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Abstract: All-electric and hybrid-electric aircraft are a future transport goal and a possible ‘green’
solution to increasing climate-related pressures for aviation. Ensuring the safety of passengers
is of high importance, informed through appropriate reliability predictions to satisfy emerging
flight certification requirements. This paper introduces another important consideration related to
redundancy offered by multiplex electric motors, a maturing technology which could help electric
aircraft manufacturers meet the high reliability targets being set. A concept design methodology is
overviewed involving a symbolic representation of aircraft and block modelling of two important
figures of merit, reliability, and efficiency, supported by data. This leads to a comparative study of
green aircraft configurations indicating which have the most potential now, and in the future. Two
main case studies are then presented: an electric tail rotor retrofitted to an existing turbine powered
helicopter (hybrid) and an eVTOL aircraft (all-electric), demonstrating the impact of multiplex level
and number of propulsion channels on meeting target reliabilities. The paper closes with a summary
of the important contribution to be made by multiplex electric machines, well as the advancements
necessary for green VTOL aircraft sub-systems, e.g., power control unit and batteries, to improve
reliability predictions and safety further.

Keywords: green VTOL; reliability; modelling; redundancy; multiplex

1. Introduction

Green VTOL aircraft are characterized by electric motors directly driving rotors, fans,
and propellers, providing lift and thrust. The motors may be powered either by batteries
(termed all-electric or eVTOL aircraft), or the electric motors can be powered by generators
connected to more conventional turbines or internal combustion engines, in combination
with batteries (termed hybrid-electric) [1]. A key difference from conventional aircraft and
what can be termed, green VTOLS, is that the electric propulsion is separated from the
engine, thereby new aircraft configurations become feasible [2]. Electric propulsion can be
used continuously throughout flight or for a part of a mission, e.g., boosting power for take-
off or landing [3]. Though more complex, hybrid-electric aircraft also have the potential
to increase the mission range over all-electric designs [4–6]. Various aircraft designs and
demonstrators have been proposed at various levels of technical readiness [7–10], with
commercial flights expected between 2022 and 2025 [11–13].

Through the use of electric motors for propulsion, and the corresponding high use
of electricity rather than relying completely on on-board hydrocarbon-based fuels, green
VTOLs aim to produce lower or even zero emissions to help meet the challenging emis-
sions reduction targets set by, for example, the Advisory Council for Aeronautics Re-
search in Europe [14,15]. There are additional benefits of electric propulsion proposed,
including: reduced vibration and noise, increased efficiency, improved energy consump-
tion, improved maintainability, reduced operating costs, lower mass, and aerodynamic
improvements [3,8,16]. A key driver for green VTOLS to deliver these potential improve-
ments is the development of electric propulsion systems [17]. Improvements in electric
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machine power density and efficiency, energy storage capacity and efficiency of batteries,
and reliability of power converter technologies are all required to make electric propulsion
for aircraft a more realistic proposition [1,18,19].

The use of electrical machines for propulsion also offers additional improvements
related to redundancy and fault tolerance, not typically offered by conventional aircraft
architectures, to improve reliability primarily [2,8,13,16,18,20–22]. Fault tolerance is the
ability for a system to still maintain the desired reliability despite failure of any component
or sub-system. Conventionally, a number of the same safety critical sub-systems can be
arranged in parallel to increase overall system reliability. In terms of an electrical motor,
fault tolerance can be achieved by using concentrated windings partitioned on the stator,
powered and controlled independently, creating a multiplex machine with a single output
shaft—effectively creating a parallel configuration and therefore maintaining high reliabil-
ity of the output from the motor. The result of this partitioning (duplex, triplex, quadruplex
redundancy, etc.) is electrical, magnetic, and thermal insulation between phases [7,23,24],
achieving high reliability potential for safety critical applications, such as aircraft [25–27].
If failure in one of the winding partitions occurs, there is only a degradation in output
power, not a complete loss, allowing continued lift and thrust for controlling the aircraft
and avoiding catastrophic consequences. Therefore, designing in redundancy will have
a significant impact on the availability of thrust following failure of an electrical compo-
nent [3]. The aerospace industry is already well-aware of multiplex systems for safety,
e.g., flight control systems are based on triplex or quadruplex redundancy [28]. Though
there are potential disadvantages, such as increasing the mass, cost, thermal management
challenges, increased health monitoring requirements, and potential for increased overall
complexity [21,26], the adoption of fault tolerant electrical machines is an attractive solution
to meet safety and power availability targets for aerospace applications [29].

