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Abstract: As an alternative to powder-bed based processes, metal parts can be additively manufac-
tured by extrusion based additive manufacturing. In this process, a highly filled polymer filament
is deposited and subsequently debindered and sintered. Choosing a proper orientation of the part
that satisfies the requirements of the debinding and sintering processes is crucial for a successful
manufacturing process. To determine the optimal orientation for debinding, first, the part must
be scaled in order to compensate the sinter induced shrinkage. Then, a finite element analysis is
performed to verify that the maximum stresses due to the dead load do not exceed the critical stress
limits. To ease this selection process, an approach based on open source software is shown in this
article to efficiently determine a part’s optimal orientation during debinding. This automates scaling,
debinding simulation, and postprocessing for all six main directions. The presented automated
simulation framework is examined on three application examples and provides plausible results
in a technical context for all example parts, leading to more robust part designs and a reduction
of experimental trial and error. Therefore, the presented framework is a useful tool in the product
development process for metal extrusion additive manufacturing applications.

Keywords: debinding simulation; finite element analysis; metal extrusion additive manufacturing

1. Introduction

Additive Manufacturing (AM) of metals is of high interest in various industries.
While the predominant processes are all powder bed-based, they rely on high investment
cost for machines and peripheral equipment [1]. Additionally, the fine metal powder leads
to work safety issues [2]. Thus, the use of highly filled polymer filaments for fabricating
metal parts is a promising low-cost alternative, which eases the entry into metal AM.
Extrusion based Additive Manufacturing (EAM) and Fused Filament Fabrication (FFF),
are the most common AM techniques across all materials, because they are relatively simple
to use and have low investment costs [3]. For the fabrication of metallic components,
a filament with a mixture of metal powder particles and binding agents is used, which is
debindered and sintered subsequently [4-9]. This whole process can be summarized in
alignment with [10] into the four steps of deriving the feedstock, shaping, debinding and
sintering and is shown in Figure 1.

Apart from the shaping step, in which the filament is pushed through a nozzle in a
softened form and is deposited layer-wise, this process is analogous to powder injection
molding (PIM) [11]. In the first step, the so-called green-part is fabricated by the layer-wise
deposition of the feedstock filament. Its geometry is scaled up to compensate shrinkage
during the sintering step. In the following, the majority of the binding agent is removed
from the green-part during the debinding step. The debinding can be done either thermal,
solvent, or catalytic. It is important that only a backbone of the binding agent remains in
the part to ensure its structural integrity. Due to this fact, the part is highly porous and
very fragile after the debinding step and is commonly referenced to as the brown-part.
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These highly porous and brittle brown-parts are solely held together by the binding agent
backbone and Van-der-Waal couplings. The final sintering step is a thermal treatment near
the powder’s melting point. In this step, several diffusion and rearrangement effects are
leading to a densification of the brown-part. The backbone of the binding agent is removed
after the first so-called sinter necks to ensure structural integrity. The result is a full metal
part with a final density up to 99% of its theoretical maximum value [5,7,12-14].

" Common metal injection molding process

Deriving
feedstock

Shaping
(Additive
manufacturing)

| g

Debinding Sintering

green-part brown-part metal-part
(original size) | (original size) (shrinked size)

Figure 1. Schematic process of metal extrusion based Additive Manufacturing EAM.

In order to be produced on the machine equipment, the filament must meet various
requirements, such as suitable viscous properties. Therefore, the feedstocks commonly have
a binding agent content of 35 to 65% by volume [13,15,16]. During the debinding sintering,
the binding agent content is removed, and the part is compacted. Consequently, this leads
to an overall volume shrinkage in accordance with the binding agent content during the
sintering process. Furthermore, it is essential to consider scaling operations when designing
models in order to achieve sufficient dimensional accuracy [14]. Nevertheless, the removal
of the binding agent itself during debinding is a critical part of the process, as the resulting
brown-parts are highly porous and threaten to collapse due to their dead load. In the
field of PIM research, debinding simulations are mostly conducted. The solvent debinding
process can be modelled by calculating the extrusion and diffusion rate of the solvable
components using the Fick diffusion law, which can be written as

aC 0%C
ot = D<ax2>/ 1

for one-dimensional diffusion, where C is the concentration of the diffusing component,
x is the diffusion direction and ¢ is the time [17]. The thermal debinding process can be
simulated using thermokinetic analysis; therefore, a conversion function U can be defined
as follows p
e

