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Abstract: Due to severe climate change impact on electricity consumption, as well as new trends
in smart grids (such as the use of renewable resources and the advent of prosumers and energy
commons), medium-term and long-term electricity load forecasting has become a crucial need.
Such forecasts are necessary to support the plans and decisions related to the capacity evaluation of
centralized and decentralized power generation systems, demand response strategies, and controlling
the operation. To address this problem, the main objective of this study is to develop and compare
precise district level models for predicting the electrical load demand based on machine learning
techniques including support vector machine (SVM) and Random Forest (RF), and deep learning
methods such as non-linear auto-regressive exogenous (NARX) neural network and recurrent neural
networks (Long Short-Term Memory—LSTM). A dataset including nine years of historical load
demand for Bruce County, Ontario, Canada, fused with the climatic information (temperature and
wind speed) are used to train the models after completing the preprocessing and cleaning stages.
The results show that by employing deep learning, the model could predict the load demand more
accurately than SVM and RF, with an R-Squared of about 0.93–0.96 and Mean Absolute Percentage
Error (MAPE) of about 4–10%. The model can be used not only by the municipalities as well as
utility companies and power distributors in the management and expansion of electricity grids; but
also by the households to make decisions on the adoption of home- and district-scale renewable
energy technologies.

Keywords: electricity load prediction; power grids; smart grids; recurrent neural networks (RNN);
random forest; support vector machine (SVM) long short term memory (LSTM); deep learning;
machine learning; non-linear auto-regressive exogenous (NARX)

1. Introduction

Environmental emissions caused by human activities and the burning of fossil fuels
to generate energy in past decades have led to a severe global climate change crisis [1]. The
global warming crisis has been a driver of change in urban energy consumption behavior
and has caused significant concerns for power producers and utility sections all around
the world [2]. A study on the impact of climatic factors on UK office heating and cooling
consumption, as an example, predicts an increase in the annual cooling consumption
by 2–4 kWh/m2 by 2030 [3]. Several other important factors, such as urbanism and
industrialism, have also had a crucial impact on energy consumption behavior and demand.
The increasing trends in energy demand call for reliable and robust forecasting that could
help to develop effective long- and medium-term strategies and control energy usage in
the building sector. Efficient utilization of energy; fault detection, and diagnostics through
identifying unexpected patterns of building energy consumption; and developing reliable
energy budget forecasts when dealing with a growing population are among other benefits
of electric power demand forecasting.
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This has made medium- and long-term energy forecasting a crucial issue to manage
and plan the resources and also a vital component of the feasibility studies for building
new power generation units [4]. Load forecasting is principally the science of predicting
future load for a specific look-ahead period, and it is classified into three main categories.
(1) Long-term forecasting, which is applied to predict loads for as far as 50 years ahead to
facilitate expansion planning. (2) Medium-term forecasting, which is exploited to predict
weekly, monthly, and yearly loads to carry-out efficient operational planning. (3) Short-
term load prediction, which is used to forecast electrical loads for up to a week ahead to
minimize daily running/distribution and dispatching costs [5].

The increasing integration of renewable energy resources in power grids and the
intermittent nature of such resources have created new challenges as well as additional
needs for load prediction at higher resolutions and better accuracy. Short- and medium-
term supply-demand balance is an essential need for the operation and management of the
modern grid. Adding to the equation, the energy storage limitations/challenges at a district
level make the load demand prediction an extremely crucial need, yet a challenging task.
Forecasting energy production and consumption are usually based upon meteorological
data such as temperature, humidity and wind speed, and past power measurements. Apart
from statistical methods such as ARIMA [6] being used for load forecasting (in any of
the three look-ahead ranges), Machine Learning (ML) techniques have gained popularity
due to their effectiveness, accuracy, and flexibility. Particularly, during recent years, the
availability of data (due to digitalization), as well as affordability of required computational
resources, have made ML techniques an inevitable choice in this regard.

Several machine learning and deep learning techniques have been developed and
utilized in the past few years to predict the future load accurately. The newer algorithms
rely on more complex mathematics to obtain higher levels of accuracy than their sim-
pler counterparts. This research aims to investigate the suitability of such techniques in
determining the required hourly energy consumption in a medium-term approach and
explains/compares the concept of ML and deep learning with each other to propose an
aid in the building of a sustainable strategy for electrical generation units and utilities.
Historical electrical load, temperature, and wind speed are used to train the model while
the forecasted load demand is expected as the models’ output. Four models are examined,
each of which is representative of one data mining method: Random Forest (RF) as a
representative of ensemble learning; Support Vector Machines (SVM) as a representative
of ML, and Recurrent Neural Network (RNN) and non-linear auto-regressive exogenous
(NARX) Neural Network to represent deep learning algorithms. While the comparison
between these four techniques cannot be generalized to a comparison among data mining
methods they represent, we selected these techniques to have representatives ranging from
the simplest to the most complex.