Various types of redundancy are implemented in practice. The Bell Boeing V-22 Osprey
tiltrotor provides redundancy by coupling the power from both main turbines through a
central gearbox, meaning if one of the two turbines fails, power is still available to both
propellers, though overall power is reduced by 50% [30]. However, a considerable number
of components link the turbines and the propellers through mechanical transmissions,
raising reliability concerns [31], and significant failures in rotorcraft can be attributable
to main engine and transmission failure [32]. Moving to direct electrical motor drive
of propellers, the all-electric VoloCity, is an 18-rotor distributed propulsor design [33],
providing redundancy through high number of the same motor. Similarly, the eHang
autonomous aircraft has two motors each with its own propeller coaxially arranged at up to
eight locations on the aircraft, providing 16 independent propulsion units in total [34]. More
recently, however, we have seen redundancy within motors being applied. For example,
the all-electric eFlyer 800 fixed wing aircraft from Bye Aerospace proposes two important
safety features: two wing-mounted electric motors, each with dual redundant motor
windings powered by quad-redundant battery packs [35]. Finally, an electric tail rotor for
an existing helicopter was ground tested recently by Leonardo, which uses a quadruplex
motor, demonstrating little increase in mass over a conventional simplex machine of similar
rating whilst providing a high degree of fault tolerance [36]. Confirmation that there was
no appreciable mass penalty in producing a multiplex motor compared to a simplex
version was an important outcome, especially for an aerospace propulsion application, and
contradicts previous assumptions [21].

Generally, there are two schools of thought emerging: multiple propulsion units or
multiplex machines to reduce the consequence of a single failure and therefore improve
reliability, power availability, and aircraft safety [31]. There is no reason why a design can-
not incorporate both redundancy approaches, and their level of adoption and integration
is highly dependent on the reliability targets to be met. However, the type and level of
redundancy will also need to be related to the critical failures, hazards, and faults, which
through complete loss or degradation of propulsion, relate to the consequences of failure,
stability, and control of the designed aircraft.
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This paper will present a systematic method for assessing reliability and efficiency
figures of merit of different green VTOL designs incorporating redundancy, supported
with data to compare different configurations quantitatively and against targets. This
paper will first introduce the methodology, including an approach to help visualize aircraft
architectures using standard symbolic representation and block diagrams, before presenting
a comparative study of the known hybrid and fully electric aircraft architectures from the
literature, with variations incorporating redundancy to compare reliability and efficiency.
The method will then be demonstrated in two case studies, before drawing conclusions
and areas for further research.

2. Methodology
2.1. Symbolic Representation

Potentially, there are many different aircraft architectures that are conceivable at the
concept level for green VTOLs. It is essential to have a standard way of creating the designs
symbolically, as this will provide a visual reference of all concepts on a common basis.
This symbolic representation also shows how the different sub-systems are connected,
making the creation of Block Diagrams (for reliability and efficiency modelling later)
more systematic. The American Institute of Aeronautics and Astronautics (AIAA) have
developed a set of symbols for modelling hybrid-electric aircraft systems, which will be
adapted for use here [37]. Figure 1 shows a selection of commonly used symbols and data
for reliability and efficiency of components and sub-systems can also be sourced from the
literature; reliability and efficiency are the two key figures of merit introduced later in the
methodology. However, adaptation and addition of some symbols is required. A PCU
(Power Control Unit) symbol is introduced to reduce the complexity of the power control
system, combining inverters and rectifiers, etc. A PCU symbol must also be connected in
advance of each electrical motor wherever specified in the concept system.
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The current industry standard is based around three phase electrical drive technolo-
gies. For example, fully integrated power modules are commercially available as complete
three-phase units and a closely coupled common DC link filter capacitor. However, it is rec-
ognized that other degrees of freedom are possible. A true fault tolerant electrical machine
design provides electromagnetic and a degree of thermal independence between the phase
windings, thus with appropriate adjustment to the pole-slot design, other groupings than
three-phase groupings would be possible, e.g., five phases, six phases, or others. The data
capture has shown the PCU, which includes the DC link capacitor, EMI filtering, gate drive,
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switching, and current control elements alongside the power semiconductor devices, to be
the least reliable component in the electrical energy supply chain. Here, for simplicity, it
has been assumed that any failure within the power electric unit would make the complete
unit inoperable and the fault-tolerant architecture is configured to have a benign effect
on or be isolated from the other connected elements. In the case of a multiphase drive,
depending on the nature and criticality of the fault within the PCU, it can be possible
for the PCU and connected machine phases to continue to function at reduced capacity
following a failure and therefore could be beneficial in reducing the number of independent
power channels needed. The analysis of this would require greater granularity of reliability
data, in understanding failures at a PCU sub-element level, and will be the subject of
future work.

