of the break is distributed over
time. In the AO model, the impact is complete over the period, whereas in the IO model the effect is
distributed over time, implying a distinction between the short-run and long-run impacts of the break.

The data generating process (DGP) of the additive outlier (AO) model is:

yt = z (T1)
′

t ∅+ ut = z′t,1 ∅1 + z(T1)
′

t,1 ∅2
′
t + ut

where z′t,1 = (1, t)′, ∅ 1 = (µ, β)′,

z(T1)
′

t,1 =


DUt for Model A1
Bt for Model A2

(DUt, Bt)
′ for Model A3

,∅2 =


µb for Model A1
βb for Model A2

(µb, βb )′ for Model A3

with DUt = Bt = 0 if t ≤ T1 and DUt = 1, Bt = t − T1 if t > T1.

The noise ut is such that A (L) ut = B (L) εt where εt ≈ i.i.d. (0, σ2), and A (L) and B (L) are
polynomials in L of order p +1 and q, respectively.
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The DGP of the innovational outlier (IO) model under the alternative is given by:

yt = z′t,1 ∅1 + ϕ∗(L)
(
d(T1)

′

t,2 ∅2 + εt
)

where

z(T1)t,2 =

{
DUt for Model I1

(DUt, Bt)
′ for Model I3

,∅2 =

{
µb for Model I1

(µb, βb )′ for Model I3

with ϕ* (L) and ϕ (L) such that ϕ* (L) = A* (L)−1 B (L) and (1 − αL)−1 ϕ* (L) = φ (L).

Models A1 and I1 are called “level shift” or “crash” models, A2 is a “changing growth” model,
and A3 and I3 are “mixed” models. A changing growth model of the IO type is typically not considered
because it is necessary to assume that no break occurs under the null hypothesis which imposes an
asymmetric treatment in Perron’s framework.

A brief description of the specific testing methodology employed in this study follows, including
abbreviations used later on:

(i) Zivot and Andrews (ZA) [20] and Perron and Vogelsang (VP) [21]. These unit root tests have in
common that they endogenize the choice of the break point proposing to estimate the break date
such that it gives the most weight to the trend stationary alternative, i.e., either minimizing the
Dickey–Fuller statistic or optimizing a statistic which tests the significance of one or more of the
coefficients on the trend break dummy variables.

(ii) Lumsdaine and Papell (LP) [22]. This specification extends the ZA design to introduce a unit
root testing procedure that allows for two structural breaks, although, unfortunately, it leads to
results that are heavily dependent on break size [23]; however, implementing this framework has
clear advantages, as it provides less (or stronger) evidence against the unit root hypothesis than
that given by Perron, plus it provides valuable information as to whether structural breaks have
significantly contributed to a change in trend or not.

(iii) Saikkonen and Lütkepohl [24] and Lanne et al. (LLS) [25] extended Saikkonen and Lütkepohl [26],
and Lanne et al. [27] tests respectively—these tests are considered in turn extensions of the tests
of Elliot, Rothenberg and Stock [28], which are based on estimating the deterministic term first
by generalized least squares (GLS) and subtracting it from the time series. It has to be noted
that [26,27] tests have the convenient feature that they allow for smooth transitions through
different shift func000000tions what may be more reasonable than assuming an abrupt shift.
Moreover, tests statistics are easy to compute for quite general shift functions and allow the
possibility to include seasonal dummies in addition to a constant or linear trend line.