The present paper reports the results of a thorough investigation on proper model
selection for medium-term electrical load forecasting. The novelty of the proposed ap-
proach rests upon the systematic selection of a proper model based on the data behavior
and setting the related parameters to achieve the maximum possible accuracy in load
forecasting for district level, with an acceptable computational effort. The rest of this paper
is structured into five sections. Section 2 presents the topic and a literature review on
the load forecasting types and different kinds of techniques for electricity consumption
prediction. In Section 3, the methodology of the research is described. Section 4 presents
a case study. The results, including the performance evaluation and comparison of all
techniques, are explained in this section. In Section 5, the optimization of hyperparameters
to improve each technique’s accuracy is reported. Finally, a summary of the paper and
suggestions for future work is provided in Section 6 as the conclusion.

2. Previous Works

At a high level, the application of ML in electricity demand analysis in the literature is
divided into unsupervised learning methods, mostly to provide descriptive analytics or as
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pre-processing steps; and supervised learning, generally for predictive modeling. While
the applications of unsupervised methods such as clustering (to group together house-
holds/neighborhoods with similar demand behavior) or anomaly detection (with aims
such as fault detection, dynamic pricing, etc.) are widely reported in the literature, the focus
of the present paper is predictive modeling, hence we limited our models to supervised
learning algorithms. Among supervised ML techniques, Support Vector Machine (SVM)
has demonstrated consistent performance in solving both linear and non-linear problems.
Hence it has emerged as a top candidate in both research and industry deployment. In
the field of forecasting energy demand, Li et al. (2010) used SVM (among three other ML
techniques) to forecast annual residential energy demand for 59 buildings in China. While
both SVM and General Regression Neural Network showed superiority on their training
sample; when evaluated on the test sample, SVM provided the highest accuracy (with
an error in the range of around 2%) compared to other competitors (with errors ranged
between 5% and 14.5%) [7].

In 2013, Jain et al. explored the effects of temporal (daily, hourly, 10-min frequencies)
and spatial (entire building, floor level, and individual unit) granularity on the predictabil-
ity of SVM. They observed that the model was most capable of forecasting the energy
demand of residential floors on an hourly scale (compared to the other granularities) [8].
Ruiz-Abellón et al. (2018) used regression tree methods (bagging, random forest, condi-
tional forest, and boosting) because of the flexibility of the model to predict the short-term
electrical consumption of a university campus in Spain. In addition to historical load data
as a dependent variable, they used calendar variables and temperatures as indicators. Their
results show the effectiveness of the random forest method with a short computational
time [9].

In 2017, Ahmad et al. [10] compared Random Forest (RF) with Artificial Neural
Networks (ANN) to forecast the hourly HVAC energy consumption of a building in
Madrid. Their results show that although the Root Mean Square Error (RMSE) of the
ANN is lower than the random forest method, both models can effectively forecast the
hourly load demand. In another study, Wang et al. (2018) adopted the random forest
method to predict the hourly energy consumption of two educational buildings in North
Central Florida. They studied the impact of using different predictor parameters on the
final forecasting results. They also compared the performance of the random forest model
with Regression Tree (RT) and Support Vector Regression (SVR) techniques. Their results,
based on a performance index that combines coefficient of determination (R2), RMSE, and
MAPE (Mean Absolute Percentage Error), indicate that the random forest performance
was 14–25% and 5–5.5% better than RT and SVR, respectively [11]. In 2020, Khan et al.
proposed hybrid machine learning methods [12–14] to forecast the energy demand. They
developed a hybrid algorithm based on three machine learning techniques, i.e., random
forest, extreme gradient boosting, and categorical boosting for energy demand forecasting.
The main focus was on the application of feature engineering at the preprocessing stage, to
enhance the model’s performance. Their results show that the hybrid model can increase
the R2 to 0.9212, which is more accurate results compared to the existing models.

Lahouar et al. (2015) developed a model for short-term load forecasting, capable of
predicting time-series for the next 24 h of electrical consumption. They tested the results of
their proposed model through an actual observed historical dataset with an average error
of about 2.3%. In their research, the selection of training and test inputs through if-then
rules allowed adjustment of the input data in line with the market specificity or country
culture [15]. Several studies have tried to forecast residential household loads using shallow
and deep ANNs. Neto et al., e.g., compared the results of a simple data-driven ANN
model for forecasting building energy consumption with the results of simulation-based on
physical principles by EnergyPlus. Their results show that both data-driven and simulation-
based models act well in the prediction of the energy demand of the building [16]. In order
to deal with the challenge of non-linearity of building historical load data, Biswas et al.
(2016) developed an ANN algorithm to make a robust calculation with big and dynamic
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data. They developed and validated their results on a testbed house, designed to serve as
realistic test facilities. Their model was based on Levenberg–Marquardt, and OWO Newton
algorithm and could achieve an R2 within the range of 0.87–0.91 [17]. The 2012 Global
Energy Forecasting Competition, in one of its two tracks, hierarchical load forecasting,
attracted hundreds of participants from different countries [18]. The competition featured
hourly loads for a US utility with 20 zones, spanning 4.5 years. A majority of methods
in this track were using regression; with a few other statistical methods; ANN; and RF.
Tao’s Vanilla Benchmark, a multiple linear regression technique, which is one of the most
frequently cited methods for short-term load forecasting, as well as backcasting, was first
presented in that competition. Based on a weighted RMSE, the top performers had a
WRMSE ranging between 68,150 and 87,826 kW across all categories [18].