Two sets of motor and generator symbols are also adapted for use; one set for the
standard simplex topology, and the other set for multiplex machines, where the multiplex
versions of the symbols have the letters ‘DTQ’, where D = Duplex, T = Triplex, and
Q = Quadruplex topologies. For example, the Electric Tail Rotor (ETR) motor mentioned
earlier, is a Quadruplex machine, and would use the letter Q for the motor. These symbols
are easily stored within interactive digital whiteboards, where they can be arranged to
create the system designs desired with the necessary mechanical, electrical, and fuel links
connecting them.

2.2. Figures of Merit

The comparison of each concept system is conducted using two simple overall figures
of merit; reliability and efficiency. Reliability can be defined as the ability of a system or
component to perform its required functions under stated conditions for a specified period,
whereas efficiency is the ratio of the energy output to the energy input in each system. In
the development of many electro-mechanical systems, reliability can be regarded as a key
technical driver, also related to safety, and efficiency as a key economic driver, also related
to environmental performance.

Figure 2 shows a Pareto Chart combining the important figures of merit from six
case studies in electro-mechanical system design [38], with the prominence of reliabil-
ity (combined with safety) and efficiency indicated. Robustness and specific geomet-
ric/performance figures of merit are difficult to quantify at system conceptualization
stages, and do not lend themselves to high level system modelling interpretation. How-
ever, the additional benefit of using reliability and efficiency is that their formulation is
easily quantified from zero to one, where zero is related to no reliability/efficiency and
one is complete reliability/efficiency. In reality, unity for reliability and efficiency is not
achievable (through the laws of physics), and to allocate zero reliability or efficiency to
any component or sub-system is nonsensical, but these figures of merit provide simple
quantifiable measures from which decisions about the system viability can be made, both
technically and economically. Although no targets for efficiency are proposed for a system,
as will be introduced for reliability later, obviously this value should be as high as possible,
i.e., ηsys → 1.

Therefore, it is expected that different concept designs will achieve different reliability
and efficiency levels somewhere between a number greater than zero and less than unity,
which can be compared to each other or target values. These two figures of merit are also
considered independent of each other and not related to scaling or power distribution in
the system conceived. Therefore, a system of components and sub-systems each with an
independent reliability and efficiency values can be used to quantify the overall system
reliability and efficiency. The difficulty remaining is to apportion values of reliability and
efficiency to each component and sub-system, as well as formulate the system mathematical
models representing the configurations of components and sub-systems in an ideal way,
which will be discussed next.
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2.3. Block Modelling

The use of block models (or block diagrams) is a standard way of graphically repre-
senting a system made up of components and sub-systems using simple blocks connected
by lines representing their relationships [39,40]. The component and sub-system blocks
each represent the component and sub-system symbols, as created using the AIAA sym-
bolic representation, though their configuration is dictated in essentially two ways only: in
series or in parallel. Using the block model approach, the total reliability and efficiency
values can be propagated, usually from left to right, when the data is known for each
component and sub-system and whether the configurations are in series or in parallel. This
then provides the next level of the system representation for mathematical modelling and
prediction of the two figures of merit: Reliability (R) and Efficiency (η). The block models
and associated equations for reliability and efficiency for both in series and in parallel
configurations are shown in Figures 3 and 4, respectively. A system design will combine,
as necessary, in series and in parallel configurations of components and sub-systems, with
the major utility of in parallel configurations being for modelling multiplex approaches
using redundancy to increase reliability of the overall system.