(iv) Lee and Strazicich (LS) [29,30]. These testing methodologies propose one and two break Lagrange
multiplier (LM) unit root tests as alternatives to the ZA and LP tests respectively. In contrast to
the ADF (augmented Dickey–Fuller) type of tests, the LM unit root test has the advantage that
it is unaffected by breaks under the null, and therefore solves the issue about the asymptotic
validity of the null distributions described above. The breakpoint estimation scheme is similar to
those in the ZA and LP tests; i.e., the breakpoints are determined to be where the test statistic is
minimized. While the LM test offers an improvement over procedures that only allow for breaks
under the trend stationary alternative, it is recognized to be substantially undersized for large
breaks, whereas it has difficulties in identifying small break dates [23]. As a result of continuous
progress made on this area, Ming et al. [31] proposed a new unit root test that adopts the residual
augmented least squares (RALS) procedure to gain improved power when the error term follows
a non-normal distribution. These new tests using the RALS procedure are more powerful than
the usual LM test which does not incorporate information on non-normal errors, and it is not free
of nuisance parameters that indicate the locations of a structural break.
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(v) Kim and Perron [32] (KP). These tests use research on structural change by Perron and Zhu [33]
and Perron and Yabu [14], who developed new test procedures which allow a break in the trend
function at an unknown time under both null and alternative hypotheses.

3. Results

In this section, we examine the unit root properties of the six selected variables and identify the
months in which structural breaks occur. The results are then analyzed to explain similarities and
consequences using alternative testing methodologies. As discussed, each testing method applied will
result in different specifications for the null and alternative hypotheses and will have varying quality
in line with the underlying data generating process. Furthermore, the structure of deterministic terms
included in the maintained regression will influence the asymptotic distributions of the unit root test
statistics. As can be seen in Figure 1, all the variables under investigation, similarly to typical financial
time series, seem to be better approached by a random walk like process with drift, implying that
the differenced time series behave very much like a white noise process. In this sense, throughout
the testing process, the alternative, including a linear trend in the maintained regression, seems the
most plausible description of the data under both null and alternative hypotheses [34]. The standard
conventional level for inference used is 5%.

3.1. Generic Unit Root Tests

In this subsection, we analyze the integrational properties of natural log prices in levels and
first differences using generic ADF and KPSS (Kwiatkowski–Phillips–Schmidt–Shin) tests in order to
examine whether all the variables can be considered, at least initially, first-order integrated in levels.

Table 2 summarizes the results of the various tests to account for the alternative that the time
series is stationary, rejecting the unit root null in favor of the alternative (ADF test) or accounting
for a stationary null versus the unit root alternative (KPSS test). It has to be noted that although all
indications are that time series under investigation do have trends, we have also included non-trending
model results, as these show more power to reject the null hypothesis than models including trends
which are not contained in the data. In order to specify the number of lagged difference terms, i.e., lag
length to be added to the test regression, we used the Akaike information criterion (AIC). The usual
Ljung–Box Q-test to assess serial autocorrelation at the selected lags proves that in all cases the number
of lags is sufficient to remove serial correlation in the residuals (this not shown in the table).

Table 2. Generic unit root tests results.

Ln Price in Levels Ln Price 1st Differences

Without Trend With Trend Without Trend With Trend

Stat ADF KPSS ADF KPSS ADF KPSS ADF KPSS

Brent 0.283 6.625 −2.302 3.471 −3.761 0.367 −3.895 0.051
GO 0.469 6.559 −2.250 3.499 −3.607 0.437 −4.586 0.051

LSFO 0.341 6.777 −3.434 3.336 −3.692 0.190 −5.341 0.063
SGP 0.813 8.262 −1.450 3.851 −12.960 0.369 −13.122 0.097
NBP −0.390 4.779 −3.299 1.895 −11.444 0.039 −8.537 0.036
Coal 0.704 4.574 −3.434 2.512 −11.883 0.132 −11.883 0.081

cValue −1.942 0.463 −3.443 0.146 −1.944 0.463 −3.443 0.146

Notes: ADF denotes the augmented Dickey–Fuller unit root test and KPSS denotes the Kwiatkowski–Phillips–
Schmidt–Shin unit root test. Critical Values (cValue) are for right-tail probabilities derived from [35,36], respectively.