- EI (2)
where T stands for the temperature, and e and p are equivalent to the concentration of the
reactant and to the concentration of the product. The conversion function can be expressed
by using two functions k(T) that define the temperature dependent rate constant and
f(e, p) for defining the reaction type [18].

Nevertheless, both simulation methods give no information on the material behavior
after debinding nor the structural integrity of the debindered part and also extensive
input data has to be acquired for running the simulations. Besides the work in [19],
where stress distributions during debinding are simulated using fluid-structure interaction
simulations, stress distribution during debinding or material behavior after debinding
are barely considered. This is due to the fact normally, classical PIM applications are
produced in very large volumes, and the final geometry and orientation is either determined

U(t,Tep) =
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experimentally or based on experience. These two approaches cannot be applied to metal
EAM, since on the one hand, only small batches or even single parts are produced, and on
the other hand, the process is too immature to have a broad experience knowledge base [11].

Consequently, it is desirable to find a suitable part orientation for the debinding of
metal EAM parts based on simulations and not on an experimental basis in order to save
time and resources during the product development. Therefore, this article addresses
a simplified phenomenological approach for the simulation of the debinding process,
as provided in simulation guidelines by BASF 3D Printing Solutions for their Ultrafuse
316L metal filament [20]. In this approach, the parts are solely loaded with their dead load
and the occurring stresses are compared to empirical determined stress limits. In addition
to the simplified debinding simulation, this article shows the whole simulation process
from pre- to postprocessing being automated, so that the debinding process in all six main
directions is being simulated and evaluated simultaneously. This leads to insights that
allow for considerable conclusions on how to orientate or re-design parts for the metal
EAM process. To ensure that this method is widely applicable, this approach is based solely
on open-source software and is available at the cited website [21].

It is the objective of this article to develop an automated open source simulation frame-
work for the simplified debinding simulation presented in [20]. Additionally, the influence
of the finite element order is evaluated. The main goal is to obtain plausible results for
arbitrary geometries in a technical context. Therefore, by using the automated simulation
framework it is expected to obtain brown-parts without defects or less residual stress.
Since it is suspected that a brown-part without defects or with less residual stress is more
likely to be successfully sintered, more robust designs for metal EAM can be determined.

2. Materials and Methods

The debinding simulation is exemplary shown for the Ultrafuse 316L metal filament
from BASF (Heidelberg, Germany) [22]. This filament consists of a polyacetal binding
system and hence requires a catalytic debinding process [13] but is easily adaptable to other
filament-feedstocks. For the simulation of the debinding process, the guidelines presented
in [23] are used as the basics for the model setup. The processing and meshing steps
of the models are done with [20], while the simulation itself is performed with Z88 [24].
The post-processing is torn out with the python package PyVista [25]. In order to identify a
suitable part orientation for debinding, the part is rotated, so that each of its surface is used
as the bottom plane once. This leads to the six orientations +X, +Y, +Z and —X, —Y, —Z
(Figure 2).

+Z

/ [ | +Y -

O

Figure 2. The six orientations considered in the automated debinding simulation process.

X

2.1. Design for Debinding and Sintering

Apart from the design guidelines for EAM in general, it is also important to consider
the subsequent debinding and sintering processes when developing applications for metal
EAM. Since this contribution focuses on the phenomenological simulation of the debinding
process in order to determine the optimal part orientation, the requirements for the sintering
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process are not specifically addressed. Hence, it is sufficient to be aware that the sinter-
induced shrinkage leads to a non-uniform geometry change, which must be considered for
a meaningful simulation of the debinding process.