2.4. Reliability and Efficiency Data

Data for reliability and efficiency has been sourced from the relevant literature for all
common components and sub-systems used in hybrid electric systems, in line with the
AIAA symbols used. The complete set of data obtained is summarized in Table 1, together
with references for the public domain sources. The original data is usually presented in the
form of probability of failure, P, seldom a value of reliability, R, and has been converted



Designs 2021, 5, 68 6 of 20

through the relationship, R = 1 − P. Two sets of data are actually shown: one set represents
current values, or state-of-the-art, and one set is for future data applied to key electrical
sub-systems, representing the best estimates from the available literature projected for the
next 10 to 20 years, and supported by the authors’ experience. Some of the current data
for reliability is rotorcraft specific or has operational conditions applied, but all data must
be used with caution in an absolute sense, as there maybe large variations depending on
supplier, operating environment and application domain. Updating the data sourced with
supplier data (where available) would improve confidence in the system level predictions
made, though reliability data is very sensitive commercial information usually, and is
difficult to obtain.
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Table 1. Reliability and Efficiency Data for Selected Components and Sub-systems (* current and
select future values, with future values shown as projections in bold).

Component/Sub-System Reliability (R) * Efficiency (η) *

Main Rotor Gearbox (xGG) 0.9994 [41] 0.94 [42]

Bevel Gearbox (xGB) 0.99995 [41] 0.97 [43]

Multiplier/Reducer Gearbox (xGM) 0.9978 [41] 0.94 [43]

Power Control Unit (xPCU) 0.84 [26] →0.9 0.97 [44] →0.98

Turboshaft (xT) 0.9994 [41] 0.3 [45]

Battery (xB) 0.82 [46] →0.9 0.9 [47] →0.99

Fuel Cell (xF) 0.95 [48] →0.98 0.65 [47] →0.83
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Table 1. Cont.

Component/Sub-System Reliability (R) * Efficiency (η) *

Motor/Generator (xM/xGEN) 0.9998 [41] →0.99999 0.92 [44] →0.99

Diesel Engines (~200 kW) (xD) 0.78 [41] 0.40 [49]

Shafting (xS) 0.9997 [41] ~0.99

Power Cables—Propulsion (xCP) 0.9992 [41] 0.99 [50]

Power Cables—Batteries (xCB) 0.999998 [41] 0.99 [50]

Propeller (xPROP) 0.9985 [41] 0.87 [51]

2.5. Reliability Targets

Green VTOLs may present new aircraft design opportunities, but they also present
flight safety certification challenges, as unconventional solutions will be adopted that do
not necessarily lend themselves to current certification requirements [9,52]. Furthermore,
certification for proposed pilotless, autonomous aircraft carrying paying passengers over
densely populated urbans areas will almost certainly set the bar even higher [1] and it
has also been argued that eVTOLs will need to be much safer than current rotorcraft
if they are to be successful economically [53]. Therefore, emerging guidance from the
European Aviation Safety Agency (EASA) suggests that safety cases for flight certification
will need to demonstrate that no single failure has catastrophic consequences on the aircraft
and recommends the use of a risk assessment method, such as Failure Mode and Effects
Analysis (FMEA) [54] in order to eliminate risks; a direction shared by researchers in the
area [55,56]. FMEA, and more favored in aerospace, the related method Failure Mode,
Effects and Criticality Analysis (FMECA), is traditionally applied to aircraft equipment to
also help analyze reliability [57]. FMEA and FMECA consider not only the consequences
of failure and their severity, but also the likely occurrence of the failure taking place, i.e.,
its probability of failure, or equivalently, its reliability. These are the two elements of risk:
Occurrence (O), or how many times do we expect the failure to occur?; and Severity (S),
what are the consequences of failure on the customer or environment? Therefore, the
methodology presented here will also need to include setting reliability targets related to
occurrence, aligned with severity of failure consequences, whilst being aligned to future
certification targets.

The basic FMECA method [58] has been adapted for use on green VTOLS and a
set of definitions for Severity (S) have been developed, as shown in Table 2, where the
consequences of failure on a five-point scale range from insignificant (S = 1) to catastrophic
(S = 5). Some potential failure conditions relate to both conventional and new green VTOL
aircraft alike, such as the weather, terrain, and airborne bodies, e.g., bird strikes, which may
incapacitate a propulsion unit completely through damage to the propeller or fan, though
statistically, strikes on the fuselage are more likely. From air accident reports, the loss of a
motor in a multi-rotor drone usually results in loss of control and subsequently, it will crash
to the ground [59,60]. A lack of redundancy in a drone’s control system also contributed to
a recent catastrophic failure [61] it is noted. Therefore, there are many potential failures that
will also relate to the electrical systems, e.g., battery, PCU, motors, etc. [62]. With respect
to major green VTOL sub-systems, Table 3 shows a classification of the different failure
modes that could be experienced in service, aligned with the Severity (S) ratings, with the
effects of the failure described in this table [63]. From the twelve failure modes reported
here (this is by no means an exhaustive list), nine are in the severe to catastrophic category,
with no failure modes allocated low severity ratings. This indicates that if the severity of
consequence cannot be reduced, which is typically the case due to application domain and
costs, the occurrence of these failures needs to be very low indeed to maintain an overall
low risk, therefore, the reliability would need to be very high.
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Table 2. FMECA Severity (S) Ratings for Green VTOLs.