Test results clearly indicate that none of the six variables are stationary at the 5% level or better
with than without a trend. The ADF test does not reject the null hypothesis of a unit root for the levels
of the three prices. The KPSS test, in which the null hypothesis is stationarity, indicates that the null
hypothesis is clearly rejected. When both tests are applied to the first-differences of the variables,
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results strongly imply stationarity. As discussed before, unit root tests can be misleading when
structural breaks remain unaccounted for, tending to lose dramatically against stationary alternatives
with low-order moving average processes [21].

We use five additional procedures to test the null hypothesis that each time series contains a unit
root including one or two structural breaks.

3.2. Unit Root Tests with One Structural Break

Prior to further testing, two main choices related to the nature of the DGP need to be made. First
is the question about how the effect of the breaks is incorporated into the process, and secondly comes
how to characterize the form of the break under the trend-break stationary alternative, i.e., mainly
deciding about the most relevant model for inference. In regard to the first question, we will use
econometric models preferably allowing for smooth transitions from one level to some other level over
an extended period of time, i.e., innovational models. We believe that in our case, smooth transitions,
sometimes expanding for a few months, are a more realistic option than assuming abrupt shifts to new
levels. Regarding the second question, we argue that selection in the form of the break is correlated with
the data and therefore we will favor the break specification according to the most general mixed model;
this decision is also supported by specific research on this matter [37]. Central to our investigation
is the fact that misspecification of the form of the break can be critical and the performances of the
different tests used may vary significantly depending on the break model selection.

Following the decision to consider the break as unknown but also joint inference overall,
the general-to-specific principle, widely used in model selection, seems best suited for our analysis.
Therefore, we initially start with a general specification that incorporates a changing intercept
(crash model) and then continue with a combined assumption for the break behavior including
intercept and trend break (mixed model). We then evaluate the inference provided and the significance
of the coefficients of the dummy variables. Table 3 shows the empirical results for the location of the
break and inference from the ZA (tαZA) and VP unit root tests either minimizing the t-statistic for the
intercept break coefficient using a crash model (tθ) or over the maximum t-statistic for the absolute
trend break coefficient tIδI using a mixed model (t|θ|). In all cases the method for deciding the number
of additional lags in the autoregressive equation is given by BIC. Inferences on nonstationarity in cases
of discrepancy between models indicate rejection or acceptance of the unit root null according to the
models which show the most robust specifications. In addition, results from the LLS tests where the
level shift point (τ) is viewed as an unknown valued parameter, from the KP tests (tαλ) and from the
minimum LM unit root test statistic (tαLS), are also shown. It has to be noted that the presence of the
endpoints causes the asymptotic distribution of the statistics to diverge towards infinity. Therefore,
trimming is performed to remove endpoint values from consideration as the break date in all cases.

As can be seen, large negative values for the test statistics might reject the null hypothesis of a
unit root, and therefore, according to this, we are unable to reject the unit null hypothesis for any of the
variables except for fuel oil when applying VP tests and for NBP applying either LLS or KP tests at a
significance level of 5%. These results show that market-related events may have stronger effects on
some variables than others. The case of LSFO is very interesting considering the commodities price
drop at the end of 2014 using the crash model—it led to higher power when the intercept break was
large and the slope break was small, resulting in long-term stationarity. Perhaps the fact that LSFO is
the least traded commodity of the oil-related commodities might be a reason for it.

In addition, some detailed considerations can be outlined. Figure 3 shows tests statistical results
for Brent prices using the VP break date selection process while maximizing the intercept break of
the abs-t-statistic (t|θ|), and over the Dickey–Fuller (DF) t-statistic (this not shown on Table 3). As can
be seen, both methodologies clearly coincide in giving the most weight to an estimated breakpoint
located at the end of 2014 rather than around 2008.
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Table 3. One-break unit root test results.