Consequently, scaling is necessary to compensate for the shrinkage that is caused by
the densification of the part during the sintering process. The sinter-induced shrinkage is
thereby dependent on elastic-, viscoplastic-, and thermal-strain [26]. Hence, only the initial
and the final state of the part are important for determining the needed scaling, and it is
reasonable to use the total sinter strain for rescaling the parts.

As reported in various contributions [6,13-16,27] the shrinkage shows orthotropic
behavior, with an identical coefficient in the printing plane (x and y) and a higher coefficient
in the stacking direction (z), as depicted in Figure 3.

z

. Ay

Figure 3. Sinter shrinkage behavior of metal EAM parts. The printing plane (x and y) shrinkage
shows identical values, while the shrinkage in stacking direction (z) is significantly larger. The dashed
lines represent the green-part and the solid lines the sintered metal-part.

This effect can be stated as a result of the typical FFF mesostructure, as it is explained
in [3]. Therefore, two shrinkage coefficients must be determined, for instance by printing a
unit cube and measuring its dimensions in printing plane and stacking direction before and
after sintering. The shrinkage coefficients ap s in the printing plane and stacking direction

are expressed by
Ah;
Dcp,s = T;’ (3)

where the initial length is ; in each direction, and its aligned change after sintering is
Ah; [10]. To apply this effect to the green-part design, the shrinkage coefficients have
to be converted into scaling factors Sf, s. These factors represent the proportions of the
green-part and the sintered-part dimension and are therefore defined as follows:

1
1— aps

Sfp,s = (4)

Since the geometries are scaled none-uniformly, running a debinding simulation on
the unscaled parts may cause misleading results. Therefore, it is essential to consider the
scaling in the presented simulation framework.

Debinding itself is a diffusion-controlled process. Consequently, thinner areas of
the part lose their weight more quickly. This is a considerable drawback when setting
up the printing layout, since structures that are sufficient to mechanically support the
green-part may not be sufficient to support the brown-part after the debinding process.
Additionally, the part’s porosity rises, depending on the binding agent fraction, up to
nearly 65%. This makes it difficult to determine the green- and brown-part’s strength.
This holds true especially since the bonding of the particles is based on Van der Waals
couplings rather than on metallic bonds. For simulating the part collapse during debinding,
the scaled green-part is used as a starting point. If the dead load causes stresses in the
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part that exceeds critical stress limits, it is assumed that part collapses while the binding
agent is being removed. This can be examined with linear-elastic finite element analysis.
The results can be evaluated by the means of maximum occurring global stresses.

2.2. Setup of the Finite Element Model

If the allowable stresses are exceeded during the debinding process, the part is likely
to collapse. To simulate the occurring stresses, the finite element method (FEM) is used.
The FEM is a numerical procedure to simulate various physical effects. In technical context,
the method is often used for mechanical simulations of parts, but it also can be used
for thermal simulations or electromagnetics. The method is based on a discretization
of the whole structure into smaller parts, the so-called finite elements. The stiffness of
each element, from which the stiffness of the entire structure can be derived, can be
calculated [28,29].

Thus, the procedure can be seen as a generalization of the Hooke’s Law to several
dimensions. The stiffness matrix K. of one element can be derived via the integral

K. — / / / BTCBav, )

whereby C describes the material matrix (consisting of the Young’s Modulus and the
Poisson’s ratio of the material) and the displacement-strain-transformation matrix B. As-
sembling the individual stiffness matrices leads to the following overall linear equation
system:

KU = F. 6)

Knowing the external load vector F, the system can be solved for the displacement
vector U. The displacements are calculated at each node of the elements. The occurring
stresses 0. can be derived elementwise via the equation

ve = CBU.. @)

2.3. Automated Simulation Framework

The simulation framework is strongly aligned with the guidelines provided in [20].
It aims to automate the overall process and therefore computes all main part orientations
for debinding. The main workflow of the process is shown in Figure 4.