Severity Description Rating (S)

Catastrophic
Sudden loss of primary sub-system function
with direct safety implications and effects on

green VTOL system
5

Severe
Sudden loss of primary sub-system function
with potential safety implications on green

VTOL system and secondary sub-system failures
4

Major

Gradual failure of sub-systems, which are
operable but at reduced level of performance,

directly impacting functionality—no immediate
effect on green VTOL system

3

Minor
Failure resulting in minor implications to

performance in sub-system functionality, with no
direct safety implication on green VTOL system

2

Insignificant
No failure implications on sub-system

performance, functionality or safety on green
VTOL system

1

Table 3. FMECA Severity (S) Ratings for Selected Green VTOLs Failure Modes and Effects.

System Element Failure Mode Severity (S) Effects of Failure

Propellor Failure Bird Strike 5 Loss of lift from propellor resulting in loss of aircraft stability
Structural Failure 5 Loss of lift from propellor resulting in loss of aircraft stability

Motor Failure

Winding Failure 4 Proportional loss of power and subsequent lift from propeller.
Remaining components under more stress.

Overheating 3 Loss of efficiency and performance. Possible further impacts
upon components.

Bird Strike 5 Complete loss of power, loss of lift.
Overloading 4 Higher stresses upon components, causing further failures.

PCU Failure
Short Circuit 4 Loss of power from motor, cascade effect. More strain on other

components.
Overheating 3 Increased failure due to degradation. Possible further impacts.

Energy Storage

Puncture 5 Battery fire, considerable further failure within power system.
Loss of power, loss of lift.

Thermal Runaway 4 Loss of power, possible further battery failures.
Overloading 3 Higher stress on batteries, could cause further degradation
Short Circuit 4 Loss of power, provided. Possible thermal runaway.

A decision must be made as to the reliability target appropriate for any application [64].
Research into the effects of non-conformance and associated costs of failure found that an
area of acceptable design can be defined for a component characteristic on a graph of failure
occurrence versus severity of consequence. The result was a Reliability Map, previously
developed for general engineering [65], and provides target reliabilities based on FMECA
ratings for Severity (S), as shown in Figure 5. The map includes areas associated with
acceptable design (this limit set at a value of 1% of the total failure cost), unacceptable, con-
servative and overdesign. The overdesign area is probably not as important as the limiting
failure probability for a particular severity rating but does identify possible wasteful and
costly designs.

Various authors have presented target probability of failures ranging from 10−3 to
10−9 for various applications and conditions [66–68]. These values fit in well with the
Reliability Map proposed, recognizing that as failures get more severe, they cost more,
and so the objective must be to reduce the occurrence or increase reliability. Note that
the Occurrence (O) rating is not shown on the Reliability Map but has been replaced by
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the probability of failure and corresponding reliability targets. However, absolute values
for these targets may be unrealistic [69] and therefore they should therefore be a central
measure bounded by some range that spans a space of credibility, never a point value
because of the underlying uncertainty in the data and models used [70] and the difficulty
in verifying them at the concept stages.
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Reflecting on the targets set by EASA [71] for small VTOL aircraft, probabilities of
failure range from ≤10−3 for minor to ≤10−9 for catastrophic severities. In addition,
EASA [54] state that a target of ≤10−7 for lift/thrust systems should be used, which
means R ≥ 0.9999999 must be demonstrated. This is interpreted as any single channel
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of propulsion specified in the design should attain at least this level of reliability. Some
researchers have gone as far to suggest that failure probabilities for green VTOLs should
generally be targeted at 10−9 [53]. Whilst safety is of course a primary goal, and reliability
and risk assessments can help direct resource and effort in order that components and
sub-systems are of high reliability, targets set at a single high threshold do not take failure
consequence into account and may lead to overdesign, mass penalties, and, therefore,
increased power demand for lift, leading to overall system viability concerns. In practice,
for a given consequence of failure and allocated Severity Rating (S), if the target range
is not met with a particular preferred aircraft architecture, then adding in redundancy is
recommended, e.g., parallel channels of power, control and propulsion, multiplex motors
and generators, etc., which will be considered in the context of a range of single-channel
propulsion systems next.