Furthermore, to improve the performance of regular ANN in handling time-series
data, some studies have considered the use of particular kinds of neural networks such
as Non-linear Autoregressive Exogenous (NARX) and Convolutional Neural Networks
(CNN). Bendaoud and Farah (2020) proposed a new form of CNNN for short-term load
(one-day ahead) forecast using a two-dimensional input layer (including the previous
states’ consumptions in one layer, and climatic and contextual inputs in another layer).
They applied their model to a case study in Algeria and reported MAPE and RMSE of
3.16% and 270.60 (MW) errors, respectively [19]. In 2018, Thokala, et al. compared SVR and
NARX neural network methods. They trained their models with actual data of three real
commercial buildings and then tested with different time horizons. Their results showed
that the SVR outperformed the NARX neural network model [20]. In another study by
Koschwitz et al. (2018), the accuracy of NARX RNN is assessed with different depths
and is compared with SVM for heating and cooling load prediction of the non-residential
buildings for all seasons. Comparing the mean absolute error and mean square error
of each model shows that NARX RNN has better accuracy than the SVR [21]. In 2018,
Agrawal et al. used Long Short-Term Memory (LSTM)-RNN on the data from ISO New
England, an electrical transmission company [22]. The years analyzed were from 2004
to 2015, where the last five years (2011–2015) were predicted on a rolling basis. The data
and the model, both had an hourly resolution. Testing the model revealed that including
weather parameters such as dry bulb temperature and dew point temperature significantly
reduced the performance of the model because then the weather parameters would have to
be predicted for four years into the future. For the five years prediction, the overall MAPE
was 6.54, with a confidence interval of 2.25%. The authors, however, did not provide
a cross-comparison with simpler machine learning methods, commonly used for load
prediction. In one of the most recent works reported by Lee et al. in 2021, the researchers
investigated the accuracy of a developed deep neural network (DNN) for heating energy
consumption prediction. They compared the outputs of the DNN model with the results of
a simulation model from EnergyPlus. The DNN results show an acceptable accuracy based
on the ASHRAE standard; however, they have not evaluated the impact of using other
deep learning models, such as LSTM and NARX, that are designed to predict time-series
information [23].

In addition to the works cited, several other researchers have also focused on load fore-
casting at the building scale, using machine learning and deep learning methods [24–26].
However, fewer studies have examined the ability of data mining techniques for rural
regions and district load forecasting. In 2018, Ahmad et al. proposed a precise medium-
term and long-term district level prediction using ANNs and multivariate linear regression
based on environmental and historical data. Their results show that those models could
increase the forecasting accuracy, compared to prior forecasting models, by considering
sufficient forecasting periods (i.e., medium- and long-term), in the smart grid environ-
ment [4]. However, they did not consider other types of neural networks like recurrent
neural network and their ability to learn time series data. Typical ANN is not strong in
connecting the prior information to the current step. This will be problematic since the
model requires remembering specific patterns from the past (e.g., power failures or load
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anomalies) while remembering some others. In case the gap between the previous informa-
tion and the current step is not considerable (as is expected to be the case for consumption
datasets after cleansing and removing statistical anomalies), then special kinds of RNNs
should be able to not forget those prior steps. In this paper, LSTM will be examined as one
of these methods and will be used to forecast the hourly load within the horizon of one
year, to fill the existing gap in the literature of medium- and long-term load prediction. In
order to provide a reference point to evaluate the performance of the proposed RNN, we
compare it against two of the strongest machine learning (and ensemble learning) models,
(i.e., SVM and RF, respectively).

3. Materials and Methods

Figure 1 illustrates the high-level method of the current study. The data preprocessing
consists of four primary steps: feature selection, outlier detection, replacing the missing
values, and normalization. The available raw data includes several attributes, especially
in the climatic data that are logically unrelated to load consumption. Therefore, firstly
the feature selection was applied to reduce the size of the raw data. Secondly, missing
values were replaced by the average of their immediately preceding and succeeding one
hours’ values. Thirdly, the negative demand values were removed from the database as
inconsistencies. These could not be justified as surplus production by prosumers, given
their considerably high magnitudes, the swinging values compared to the preceding
and succeeding records, and the contextual information we collected from Bruce County
prosumers. Such sudden changes in values could only be justified as an error in data
collection, hence were filtered-out from the dataset. As for the large magnitude load
demand values, while they may appear to be statistical outliers, none were removed from
the dataset, since they are consistent data points that occur frequently around the same
time on many years, near the end of spring. They may not be merely related to weather
effects, rather appear to be related to the chosen municipality’s common behavior. The last
step was to normalize the data to bring the values of all features into the common scale.
Cleansed data was then used to train the models, as will be explained in the following.
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3.1. Random Forest (RF)