Load geometry Tetrahedral Ortotrophic
(STP/STL) meshing scaling
Start

A

/" For each orientation do:

~

Calculate volume
forces & applying
BC

- J

A\ 4
~ N

Compute stress
tensor

Optimize design

no valid design

@1 ralid design: )X\i

Final design
and orientation

A 4

Compute failure

criteria

Figure 4. Workflow of the presented automated simulation framework.

First, the part is imported, with a choice between STEP and STL format. It must
be made sure that the part is defined in the correct coordinate system with the stacking
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direction z. Then, the meshing software Gmsh is used to generate a tetrahedral finite
element mesh, whereby the desired element size and element order (linear or quadradic)
can be prescribed. As stated in the previous sections, an orthotropic scaling of the part
is needed to compensate the shrinkage during debinding. For this purpose, the user can
provide two scaling factors, one for the printing plane scaling (x and y) and one for the
stacking direction (z). The default parameters are Sf, = 1.2 for the printing plane and
Sfs = 1.26 for the stacking direction [22]. Using these supplied factors, the generated mesh
is scaled afterwards.

To conduct the FEA for each orientation, certain material parameters are required.
Since a static linear-elastic FEA is carried out, Hooke’s law is applicable and the stresses
that occur are related to the selected Young’s modulus and poisson ratio. To consider the
gravitational force, the density of the green-part is also required. The material data used
for the validation of the framework and set as the default values are chosen from [20] and
are presented in Table 1.

Table 1. Material data of [20] chosen as the default for the simulation framework.

Parameter Value
Young’s modulus 210,000 MPa
Poisson ratio 0.4
Density 4.7 x 1077 t/mm?

Afterwards, each part orientation during debinding is being simulated. The boundary
conditions are chosen as follows: All nodes that are in contact with the build plate are
fixed in all three spatial directions (x, y, and z). The only occurring load is the gravi-
tational force due to the part’s dead load. Since the used Finite-Element-Solver Z880S
currently does not support this kind of loads, a simplified approach is used. For each
finite element, the volume is calculated (whereby for quadratic tetrahedra a linearization
is made), which makes it possible to calculate the force acting on this element, taking the
density and the acceleration due to gravity into account. This force is then distributed to
the element nodes, with additional weighting depending on distance to the center of the
element. This approach is not exact but allows for a quick calculation and integration into
the automated process and is also used in the free-vibration solver Z88EI without the need
of computing a mass matrix for the system [28,30].

Based on the input data, the deflection and the occurring stresses can be determined
by using the FE-Solver Z880S. For the failure evaluation, the stresses at the integration
points are used. The critical stress limits given in [20] are used by default and listed in
Table 2 beneath.

Table 2. Maximum stress limits for debinding simulation according to [20]. The tensile stress limit is
abbreviated with ¢} j;,,, and the compression stress limit with o ;..

Direction Component Limit
Printing plane (x and y) Tt lins, 6.0 kPa
Uc,limx, y —7.0kPa
. . Ot lim, 0.5 kPa
Stacking direction (z) Oetim, _70KkPa

All finite elements that exceed the maximum tensile limit at any integration point will
be highlighted in red and blue for exceeding the maximum compression limit. This pro-
cedure is repeated for all six orientations and the results are plotted using the software
package PyVista. Since elements inside the part can also exceed the limits which cannot be
detected in the plotted results, the total number of critical elements is printed additionally.

The framework is exemplarily shown on three parts. It is tested if the results differ
when using STEP- and STL-files as the import format. Further, the impact of the integration
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order of the finite elements is evaluated by comparing the results to linear meshed parts.
The results for exemplary parts are shown in the next section.