3. Single-Propulsion Channel Study

Seven single-channel propulsion configurations have been derived from the available
information in the literature for green VTOLs [4,19,56,72–78]. The configurations, as basic
representations, are shown in Figure 6, together with a generic name describing the con-
figuration, with all including motors and generators of the simplex type. For the study
discussed next, variations on these basic configurations also include the use of quadruplex
motors and the use of current and future data for reliability and efficiency of components
and sub-systems, as provided in Table 1. For example, for the category [A] All Electric
Battery configuration, A1 = simplex motor using current data, A2 = quadruplex motor
using current data, and A3 = quadruplex motor using future data. For each configuration,
a set of assumptions is also made, e.g., for [D1] Series Hybrid Direct Drive, the generator
(high speed) is directly driven by the turboshaft, both power sources are used simultane-
ously, i.e., boost mode (for take-off and landing purposes) and an additional benefit of
battery charging capability is possible with this configuration. For all quadruplex motor
configurations variants, there will also be four independent power channels with their
own PCU, as discussed earlier. The merits and demerits of each of these configurations,
as well as these assumptions, will not be explored further here, and the reader is referred
to the various reference sources for further information. A judgement of the merit and
demerit of each configuration will simply be made next based on only the predicted system
reliabilities and efficiencies, termed Rsys and ηsys, respectively, where the system is the
single channel of propulsion.

An example calculation for the system reliability and efficiency is shown in Figure 7
for D1 using block models populated with the appropriate component and sub-system
reliability values from Table 1. It is evident from the block models the level of redundancy
provided when the D1 configuration when used in boost mode, which of course, is not the
primary flight mode or a viable VTOL type aircraft with a single channel of propulsion;
however, this first study attempts to compare each known configuration on a common
basis. Also shown in Figure 7 is the final calculation for the equivalent block model on
the left when series calculations for reliability and efficiency have been undertaken to
the right-hand side, for clarity. Irrespective of the final reliability and efficiency values
calculated, these will now be compared in a relative format for all basic configurations
using simplex motors and current values and their variants using multiplex motors and
future values.

The results for all configurations and their variants are shown in Figure 8 in a Pareto
chart format, ranking those configurations with the highest reliability from left to right,
together with their associated efficiencies. Though final predictions are not provided as
absolute values, and graphically, several configurations appear to achieve reliabilities
approaching unity, this is deceptive, and the highest reliability calculated was for B3,
Rsys = 0.998, or Psys ≈ 10−3. This is substantially less than the target specified by EASA for
lift/thrust systems [71] of at least Psys = 10−7. It is recalled that from the Reliability Map
provided in Figure 5, a probability of failure of 10−3 was the very minimum acceptable for
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non-safety critical applications. This shortfall, even for a simplified set of possible solutions
for all and hybrid electric aircraft configurations prompts the question how, in practice, will
manufacturers of new green VTOLs be able to demonstrate to regulators that they meet
target reliabilities for flight certification purposes given the lack of confidence and access
to accurate data for the reliability of components and subs-systems, as well as possible
inaccuracies and assumptions in modelling the systems they conceive.
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At the current state of analysis and using the methodology provided, three configura-
tions are competitive in terms of high reliability and possess moderate to high efficiency
potential. All involve quadruplex motors directly driving the propeller and include the
improvements projected for motor, generator, and PCU elements of the systems in reliabil-
ity and efficiency. All electric direct drive configurations, with battery, and with battery
and fuel cell, are certainly attractive propositions when used with quadruplex motors.
Generally, the literature favors parallel hybrid configurations over series hybrid, e.g., a
recent study concluded that parallel hybrid architectures will perform better than series in
light, single-engine general-aviation applications with current technologies [75], and series
hybrid have also been stated as being less efficient than parallel hybrid configurations [9].
However, multiplex motors were not discussed in any context, and they appear to have
been the real improvement factor, along with marginal improvement potential in electrical
system efficiencies of course, for series hybrid over parallel hybrid configurations.