Decision Trees (DT) have been, for a long time, a popular machine learning technique
in load forecasting performance evaluation and prediction, due to their simplicity of train-
ing/use as well as interpretability of results. A decision tree has a flowchart-like structure
and the electrical load can be predicted after calculating the result of varied tests (i.e.,
historic load data, along with the buildings’ physical and contextual characteristics) from
the root node to the leaf node. All nodes stem from the root node are named decision nodes
that contain true or false criteria for making a particular decision on classifying buildings’
various characteristics. Finally, each branch terminates at a leaf node, which represents the
end decision (e.g., whether the example data fits in low or high energy demand class) [27].
Several methods are developed to resolve the limitations and shortcomings of the conven-
tional decision trees and improve their performance for classification tasks. One of the
most powerful techniques in this regard is the formation of an ensemble of trees, labeled as
a forest, followed by a vote to identify the most popular class. A random forest (RF) is an
ensemble model for classification and prediction, established by training multiple decision
tree sets with some modifications. At each node, the erection of new nodes is repeated until
the stopping criteria are met [10]. In this study, for splitting the nodes, the least-square
residuals criterion is selected, which minimizes the squared distance between the averages
of values in the node with regards to the actual value [28]:

Err(t) =
1
nt

∑
Dt

(yi − ki) (1)

where nt is the number of instances in node t, and ki is the average of the instances
in each node.

For training the Random Forest model in this study to forecast the electrical load,
bootstrap resampling was applied to each tree to generate a random training set. After that,
a tree was created for each bootstrap sample. In this regard, the best split among randomly
selected input variables was chosen, and also the fully grown tree reached the point where
the stopping criteria were met. For splitting the nodes, the least-square residuals criterion
was chosen. Finally, the above-mentioned processes were repeated to grow c ensembles of
such trees. Accordingly, the temperature was determined as the most important feature for
the electrical load prediction.

3.2. Support Vector Machine (SVM)

Support Vector Machines are a supervised learning technique that can be used for both
classification and regression [29]. In this study, involving electricity demand time series,
the support vector regression (SVR) version of SVM is implemented. The name comes from
the support vectors that are trained samples that reside on the ε-tube bounding decision
surface, schematically shown in Figure 2. The residual values found in the ε-tube do not
influence predicted values; i.e., residuals whose y values are larger than ε are penalized in
the optimization process.

Given a training data set of size N [(Xi, Yi)]
i=N
i=1 , the hourly demand forecast is mod-

eled by the function Y. The relationship between the input variable X (previous years’
consumption and climatic information), and the output prediction Y is approximated by
SVR as

Y = V·θ(X) + b (2)

where θ(X) is the nonlinear kernel function that implicitly maps the input space X to
a lower-dimensional space where classes are differentiated to the largest extent. The
kernel function takes inputs as vectors in the original feature space (i.e., former years’
consumptions, and climatic information), and outputs the dot product of the transformed
vectors in a new space. This ensures efficient computation, particularly when dealing with
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high-dimensional/complex spaces and non-linear cases [5]. Coefficient V and the bias b
are determined by minimizing the primal objective function given as follows:

1
2
||ω||2 + C

1
k

k

∑
i=1

ξi + ξ∗i (3)

where ω is the weight vector that is minimized to ensure generalization. Parameter C
controls the degree to which upper and lower bound terms ξi and ξ∗i capture residuals
whose magnitudes are beyond the allowable tolerance ε. The optimization problem must
meet the following constraints:

yi −ω·θ(Xi)− b ≤ ε + ξi (4)

ω·θ(Xi) + b− yi ≤ ε + ξ∗i , i = 1, . . . , k (5)

ξi , ξ∗i ≥ 0 (6)

The kernel used in this study for our dataset is the scalar (dot) product.

k(x, y) = x·y = ||x|| × ||y|| × cosθ (7)

where ||x|| and ||y|| are the norm (magnitude) of vectors x and y, and θ is the angle between
the two vectors.
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3.3. Deep Learning

A conventional multilayer perceptron ANN with a single hidden layer typically sets
up non-linear models to understand and learn the connection between input and output
values [30]. The model consists of individual neurons (nodes), and the response of node j
in layer l can be calculated via Equation (11) [31]:

yl
j = ϕ

(
n

∑
k

wl
jky(l−1)

k + bl
j

)
(8)

where n is the number of neurons, w is the weight parameter between neuron j in layer
l, y(l−1)

k is output from node k in (l − 1) layer, bl
j is the bias of node j in layer l and ϕ is

the activation function to transform the neuron value into valid and meaningful response
values for new analysis.
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After achieving all outputs, the model calculates the cost function, i.e., the error
between the predicted (ŷ) and recorded (y) energy consumption, for a single training
example as below:

C =
1
2
(y− ŷ)2 (9)

In the next step, the neural network starts to minimize the error by backpropagation
and adjusting the weights. The process repeats until the cost function will be minimized.

Recurrent neural network (RNN) is one of the classes of deep ANNs that is widely used
in training models for time-dependent data. As shown in Figure 3a, unlike conventional
multilayer perceptron, RNN uses a network of feedback loops to recall the value from the
prior time step. This makes RNN a proper tool to deal with time-series applications such
as character and speech recognition [32], image captioning, etc.
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Although RNNs could work well in theory in recognition and prediction of long-term
dependencies, in practice, several problems have been identified and reported in applying
them to carry out tasks, including a long span between relevant information of input and
the related output point [33,34]. For instance, RNN has challenges for accurate long-term
electrical load forecasting as the machine trains with vast amounts of time series data to
predict a long future period. Long short term memory (LSTM) was proposed as a solution
to this issue [35]. LSTMs can recall the information for a long period of time and are broadly
used in a wide range of tasks. Although the structure of the repeating modules in RNN is
straightforward and typically consists of a single “tanh” layer, LSTM modules have a more
complex composition, consisting of various kinds of gates to let the information through,
or be forgotten [26]. A schematic illustration of one LSTM module is provided in Figure 3b.