3. Results

The automated simulation framework is exemplarily tested on the three models that
are displayed in Figure 5. In order to evaluate the correctness of the presented automated
simulation framework in a practical way, a staircase with several overhangs is used. Ad-
ditionally, a sprocket and a topology optimized chassis diverter are chosen to represent
parts with a more practical meaning to mechanical engineering. The parts are designed in
Creo parametric (PTC Inc., Boston, MA, USA) [31] and exported as STL- and STEP-files.
The topology optimized chassis diverter was optimized with the topology optimization
freeware Z88Arion® (Chair of Engineering Design and CAD, Bayreuth, Germany) [23],
using the hybrid optimization algorithm TOSS (Topology Optimization for Stiffness and
Strength) [32] with a target volume of 75%. The chassis diverter was manually redesigned
in Creo parametric based on the Topology optimization result. All presented example parts
are meshed using quadratic tetrahedral elements and an edge length of 2 mm.

(a) (b) (©

Figure 5. Example parts selected for testing the automated simulation framework before scaling.

(a) staircase; (b) sprocket; (c) topology optimized chassis diverter.

The results are presented in failure-plots that contain all six orientations, starting the
counting in the upper left. For each orientation, the global stresses oy, 0, and ¢ are
evaluated. If any integration point in an element exceeds the maximum tensile stress limit
in any direction, the element is marked red. Analogously, if the stress exceeds the maximum
compression stress limits in any direction, the element is marked blue. All elements within
the limits (listed in Table 2) are plotted in green. This allows for a quick visual evaluation,
if an orientation for successful debinding is found or not. Furthermore, the maximum
global tensile and compression stresses in x-, y-, and z-direction for each orientation are
presented for each example in tabular form, which use the same color-scheme as the failure-
plots. The tables are used to estimate whether the parts fail due to tensile or compression.
A safety factor S, which is defined as follows

47 ¢ lim;
U't,ci/]-

S = ®)

where j denotes the number of the orientation, is written in brackets beneath the stress value.
The safety factor is used to rank the individual orientations hierarchically. This means that
if there are more than one suitable orientation, the orientation with the highest S should be
considered.

3.1. Staircase

The simulation results for the staircase are shown in Figure 6. The simulation results
match the expected behavior and are in good alignment to the results in [20]. For the orien-
tations (1) and (3) no elements exceeding the critical stresses are detected, while orientations
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(2), (4), and (6) are clearly not reasonable for debinding. Although orientation (5) intuitively
would be considered as suitable, the simulation results show very few critical elements;
44 by number for the chosen settings, which are exceeding the critical limit for compression
stresses and are thus indicating part failure during sintering. Nevertheless, one isolated
element that exceeds the tension stress limit is attributed to a numerical singularity.

@)

4)

5)

(6)

Figure 6. Failure-plot of the debinding simulation of the staircase. (1)—(6) denote the number of the orientation, white dots

represent the bottom plane, red areas indicate failure due to tension, and blue areas indicate failure due to compression.

The results from the failure-plot are further supported by the maximum stresses for
each orientation shown in Table 3. It can be seen clearly, that for orientation (5), the stresses
in z-directions are too high and thus, orientations (1) or (3) should be used for debinding.
The failure in orientations (2), (4), and (6) is suggested to be due to tensile stress in z-
direction. For orientation (5), failure is attributed to compression in z-direction.

Table 3. Maximum tensile and compression stresses 0t may; for each orientation j of the staircase.

The safety factor S is written in brackets.