Designs 2021, 5, 68 12 of 20

Designs 2021, 5, x FOR PEER REVIEW 12 of 21 
 

 

 

 

 
Figure 7. Reliability and Efficiency Block Models, Data and Calculations for [D1] Series Hybrid Direct Drive 
Configuration—Simplex Motor and Current Values. 

The results for all configurations and their variants are shown in Figure 8 in a Pareto 
chart format, ranking those configurations with the highest reliability from left to right, 
together with their associated efficiencies. Though final predictions are not provided as 
absolute values, and graphically, several configurations appear to achieve reliabilities 
approaching unity, this is deceptive, and the highest reliability calculated was for B3, Rsys 
= 0.998, or Psys ≈ 10−3. This is substantially less than the target specified by EASA for 
lift/thrust systems [71] of at least Psys = 10−7. It is recalled that from the Reliability Map 
provided in Figure 5, a probability of failure of 10−3 was the very minimum acceptable for 
non-safety critical applications. This shortfall, even for a simplified set of possible 
solutions for all and hybrid electric aircraft configurations prompts the question how, in 
practice, will manufacturers of new green VTOLs be able to demonstrate to regulators that 
they meet target reliabilities for flight certification purposes given the lack of confidence 
and access to accurate data for the reliability of components and subs-systems, as well as 
possible inaccuracies and assumptions in modelling the systems they conceive. 

Figure 7. Reliability and Efficiency Block Models, Data and Calculations for [D1] Series Hybrid Direct Drive Configuration—
Simplex Motor and Current Values.

Designs 2021, 5, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 7. Reliability and Efficiency Block Models, Data and Calculations for [D1] Series Hybrid Direct Drive Configura-

tion—Simplex Motor and Current Values. 

The results for all configurations and their variants are shown in Figure 8 in a Pareto 

chart format, ranking those configurations with the highest reliability from left to right, 

together with their associated efficiencies. Though final predictions are not provided as 

absolute values, and graphically, several configurations appear to achieve reliabilities ap-

proaching unity, this is deceptive, and the highest reliability calculated was for B3, Rsys = 

0.998, or Psys ≈ 10−3. This is substantially less than the target specified by EASA for 

lift/thrust systems [71] of at least Psys = 10−7. It is recalled that from the Reliability Map 

provided in Figure 5, a probability of failure of 10−3 was the very minimum acceptable for 

non-safety critical applications. This shortfall, even for a simplified set of possible solu-

tions for all and hybrid electric aircraft configurations prompts the question how, in prac-

tice, will manufacturers of new green VTOLs be able to demonstrate to regulators that 

they meet target reliabilities for flight certification purposes given the lack of confidence 

and access to accurate data for the reliability of components and subs-systems, as well as 

possible inaccuracies and assumptions in modelling the systems they conceive. 

 

Figure 8. Comparison of all Configuration Variants Ranked Left to Right in Terms of Highest Reli-

ability (with symbolic representations for the three leading configurations). 
Figure 8. Comparison of all Configuration Variants Ranked Left to Right in Terms of Highest
Reliability (with symbolic representations for the three leading configurations).



Designs 2021, 5, 68 13 of 20

4. Case Studies
4.1. Electric Tail Rotor (ETR)

Leonardo have already demonstrated the viability of an electric tail rotor [36,79] to
replace the traditional complex system of couplings and driveshafts, spanning the distance
from the turbine driven main rotor gearbox to the tail rotor gearbox. An electric drive with
four independent channels, where each channel is effectively a balanced three-phase motor
unit, could reduce often fatal tail rotor gearbox failures [80] and expensive maintenance [81],
substantially improving safety and reliability through redundancy. The demonstrator at
TRL six proved that a four-channel system works, where the channels intrinsically share
the torque demand equally between them. Furthermore, if one channel fails, then the
remaining three continue to share evenly the torque demand. The current technology
demonstrator, called an ‘iron bird rig’, is shown in Figure 9.
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The study here is concerned with modelling the reliability of the electric tail rotor
sub-system when integrated within an existing helicopter platform (what could be called
retrofitting) and explore the impact of different multiplex level motors on what could
evolve as true hybrid electric propulsion for a helicopter. Although not a new green
VTOL concept as such, the case study will also demonstrate further the application of the
methodology to a real application. Efficiency is not considered in the study.