Model Model
InferenceCrash Mixed Crash Mixed

Variable t-Statistic Value Break Date Value Break Date Inference Variable t-Statistic Value Break Date Value Break Date

Brent

tαZA −4.422 June 2014 −4.196 September 2014 N-S

SGP

tαZA −3.618 September 2014 −2.489 June 2005 N-S
tθ −4.440 September 2014 −4.261 September 2014 N-S tθ −3.642 December 2014 −2.480 June 2005 N-S
tIδI −4.425 July 2014 −3.493 May 2010 N-S tIδI −3.642 December 2014 −1.047 June 2015 N-S
τ −1.614 February 2015 - - N-S τ −2.260 February 2009 - - N-S

tαλ −3.918 July 2014 −3.493 May 2010 N-S tαλ −1.690 February 2015 −2.547 August 2013 N-S
tαLS −1.703 December 2014 −2.604 November 2014 N-S tαLS −1.202 December 2014 −2.128 September 2014 N-S

Gasoil

tαZA −3.937 August 2014 −3.688 August 2014 N-S

NBP

tαZA −4.289 September 2004 −4.630 September 2004 N-S
tθ −3.956 August 2014 −3.718 September 2014 N-S tθ −4.579 September 2003 −4.642 September 2003 N-S
tIδI −3.956 August 2014 −3.270 May 2010 N-S tIδI −4.290 September 2004 −4.149 February 2006 N-S
τ −1.625 April 2003 - - N-S τ −3.505 March 2007 - - S

tαλ −3.514 October 2014 −3.254 September 2014 N-S tαλ −4.431 September 2004 −4.384 November 2005 S
tαLS −1.582 November 2014 −2.391 November 2014 N-S tαLS −2.875 November 2003 −3.328 February 2006 N-S

Fuel oil

tαZA −5.139 September 2014 −5.010 September 2014 N-S

Coal

tαZA −3.077 November 2011 −3.257 September 2008 N-S
tθ −5.165 September 2014 −5.034 September 2014 S tθ −3.490 May 2003 −3.060 August 2008 N-S
tIδI −5.165 August 2014 −3.734 September 2010 S tIδI −3.490 May 2003 −3.060 August 2008 N-S
τ −2.057 February 2015 - - N-S τ −2.346 August 2011 - - N-S

tαλ −4.530 October 2014 −3.823 August 2008 N-S tαλ −2.976 March 2014 −3.617 June 2008 N-S
tαLS −1.730 November 2014 −2.515 September 2014 N-S tαLS −1.678 September 2003 −2.435 October 2008 N-S

Notes: Break date denotes the corresponding month of the value statistic. Shaded dates denote similar detection ranges for the crash and mixed models within 3 month spans. Inference is
assessed as S: stationary (green) or N-S: nonstationary.
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It has to be noted that in the case of LLS tests, selecting the AR order has proved to be critical in
order not to jeopardize power of the test. During the testing process, overstating the AR order reduces
power progressively, whereas severely understating the order makes power drop comparatively faster.
In our case and following LLS indications, a reasonably large AR order, i.e., six, has been used to select
the break date. In the case of the KP test, as discussed previously, the modelling approach concentrates
on estimating the break date by minimizing the sum of squared residuals, and only the results from
the innovational model test are shown, for consistency with the original strategy.

3.3. Unit Root Tests with Two Structural Breaks

The results of the Lumsdaine and Papell [22] (LP) and Lee and Strazicich [30] (LS) unit root tests
with two structural breaks are presented in Table 4.

As can be seen, all unit root tests with two structural breaks suggest nonstationarity for all the
variables, which is an indication of the ability of the two-break test to expand on insights in regard to
long periods of time [14]. Regarding the locations of break dates, the effect of the sharp downturn
in prices at the end of 2014 is overwhelmingly present in all the time series analyzed except for NBP
and coal. Interestingly, the impact of the financial crisis in 2008 is only revealed when applying the
two-break tests, possibly indicating that supply–demand fundamentals were the main driver of oil
products’ dynamics over the whole period analyzed and in spite of 2008’s events. As can be seen from
Table 4 above, LLS tests’ break date selection picked breakpoints that slightly differ from other tests.
In this sense, it is important to note that the rather different development of how to model the impact
of the break, distributed over time, as in the case of VP or LS models, compared to the impact of the
break being complete within the period TB + 1, as in the LLS case, may reasonably affect the nature of
the results.