60 @ ®G) @ ) 6)

. 0361kPa  8533kPa  0356kPa  8550kPa  1.615kPa  41.08kPa
tmazx, (16.62) (0.07) (16.85) (0.07) (3.72) (0.15)

” —1475kPa  —9405kPa —0.151kPa —8545kPa —6.331kPa —82.41kPa
¢ maxy (4.75) (0.07) (46.33) (0.08) (1.11) (0.08)

” 0338kPa  4567kPa  0392kPa  3671kPa  1707kPa  42.81kPa
fmaz, (17.75) (0.13) (15.32) (0.16) (3.51) (0.14)

. —1483kPa  —62.65kPa —1477kPa  —36.60kPa —6.192kPa —142.4kPa
¢ max, 4.72) (0.11) (4.74) (0.19) (1.13) (0.05)

” 0022kPa  66.18kPa  0.027kPa  2153kPa  0.641kPa  75.52kPa
tmax; (22.73) (0.01) (18.52) (0.02) (0.78) (0.01)

” —2514kPa  —1133kPa —2518kPa —5563kPa —1075kPa —167.4kPa
¢ max; (2.78) (0.06) (2.78) (0.13) (0.65) (0.04)
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3.2. Sprocket

This simulation results of the sprocket (Figure 7) show critical elements for every
orientation except orientation 5, making this the only reasonable orientation for the debind-

ing step.

1)

@)

@)

(4)

Figure 7. Failure-plot of the debinding simulation of the sprocket. (1)—(6) denote the number of the orientation, white dots
represent the bottom plane, red areas indicate failure due to tension, and blue areas indicate failure due to compression.

Table 4 shows, that the orientations (1) to (4) and (6) will fail most likely due to

compression in z-direction.

Table 4. Maximum tensile and compression stresses ;¢ max; for each orientation j of the gear.
The safety factor S is written in brackets.

D ) 3) @ (5) 6)

. 5158 kPa  2498kPa  2511kPa  2495kPa  0524kPa  26.52kPa
Emaxs (0.00) (0.00) (0.00) (0.00) (11.45) (0.23)

, —3462kPa  —3511kPa —3573kPa —3904kPa —1974kPa —48.24kPa
¢ maxy (0.00) (0.00) (0.00) (0.00) (3.55) (0.15)

” 5191 kPa 2338 2436kPa 2324kPa 0438kPa  30.34kPa
tmaz, (0.00) (0.00) (0.00) (0.00) (13.70) (0.20)

. —3556kPa  —3219 —3042kPa —3684kPa  —1.933kPa  —43.90 kPa
¢ max, (0.00) (0.00) (0.00) (0.00) (3.62) (0.16)

” 8068 kPa 5155 5427kPa  5073kPa  0.350kPa  11.09 kPa
tmax; (0.00) (0.00) (0.00) (0.00) (1.43) (0.05)

. —8094 kPa —7476 —6472kPa —7928kPa  —3.287kPa  —43.77 kPa
¢ max; (0.00) (0.00) (0.00) (0.00) (2.13) (0.16)

3.3. Topology Optimized Chassis Diverter

For the chassis diverter, no orientation without failure due to tensile or compression
stress limits is obtained (Figure 8). This result emphasizes the redesign of the part or the
usage of support structures. In this simulation, the base coordinate system is chosen, so that
the axis through both small drill holes is aligned to the y-axis. Therefore, in the automated
preprocessing, the fixed nodes are not selected very reasonably for some orientations.
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However, this can be resolved by changing the initial coordinate system of the part and

running the simulation framework again with the updated part orientation.

4)

()
(©)

(6)

Figure 8. Failure-plot of the debinding simulation of the chassis diverter. (1)—-(6) denote the number of the orientation,
white dots represent the bottom plane, red areas indicate failure due to tension, and blue areas indicate failure due

to compression.

To adapt the part for metal EAM, the information from Table 5 can be very useful
to decide in which manner the part can be redesigned, or support structures can be are
arranged. Besides, all orientations are suggested to fail due to tensile stress in z-direction,
orientations (1) and (3) show components that are within the acceptable stress interval and
are therefore a good starting point for refining the part.

Table 5. Maximum tensile and compression stresses 0t may; for each orientation j of the staircase.

The safety factor S is written in brackets.