In long-term electrical load forecasting, sometimes, the model needs to forget about
the sudden changes in power consumption because of power failure or natural disaster a
long time ago. Therefore, there should be a layer in the LSTM model for forgetting the past
data that is not required to be passed to the next module. The “forget layer” in the initial
step is responsible for deciding what types of information could be passed on and what
information should be rejected by using a binary function. Using Xt and yt−1 as inputs,
and with the help of an activation function (ϕ), it generates numbers between 0 and 1 as
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output. Simply, 0 means forget the new information, and 1 means the information can be
added to the cell state of the previous module (St-1). The output ( ft) is calculated as

ft = ϕ
(

w f .[yt−1, Xt

]
+ b f ) (10)

where w f and b f are weight and bias parameters, respectively, and yt−1 is the output of the
prior LSTM module.

The next stage consists of two steps; first, specifying the value that should be updated
(it) and then creating a vector of new candidates’ values (S̃) through a tanh function [24].

it = ϕ(wi.[yt−1, Xt] + bi) (11)

S̃ = tanh(wS.[yt−1, Xt] + bS) (12)

These values are then used to adjust the prior cell state St−1 to St as below:

St = ft × St−1 + it × S̃ (13)

Eventually, the output (yt) can be evaluated based on the calculated cell state that is
specified based on a sigmoid function to find out the parts of the cell state that go to output
(τt), and a tanh function that generates the values between −1 and 1:

τt = ϕ (wτ .[yt−1, Xt] + bτ) (14)

yt = τt × tanh(St) (15)

In every neural network, the weights should be optimized in each layer, over the
training iterations. In the training process, we used “Adam” and “RMSprop” optimizers
rather than the conventional gradient descent algorithm, which is time-consuming and
resource-intensive [36].

Nonlinear autoregressive exogenous (NARX) neural network is another class of ANN
that is proper for dealing with time-series data, and has shown good performance in the
literature, for predicting electricity load. NARX can be mathematically expressed by the
below equation [37]:

y(n + 1) = f
[
y(n), . . . , y

(
n− dy + 1

)
; u(n− k), u(n− k + 1), u(n− du − k + 1)

]
(16)

where y(n) and u(n) are output and input of the network, respectively, at time step n; du
and dy are input and output memory orders, respectively; and k represents the delay term.
Based on Equation (16), the general NARX method could be evaluated by the following
equation [38]:

y(n + 1) = ϕ

 du

∑
i = 0

wl
iku(n− i) +

dy

∑
j = 0

wl
jky(n− j) + bl

 (17)

The independent variables have different ranges of values, and to remove the di-
mensionality issue and make the training process faster, we employed a min-max scaler
normalization:

Xs =
X− Xmin

Xmax − Xmin
(18)

We applied a regularization technique, called "dropout", to prevent the overfitting of
the neural network. With this method, during the training process, the model randomly
selects some neurons and temporarily removes their contribution to the activation and
updating weights of downstream and upstream layers (in the forward pass and backpropa-
gation, respectively). This avoids overfitting by removing overdependence on the neighbor
layers throughout the network [39].
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To evaluate the performance of prediction models, we considered root mean square
error (RMSE), coefficient of determination (R2) and mean absolute percentage error (MAPE)
to find out the goodness of the fit. RMSE is a simple technique to evaluate a model’s error:

RMSE =

√√√√ n

∑
i = 1

(ŷi − yi)
2

n
(19)

where ŷi is the predicted value and yi is the actual (observed) value. The mean absolute
percentage error is also calculated as below:

MAPE =
1
n

n

∑
i = 1
|yi − ŷi

yi
| (20)

R2, on the other hand, is a statistical measure of how the fitted regression line is near
the actual data and is determined as

R2 = 1− ∑(ŷi − yi)
2

(yi − y)2 (21)

where y is the average of observed values. The R2 value is between zero and one, and the
closer values to 1 show a better fit.

4. Results
4.1. Case Study

In this research, Bruce County, a small rural region located in the southwest of Ontario,
Canada, is selected as the case study. This region has a total area of 4079 km2 and a
population of 68,147 as of 2016 [40]. There are different energy sources used by power
generation units in the Ontario province. Although most of the energy comes from nuclear
power, other sources such as solar, wind, hydropower, and fossil fuels are also used in
Ontario as a source of energy [41]. The initial dataset is created by concatenating the hourly
weather data retrieved from the open-source environmental and natural resources database,
provided by the government of Canada [42] and the hourly electricity consumption dataset
of Bruce County, recorded from 2010 to 2019 and prepared by the Independent Electricity
System Operator (IESO) which is also publicly available for download [43]. IESO is the
Smart Metering Entity of Ontario, responsible for the implementation and operation of
the province’s meter data. The weather dataset had several attributes; however, based
on the most used features in literature [4,36,44] as well as testing the significance of their
contribution to the prediction (through trial and error), the most important ones; i.e.,
temperature and wind speed, are selected in this case study as independent variables.