Again, NBP results reflect better gas market events, such as those in 2006, rather than the oil crash
in 2008. In addition, although coal prices appear to be very reflective of 2008’s events, as would be
expected of a global commodity, other coal market episodes captured do not coincide with oil-driven
shocks. It has to be noted that detection of both intercept and slope breaks in the mixed model seems
to work properly, especially for LP tests. Results from the LM tests are more difficult to reconcile and
they show poorer break-detection capabilities than LP tests.
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Table 4. Two-break unit root test results.

Model Model
InferenceCrash Mixed Crash Mixed

Variable t-Stat Value Break Date Value Break Date Inference Variable t-Stat Value Break Date Value Break Date

Brent
LP

−5.382 July 2008 -6.097 July 2008 N-S

SGP

LP −5.253 December 2008 −5.058 December 2008
N-S

September 2014 September 2014 December 2014 December 2014
LS −1.821 February 2005 −3.173 October 2008 N-S LS −1.281 December 2005 −2.783 September 2005

N-S
December 2014 November 2014 December 2014 January 2015

GO

LP −4.911 September 2008 −5.658 July 2008 N-S

NBP

LP −5.108 January 2009 −5.682 April 2006
N-S

September 2014 September 2014 November 2014 September 2015
LS −1.708 September 2004 −3.071 October 2008 N-S LS −3.161 November 2003 −3.625 November 2004

N-S
November 2014 March 2011 September 2015 September 2015

LSFO

LP −5.668 December 2004 −5.777 July 2008 N-S

Coal

LP −3.765 September 2008 −4.310 September 2008
N-S

September 2014 September 2014 March 2013 January 2012
LS −1.851 February 2005 −3.416 September 2013 N-S LS −1.782 September 2003 −2.836 August 2007

N-S
November 2014 February 2015 March 2013 September 2015

Notes: Break date denotes the corresponding month of the value statistic. Shaded dates denote similar detection ranges for the crash and mixed models within 3 month spans. Inference is
assessed as S: stationary or N-S: nonstationary. In the case of LP tests, critical values are −6.16 and −6.75 at a significance level of 5% for crash and mixed models. It has to be noted that in
this case, critical values are specific to the sample size employed in [22]. Critical values for the LM test vary according to the location of the break.
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4. Discussion

This section provides a discussion on the key market factors underpinning price series evolution
in view of the results shown. Over the period of interest, i.e., 2002 to 2018, there are three specific
sub-periods to note. First, the period until mid-2008 with prices steadily increasing due to strong
demand growth for crude oil driven by non-OECD countries, particularly China and India. Second,
the period after the second half of 2008—the sharp decline of commodity prices—quickly followed
by a surge in the price of oil and a period of relatively stable but historically high prices, and finally,
the commodity price collapse between mid-2014 and early 2016, driven by a mounting supply glut
followed by a rebound in investment and trade against a backdrop of benign global financing conditions
overall. In line with this chronology of events, our investigation reveals key aspects of the response of
each market to shocks considering both crash and mixed modelling developments.

Table 5 and Figure 4 show for each of the six variables analyzed the corresponding structural
breaks according to the crash model effects, i.e., permitting a one or two-time change in the level of the
time series. It is noted that allowing for two breaks produces a richer set of results, not necessarily
more precise definition of the locations of break dates.
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Table 5. Break dates crash model.