(1

(2)

(3)

)

(5)

(6)

. 7419kPa  5170kPa  5.036kPa  4305kPa  1240kPa  12.12kPa
tmaxs (0.81) (0.00) (1.19) (0.00) (0.00) (0.50)

” —5542kPa —3859kPa —8222kPa —7013kPa —1393kPa  —20.19 kPa
¢ maxy (1.26) (0.00) (0.85) (0.00) (0.01) (0.35)

” 7.726kPa  5144kPa  7.61kPa  4742kPa  1114kPa  7.076kPa
tmax, (0.78) (0.00) (0.79) (0.00) (0.01) (0.85)

. —7.488kPa  —3650kPa —7.978kPa  —6463kPa  —1736kPa  —27.69 kPa
¢ maxy (0.93) (0.00) (0.88) (0.00) (0.00) (0.25)

” 6859kPa  7921kPa  4.607kPa  8662kPa  2319kPa  14.75kPa
t max, (0.07) (0.00) (0.11) (0.00) (0.00) (0.03)

. —6.616  —6220kPa  —6.352kPa  —9114kPa —2638kPa  —32.65 kPa
¢ max; (1.06) (0.00) (1.10) (0.00) (0.00) (0.21)

4. Discussion

The objective of the developed framework is to enable a fast estimation whether a
part can be successfully debindered in any direction. The stress limits used in this work are
taken from [20] and have to be validated in future work. The main goal of the framework
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is to obtain failure plots that display the influence of the dead weight correctly. This can be
explained very descriptively by using orientation 6 of the staircase simulation. By looking
at the two stairs, displayed in Figure 9, the lower region of the stairs is not leading to failure.
As the load due to dead weight of the stairs increases, the dead weight increases and
exceeds the tensile stress limit. At the step transition, the stress is then distributed evenly in
the part and gradually decreases until it falls below the stress limit again. This conformity of
theoretically expected stress distribution and simulation result is considered as a plausible
result in the technical context.

Figure 9. Detail view of staircase orientation (6) from Figure 6.

The shown approach simplifies the phenomenological debinding simulation, but still
requires user input in some respects. For instance, the accuracy of the FEA is important,
whereby the element size, the element order, and the integration order of the elements
have to be chosen. In general, smaller element sizes lead to smaller discretization er-
rors. However, simultaneously, the computation time is increased. The guidelines in [20]
propose at least three elements over the thinnest entities. As the comparison of linear
and quadratic tetrahedra in Figure 10 shows, quadratic elements are recommended for
smoother simulation results.

Figure 10. Comparison of linear (left) and quadratic (right) meshed staircase.

Itis observed in general that quadratic meshing leads to slightly better results, since the
isolated critical elements could be avoided. Therefore, quadratic tetrahedra should always
be preferred for this simulation framework. By comparing the impact of using STEP or
STL files (Figure 11) only minor changes can be found and it can be concluded that the
framework works well for both file formats.
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A

Figure 11. Comparison of STEP (left) and STL (right) structure types, exemplary shown for the
quadratic meshed staircase.

Nevertheless, for STL files, the quadratic meshing in the presented framework is
not always successful for arbitrary geometries, so that sometimes distorted elements are
created, or meshing fails completely. Therefore, it is suggested to use the STEP file format,
if possible. Furthermore, the framework is tested on Linux, MacOS, and Microsoft Windows
platforms, demonstrating a high portability.

4.1. Evaluation of Application Examples

For the simulation of the staircase (Figure 6), two orientations that are clearly not
feasible for the debinding process are obtained. Orientation (5) also indicates part failure,
but the results are not evident since a numerical singularity is also observed in this single
simulation. The remaining two orientations are both suitable for debinding according to
the simulation framework. By comparing the results for orientations (1) and (3) of the
staircase failure-plot in Figure 6, identical results are expected. This in good agreement
for all maximum stresses in Table 3 except for o¢ juay,. This deviation may result either
from an unsymmetrical mesh or the approximating approach used to calculate the volume
forces without the need of a mass matrix. Since the goal is to obtain a quick estimate,
these types of deviations that can potentially occur are tolerated. This is acceptable, since in
the examples considered no case occurred in which they changed the meaning of the result.