Figure 4 shows variations in the temperature for Bruce County during the entire ten
years period. As seen, the temperature has a regular seasonal behavior with the maximum
ranging from 28.2 ◦C to 32.5 ◦C in summer, and the minimum within the range of −20.1 ◦C
to −30.6 ◦C in winter of various years. The electricity consumption behavior, especially in
residential buildings, is strongly correlated with the exterior temperature. The wind also
has some impact on the load demand, especially in winter, which can be due to the wind
chill effect.

Figure 5 shows the electricity load of Bruce County. In Figure 5a, a box plot of the
annual historical electrical load is presented. A peak demand with an excessively large
value is observed at the end of June. As mentioned earlier, this peak is frequently repeating
in other years too, around the same time. Since the aim of our prediction model is to cover
such peaks, this value is not filtered out as a statistical outlier. Moreover, to better highlight
the seasonality throughout a year, Figure 5b displays the hourly electricity demand in a
sample year (2019, as the most recent year). As seen, the records have a broad fluctuation. It
could also be observed that the electricity demand generally decreases in summers, which,
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given the cold climate of Bruce, can be explained by the reduction in heating demand
during the months of June through August. Figure 5c,d show the hourly wind speed
and temperature for the year 2019 sample, respectively. The negative correlation between
temperature and electricity consumption in winter can be observed in Figure 5.
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Figure 4. Temperature trend in training set data.

4.2. Implementation

The whole dataset consists of ten years of historical data (2010–2019). We used ten-
fold validation for training our predictors; where in each fold, nine years of data were
considered as training and one year as a test set. Here we explain one of the folds, i.e.,
using 2010–2018 as the training set and 2019 as the test set, as an example, to highlight the
procedure details. For the nine other folds, similar steps were followed. For each year, the
later years (and in cases, a combination of later and prior years) were used to re-create the
model and then predict that years’ consumption. While this will introduce the backcasting
into the predictive modeling procedure and can impose limitations to the model; given the
constraints with data availability, such methods of testing have not been uncommon for
working with electricity consumption time series data set [15]. The analytics of the results
are presented at the end of this section. 2010–2018 as a training set has 78,840 data points
and 291 missing values in electricity load, which have been replaced by the average of
nearest loads preceding and succeeding them. There have been no missing values in the
test set, i.e., 2019. After cleansing and preprocessing the weather and load data, we trained
the three models introduced earlier. Each model was fine-tuned, and their parameters were
optimized to maximize the accuracy (and minimize the error). Estimating the best values
for hyperparameters of machine learning (and deep learning) models is always a challenge.
As there is no closed solution to find these values, we followed a trial-and-error approach
to identify optimal values for such parameters in each training task.

The RF regression entails several hyperparameters that control the model accuracy.
The first is the evaluation criterion for RF. Since the data is of numerical nature, we used
the least-squares method that minimizes the squared distance between the averages of
values in the node with regards to the actual value. The next two are the maximum tree
size and depth. The tree size was tested with different values ranging between 50 and 200,
with increments of 50. The increase in the size improved the accuracy up to a certain level
and then declined it. The tree size at 200 was inferior to 150; hence 150 was selected as
the optimal size. The depth was tested with values of 10, 20, 25, and 30, and we did not
go beyond 30 to prevent overfitting. Table 1 shows the selected optimal settings for the
hyperparameters. Pre-pruning was also applied, with settings expressed in this table.
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Table 1. Hyperparameters of Random Forest (RF) model that considered for optimization.

Parameters Setting

Criterion Least Squares
Maximal depth 30

Number of Trees 150

Pr
e-

pr
un

in
g

pa
ra

m
et

er
s Minimal gain 0.01

Minimal leaf size 2

Minimal size for split 4

Number of pre-pruning alternatives 3

Support Vector Regression contains several hyperparameters that dictate whether the
model will overfit or overgeneralize the data. Various values for misclassification tolerance,
C, were used similarly to Cheng et al. [45]. Additionally, the kernel type and the number
of max iterations considerably influence the computational time. After several attempts,
the most optimal settings for SVR were obtained shown in Table 2. The C parameter was
iterated using the values of 0, 0.01, 0.1, and 1, and the best performance, i.e., 0, was chosen.
A “C” value of 0 means the strictest boundaries were set. After examining a wide range of
kernel functions, we selected the dot kernel. For the other kernel types tested (i.e., radial,
polynomial, neural, ANOVA, Epanechnikov, Gaussian combination, and multi-quadric),
the performance was far less satisfactory (due to considerably higher values of RMSE).

Table 2. Hyperparameters of the Support Vector Machine (SVM) model that considered for optimization.