SGP Brent Go LSFO NBP Coal
ZA September 2014 June 2014 August 2014 September 2014 September 2004 November 2011
VP December 2014 July 2014 August 2014 August 2014 September 2004 May 2003
LS1 December 2014 December 2014 November 2014 November 2014 November 2003 September 2003
LLS February 2009 February 2015 April 2003 February 2015 March 2007 August 2011

LP2A December 2008 July 2008 September 2008 December 2004 January 2009 September 2008
LP2B December 2014 September 2014 September 2014 September 2014 November 2014 March 2013
LS2A December 2005 February 2005 September 2004 February 2005 November 2003 September 2003
LS2B December 2014 December 2014 November 2014 November 2014 September 2015 March 2013

Notes: Shaded dates denote similar detection ranges in the second half of 2014. LS1 indicates the one-break LS
intercept model. LP2A and LP2B indicate the two-break LP crash model. LS2A and LS2B indicate the two-break LS
crash model.

In general, the sequence of relevant outliers found for all the time series considered indicates that
the 2014–2015 price crash was without any doubt the most influential event over the period for the
crude oil and oil-related variables, including Spanish gas import prices. Only when the scope of the
research is expanded upon with two breaks, does the 2008 financial crisis manifest itself—not for LSFO
though. Interestingly, both NBP and coal prices typically show a response to their own market events
and not to oil price shocks. In the case of NBP, periods of high volatility during the winters of 2003–2004
and 2004–2005, with actual shortages creating significant seasonal upward pressure on prices, seem to
be more relevant than oil-related events over the whole period analyzed. Moreover, crash modelling
for NBP prices reflects very vividly the gaps which opened between NBP and continental gas prices
in the period of November 2006 to July 2007, and also in the fourth quarter of 2008 as a recession in
the UK hit hard and the lag in long term contracts meant that falling oil prices were much slower to
feed through into gas prices (see SGP chart over the same period). Finally, the analysis also reveals the
highly relevant nature of gas-market events in the last part of 2015, not coinciding with the crude oil
price drop in 2014.

In the case of coal, our analysis reflects the multidimensional nature of coal market-driven events,
such as the coal price increase by 40–50% in one year between 2003 and 2004, as much as the fact that
prices fell drastically in the wake of economic downturns starting in autumn 2008, affecting both coking
coal and steam coal markets through lower automobile sales and electricity consumption decline [38].
In particular, the trend of declining prices since 2011, by around 50% until 2015 [39], due to increasing
supply and subdued demand for thermal coal, is clearly shown in our results.

Table 6 and Figure 5 show for each of the six variables analyzed the corresponding structural
breaks according to the mixed model effects, i.e., permitting a one or two-time change in the level and
in the rate of growth of the time series.

Table 6. Break dates mixed model.

SGP Brent Go LSFO NBP Coal
ZA July 2005 June 2014 August 2014 September 2014 September 2004 September 2008
VP July 2015 May 2010 May 2010 September 2010 February 2006 August 2008
LS1 September 2014 November 2014 November 2014 September 2014 February 2006 October 2008
KP 2013-8 September 2014 September 2014 August 2008 November 2005 June 2008

LP2A December 2008 July 2008 July 2008 July 2008 April 2006 September 2008
LP2B December 2014 September 2014 September 2014 September 2014 September 2015 January 2012
LS2A September 2005 October 2008 October 2008 September 2013 November 2004 August 2007
LS2B January 2015 November 2014 March 2011 February 2015 September 2005 September 2015