The sprockets geometry (Figure 7) already implies that only two orientations for
placing the part within the debinding furnace are practically possible. With the aid of the
simulation framework, it can easily be examined that the free overhangs in orientation (6)
are too large and are therefore causing failure due to high tension stress. It is thus implied
clearly that orientation (5) must be used for debinding.

Adversely to the two previous examples, the chassis diverter cannot be orientated suit-
ably for debinding (Figure 8). This is implying either a redesign of the part or using support
structures. As it is a common objective of the design step to minimize the postprocessing
effort, redesigning should always be considered before applying support structures. Addi-
tionally, the minimization of supports also reduces the material waste during the whole
process. Based on these results, it is conducted that the presented automated simulation
framework can be used as a simplified evaluation tool for the debinding process.

Generally, the most detected failure mechanism over all examples is the tensile stress in
the z-direction. Yet, the results are also strongly dependent on the parts’ initial orientation
as can be seen in the example of the chassis diverter. However, it is possible to use the
framework to make fast design iterations with quick evaluation of the part’s suitability
for the debinding process. It is questionable if the simple global stress failure criterion
is to predict the failure of complex structures on a high-fidelity level. In regard to the
porous powder-based structure and brittle material behavior, Weibull statistics [33,34]
could be used to increase the fidelity. In addition, other failure criteria for brittle materials
as described for instance in [35] can be considered in future research. Since the similarity
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of brown-parts to sandstones further suggests an influence of the hydrostatic stress on
the failure stress limits, it can be further auspicious to investigate if the failure criteria for
sandstone that are developed for example in [36] can be applied to metal EAM brown-parts.

4.2. Impact for Design for Additive Manufacturing

By automating the entire simulation process, there is no need for user intervention
until the results are evaluated and a decision is made whether a valid design has been found.
Thus, especially the time-consuming steps inside the preprocessing can be conducted in a
much more efficient manner. This enables shorter lead times in product development for
metal EAM applications.

An automated debinding simulation is furthermore beneficial for efficiently deter-
mining design guidelines with reduced experimental effort, e.g., the results can be used to
evaluate critical lengths for unsupported overhangs in debinding and sintering. Addition-
ally, weak spots of the design can be identified leading to more robust designs and reducing
experimental trial and error. If restrictions disallow the redesign of the investigated part,
the planning of the support structures can be done in respect to the simulation results.
This could be achieved by arranging support structures at locations where high displace-
ments occur. Therefore, support structures can be planned smarter and more reasonable,
leading to the potential of drastically saving material and post-processing effort.

Nevertheless, it is important to emphasize that stress limits in [20] are empirically
determined for the catalytic debinding process of solid printed parts with 100% infill.
This should be used as an estimation tool in the design process. The next step of future
research is thereby to fabricate the application examples and validate the developed
framework. Additionally, it is also the subject of future work to evaluate stress limits
for other debinding processes such as solvent debinding, or the final thermal debinding,
where the binder backbone is removed, to obtain a broader flexibility of the framework.
Furthermore, the investigation of stress limits for various infill degrees and infill structures
are of high interest for the practical use of metal EAM.

5. Conclusions

In this study, an automated simulation framework based on open source for the
phenomenological simulation of the debinding process for metal EAM applications was
developed and its functionality is shown on three application examples. It can be con-
cluded that plausible results for all parts are obtained, which have to be validated further.
Nevertheless, the framework has its limitations, especially if parts are not orientated ap-
propriately in their coordinate system. The presented framework can play a major role in
streamlining the product development process for metal EAM applications and be used
additionally to evaluate design guidelines and the feasibility of ideas. Since at the moment
the framework is restricted for completely filled parts, it is the objective of future work to
broaden the applicability to various infill structures and infill degrees.
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