Parameters Setting

Kernel Type dot
Misclassification tolerance, C 0

Convergence Epsilon, ε 0.001
Max Iterations 10,000

Keras library with TensorFlow backend is used as an open-source neural network
library to build the LSTM layers. Moreover, the GridSearchCV package from the Scikit-
learn library was used to find the best hyperparameters for the LSTM, and the results are
listed in Table 3. Mean squared error (MSE) was used to score each hyperparameter. The
network has 20 neurons in the input layer (the size of the feature space); and one neuron in
the output layer (the load forecast). The results of GridSearch show that the best optimizer
is Adam, while the premier batch size and number of epochs are 32 and 10, respectively.
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Considering a greater number of values and types for each hyperparameter tremendously
increases the optimization time and computational cost. As mentioned in the methodology
section, to avert the overfitting issue, some of the neurons should be dropped out in each
layer. In this study, 20 percent of the neurons were dropped out in each layer. For the
NARX network, the only two parameters that required manual input were the number of
hidden layers and the delay. They were set to 10 and 168, respectively.

Table 3. Hyperparameters of LSTM model that considered for optimization.

Parameters Values/Types

No. hidden layers 3
No. neurons per hidden layer 50

Activation function Hyperbolic tangent (tanh)
Optimizer types {Adam, RMSprop}

Batch Size {20,25,32}
No. of epochs {5,10,15,20}

5. Discussion

Figure 6 demonstrates the actual versus predicted loads of the three models, for 2019 as
an example. As mentioned in the methodology, coefficient of determination (R2) and RMSE
were used for evaluating the models’ performance. Results of the optimal RF showed an
R2 of 0.871, RMSE of 11.925 MW, and MAPE of 10.25% for forecasting the electricity load
of 2019 in Bruce County, both of which are within an acceptable range when compared
with the literature [4]. It can be seen, however, from Figure 6a that the model consistently
struggled to predict peak load demands, often underestimating the lows and overestimate
the high peaks. Loads closer to the mean are associated with lower error values. Using the
same training and test datasets, the optimal SVR model obtained an R2, RMSE, and MAPE
of 0.877, 12.308 MW, and 14.11%, respectively (for predicting 2019). As seen in Figure 6b,
while SVM was able to predict the large center peak, noticeable inaccuracies, as in RF, occur
when attempting to predict peak load demands closer to the mean. The LSTM model could
accurately predict even the peak load demands, with an R2 of 0.93, the RMSE of about
8.3MW, and the MAPE of 10.21%. Last but not least, the NARX neural network RMSE for
forecasting a year ahead (2019) load demand is 5.81 while the R2 and MAPE are 0.96 and
4.2%, respectively.

To overcome the issue of bias in testing and evaluating the performance of all three
models, a 10-fold validation was performed. Table 4 reports the average, standard deviation,
and range of the evaluation metrics, achieved from the cross-validation. As seen in this
table, the accuracy ranges achieved from SVM and LSTM models are very close and slightly
higher than the RF models. The exact same observation can be reported on the prediction
models’ errors. The NARX model, however, has a better performance in terms of the mean
and standard deviation of determination coefficient and root mean square error.

As seen, it is clear that NARX has performed better than LSTM, SVM, and RF from
all various viewpoints; i.e., accuracy, error, time, and pattern. While all four models could
acceptably predict the overall load demand, the main difficulty was the prediction of peaks.
RF’s predicted loads consistently failed to match the maxima and minima (peaks) of the
load demand, while SVM failed at times to predict the minima, and at other intervals the
maxima. LSTM predictions, however, had considerably better conformance with the peaks,
with mismatches mainly occurring for minimum peaks. Nonetheless, the NARX model
had a considerably lower mismatch, even when compared with LSTM. Given the higher
sensitivity of most smart grid applications to the maxima, such a mismatch can be of a
lower level of significance from an application point of view. Another critical factor was the
computational time involved. Table 4 shows the training time for one fold of each model,
using an Intel(R) Core i7 (7th Gen)—7500U CPU @ 2.7GHz, RAM 16 GB, platform running
Windows 10 Pro 64bits. The results indicate that the RF method is involved in a much
shorter training time than other methods. However, between SVM and LSTM that both
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showed strong prediction ability and less error than the RF; the LSTM model converges
about three times faster than the SVM model. Since in practice, the models are not meant
to be deployed in real-time and the training will not be repeated on a large frequency; the
computation time will not be the most critical criteria for model selection. Overall, the
NARX model could be selected as the proper model with the least error and acceptable
computational time.

Table 4. Statistics of the evaluation metrics (accuracy and error) for each model based on 10-fold cross-validation.

Model
RMSE R2

Computation Time (min)
Mean ± SD Range Mean ± SD Range

LSTM 9.569 ± 3.050 [7.16,15.00] 0.921 ± 0.0341 [0.85,0.95] 93
NARX 6.987 ± 1.433 [5.52,9.75] 0.953 ± 0.0142 [0.93,0.98] 16
SVM 11.878 ± 2.447 [7.89,15.22] 0.886 ± 0.0345 [0.84,0.94] 244
RF 13.028 ± 3.483 [10.05,21.49] 0.853 ± 0.0489 [0.78,0.91] 50
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Validation with the Literature

In 2020, Jung et al. used various machine learning models to forecast regional electrical
load in Seoul with a time horizon of one month [46]. They used 12 years (2005–2017)
monthly electric load data of 25 districts in Seoul as a training set. In addition to weather
data such as temperature and humidity, calendar and population datasets were deployed
as input variables. The average MAPE of all districts for Multiple Linear Regression
(MLR), RF, Extreme Gradient Boost (XGB), and DNN model were 11.90, 8.00, 6.86, and
6.46, respectively, for two years predicted (2017–2018). Although the time horizon (and
accordingly the lookback period) that is in Seung-Min et al. publication is one month
and considerably smaller than one year used in the present study, the results of our
research (especially the LSTM and NARX neural network) are superior in terms of the
accuracy of forecasting.