Notes: Shaded dates denote similar detection ranges in the second half of 2014. LS1 indicates the one-break LS
intercept model. LP2A and LP2B indicate the two-break LP crash model. LS2A and LS2B indicate the two-break LS
crash model.
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As it can be seen, for crude oil and oil-related products the influence of the downturn in 2014 is
lower than in the crash model, and oil price recovery after 2008 events and into 2010–2011 seemed to
be more important relative to changes in slope; the same goes for LSFO. Again, the NBP and coal’s
different profile became evident. Viewed in perspective, this is not a minor issue and reinforces the
case for the UK’s market having its own dynamics, in spite of the continental European oil linkage [40].
As it can be noticed, exceptionally high gas prices in the UK during the winter 2005–2006 as a result of
the January 2006 Russia–Ukraine crisis, followed by a spell of extremely cold weather and the fire at
the UK’s Rough storage facility, were extremely relevant to a change in slope of NBP prices. Regarding
coal market developments, breakpoints signaling meaningful changes of slope are emphasized more
and more clearly in late 2008 as a result of weak global demand and easing supply conditions. Changes
in slope during the declining trend since 2011 that continued into 2014–2015 are also detected. It is
interesting to notice that since late 2014, the development of European spot prices of coal and gas show
remarkable similarity, suggesting that the relative competitiveness of the two fuels remains stable.

5. Conclusions

It is now widely admitted that failing to check for the structural break effects in time series’
properties leads to confusing results in regard to the assessment of stationarity properties. In particular,
traditional unit root tests may have little power when the true data generating process includes a broken
trend and is stationary. In this research we investigated the stochastic properties and changing trends
of six non-renewable resource prices throughout a structured strategy with a view toward optimize
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the testing quality, validity, and relevance of results in the presence of structural breaks. Our main
innovation in this sense is that we brought together a wide-ranging panel of model specifications
combining traditional endogenous testing approaches and pre-detection techniques.

Our main findings are as follows. When we applied generic tests, we were unable to reject the
unit root null hypothesis for any of the six variables analyzed. However, when we applied the VP test
allowing for one structural break, we found strong evidence for the stationarity of fuel oil and also for
NBP when using either the LLS model or the KP model. These results confirm the findings of previous
research revealing the high degree of persistence shown by crude oil and gasoil prices, but they also
reveal the potential for a stationary trend process for fuel oil. In the case of NBP, the results found
for stationarity when using pre-testing methodology led to us thinking that one of the main factors
supporting the controversy over the persistence of market-related time series, such as UK gas prices,
might be the considerations about the inference process itself and the approximation to assumed
knowledge of the true break date.

Of separate interest are the break dates themselves. The results indicate that the 2014–2015 price
downturn was without any doubt the most influential event over the period for all the non-renewable
variables analyzed, and especially significant for the intercept of fuel oil, turning its long-term dynamics
towards stationarity. Only when the scope of the research was expanded with the two-break tests,
were the 2008 financial crisis’s effects manifest. Interestingly, both NBP and coal price trends show that
their dynamics are mainly affected by their own market events and not directly by oil price shocks,
this in spite of sharing common industry fundamentals on a timely basis, such as depressed demand
or oversupply situations. As evidence of this, our results show that, even under the two-break tests,
the effects of 2008 and 2014 downturns on NBP and coal prices are very limited. The case of coal prices’
drastic drop in the last part of 2015, not coinciding with crude oil price drop in the second half of 2014,
is a good example of this.

The results have significant consequences for economic analysis, forecasting, and policy-making
decisions. In particular, when modelling non-renewable energy resources, it will be critical to account for
structural breaks while testing for unit roots. Moreover, our findings reveal that in developed markets
long-term dynamics may be mainly achieved by genuine market dynamics resulting from the free
interplay of market forces—this fact does not necessarily lead us to believe that less developed national
markets behave like unit root processes. Further to this research, we suggest expanding investigations
on the relationship between traditional energy resources’ prices and renewable generation prices,
consistently interconnected through competition in gas and electricity markets. In line with this,
an interesting issue not analyzed in the study is the evolution of the relationship between prices for
natural gas and coal and in spite of price regulation for coal masking that relationship over long
periods. Finally, and as another route of investigation worth exploring, we believe that cointegration
and long-run equilibria of non-renewable energy variables, especially applying new methodological
innovations in cointegration analysis, such as non-linear cointegration, could shed more light on the
complex interactions analyzed in our study.
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