6. Conclusions

Growth of smart girds and moving towards decentralized and intermittent energy
production, together with the emergence of prosumers who at the same time with con-
suming electricity can produce energy, have made the prediction of electricity demand at
urban (regional/district) scale more critical as well as challenging. While digitalization
offers sensing technologies that provide real-time visibility of the grid status with high
refresh rates; still balancing the highly stochastic supply-demand fluctuations at a district-
and region-scale remains an urgent need. As data becomes more widely available, and
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computational power becomes more efficient and affordable, machine learning techniques
become feasible for addressing such problems. Previous efforts in this regard are proven to
be effective in demand prediction for energy utility companies whose short- and long-term
energy planning rely on predicting sophisticated patterns. In this paper, we focused on
various techniques of machine learning, ensemble learning, and deep learning to predict
electricity demand with an hourly resolution at a regional scale. RF, SVM, LSTM, and
NARX neural network were four techniques considered, ranging from computationally
simplistic to complex, respectively. As demonstrated in our experiment, all four models
showed viability in prediction, and they can precisely forecast the trends to various de-
grees. The noise available in the historical data (such as negative values for electricity
consumption) was handled in the preprocessing stage. Some fluctuations in demand,
which statistically appear as noise, were not removed from the training data, as they were
frequently repeated through various years, hence were considered to reflect the nature of
the electrical consumption of the region. The LSTM model was parametrically optimized
to inhibit the one-time sudden changes (due to unexpected environmental extremes or
sudden power failures) in the learning process while keeping the seasonality effects. It
was shown by this study that the complexity of LSTM modules, and most importantly,
having different layers for forgetting and passing new information, could successfully
distinguish between the two different behavior. Therefore, while the seasonal extremes
could be successfully predicted by our deep learning model, the model was not distracted
by the ad hoc fluctuations.

The novelty of our reported method has roots in (i) developing tuned recurrent neural
network (long short-term memory) for district-level load prediction; (ii) development of
the Non-linear Autoregressive Exogenous model to evaluate the impact of the recurrent
dynamic network on the accuracy of predicting the unexpected behavior of the load
demand; and (iii) benchmarking and cross-comparison of various tuned models based on
accuracy and computational cost, to support decision making for the selection of a proper
model to be fed by urban big data and make predictions at the scale of a district. The main
contributions of this study include firstly, showing the feasibility of using machine learning
techniques for predicting the energy demand of a municipality for the medium term on
an hourly basis. Secondly, we determined the LSTM and NARX neural network as the
superior algorithms compared to SVM and RF. Our results showed that RF and SVM are
not the best choices when there is sensitivity on predicting peak electrical consumption,
especially when the reason for load forecasting is control and energy management of an
energy system. Our LSTM and NARX models, however, properly predicted the trends
for both peak and off-peak values, with maximum accuracy and minimum error. The
adaptability of LSTM and NARX appears to be the key in predicting the time-series of load
demand for Bruce County. NARX neural network proved the most accurate prediction
with R2 of 0.96 and RMSE of 5.81 MW for a window size of 168 h. This was superior to the
R2 values of 0.93, 0.871, and 0.877 and RMSE values of 8.3 MW, 11.925 MW, and 12.31 MW
for LSTM, RF, and SVM, respectively. While our results indicate the superiority of NARX
over the machine learning tools examined; in the future, the experiment can be repeated
with other publicly available datasets (such as the Global Energy Forecasting Competition)
before generalizing the findings into other similar cases.

This study had some limitations too. Firstly, the windowing size (i.e., selection of
the analysis period) played a significant role in computation time. The analysis window
sizes above a week would take beyond one day to complete the calculations for the SVR
computation. Hence, we limited the models’ resolution to computationally affordable
windows. On the other hand, our models were trained on the first nine (9) years and tested
on the tenth year. The effect of cross-validation in terms of shuffling the training and test
years must be investigated in the future, particularly to identify the impact of long-term
effects (such as climate change) on the prediction accuracy. Moreover, future studies should
investigate methods to improve the accuracy of computationally simpler models (such as
RF and SVM). For example, splitting the energy demand data into the peak and off-peak
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demand times and training separate models for these cases is virtually expected to improve
the accuracy. This can be specifically helpful for the cases lacking big data, where deep
learning methods may not be as effective and accurate. Studying the sensitivity of methods’
accuracy to the data size and specifications can also be among the questions for future
research. Furthermore, considering larger analysis window sizes, studying the effect of
window size, and finding the optimal size is another vital aspect of our future studies.
Combining more comprehensive pre-processing procedures, such as grouping sub-regions
with similar behavior through clustering, and using the results in training the prediction
models can also help to improve the accuracy, and should be investigated in the future.
There are other types of methods developed for dealing with time-series data, such as the
Elman method, and authors will try to compare the results of this study with the accuracy
of these methods for predicting the load demand in future research.
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