The existing helicopter platform has a single output shaft from the main gearbox avail-
able to generate power, which provided the mechanical power to the tail rotor originally.
Each of the four power channels to the motor requires its own power supply and PCU:
each channel providing a quarter of the power for the tail rotor. For the tail rotor thrust
to maintain adequate helicopter stability, the loss of just one out of four channels to the
quadruplex motor can be tolerated. A parallel arrangement of the generators is desired for
maximum redundancy (although series and 2 × 2 parallel-series arrangements are also
possible). From this information, the symbolic representation of the electric tail rotor can
be developed using the adapted AIAA symbols, as shown in Figure 10 (note that the main
rotor and shaft from the main gearbox is not shown for clarity, and this model branch is not
required to assess the reliability of the electric tail rotor sub-system). The corresponding
block models for the overall and simplified equivalent electric tail rotor sub-system is
shown in Figure 11.
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Figure 11. Reliability Block Model for the Electric Tail Rotor.

Populating the block diagram with current reliability data for the corresponding
components and sub-systems from Table 1, yields a reliability, Rsys = 0.991. Even with a
quadruplex motor and high redundancy in power channels, the achievement of a target
reliability, Rsys ≥ 0.9999999, will not be achievable, mainly due to the series relationship of
turboshaft, shafts, and gearboxes, and existing single channel of mechanical power only
being available. This demonstrates that the original architecture of the helicopter is not
advantageous to an electric tail rotor, unless multiple shafts can be provided from the main
gearbox or the four generators are directly driven in some other arrangement from the
turboshaft, bypassing both the main and splitter gearboxes.

Further exploration of the multiplex level of the motor can be undertaken, and
Figure 12 shows how the reliability falls off with lower levels. The reliability result for the
triplex motor is very similar to that for the quadruplex, though having four independent
channels is a safety requirement in case one channel fails and reduces the total thrust
from the tail rotor, impacting helicopter stability. A supporting study associated with the
availability of the electric tail rotor under different arrangements of the four generators
also found that the generator and motor reliabilities will need to R > 0.999999 to achieve
system targets reliabilities [82].
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4.2. All Electric VTOL

This case study will investigate the reliability of an all-electric VTOL (eVTOL) with
differing number of propulsion channels and multiplex level used for the motors to meet
a reliability target. Being all electric, classified [A] from earlier, each motor channel will
again be associated with its own PCU and independent channel of power from a battery
pack, and the analysis will use the future data set from Table 1 for the reliability of the
components and sub-systems specified. Figure 13 shows the symbolic representation of a
quad rotor version of the eVTOL using quadruplex motors as an example configuration,
though the block model is not shown for conciseness. The study will also include six and
eight rotor variants, as well as triplex and duplex motors, both approaches, in combination,
providing different levels of redundancy, and therefore reliability of the system.
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The use of multiplex motors for all variants provides the necessary fault tolerance
and a degradation of power will occur, not complete loss, if an individual motor stator
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winding failure occurs, being a common failure mode in motors [83]. It is assumed that
aircraft stability is maintained under this faulted condition, and therefore from Table 3, and
FMECA Severity (S) = 4 applies. From the Reliability Map in Figure 5, the target reliability
is identified as Rsys ≥ 0.9999999 at Severity (S) = 4.

The analysis of all eVTOL variants is shown in the table on Figure 13. Highlighting the
success, or not, of each variant meeting the reliability target is achieved through a traffic
light system, where it is evident that the minimum level of multiplex motor for a quad
rotor eVTOL is quadruplex, and for six and eight rotor variants, it is triplex, though some
margin in confidence in this proposal is being accommodated by using a range about the
target reliability, as suggested earlier.

5. Conclusions

If green VTOL aircraft are soon to become a reality, then flight safety certification
of these new aircraft will be a real challenge for aircraft manufacturers to demonstrate
given the variety of technologies, level of maturity, and configurations possible. Several
guiding principles can be suggested from the research reported here. Electric propulsion
and lift systems can be designed to be fault tolerant and have degraded performance rather
than complete loss of performance using multiplex motors. This form of redundancy can
be enhanced with redundancy using an appropriate number of propulsion units, though
the penalty on mass, cost, and further complexity also needs to be considered. Fault
tolerance in electrical motors (and even generators) can be achieved through modularity,
multi-channel/phase features to create redundancy, as well as provide tolerance to short
and open circuit faults, without a significant increase in machine size, complexity, and mass
and should be considered as a primary way of increasing redundancy in aircraft systems
to meet reliability targets.

The simplified methodology presented in this paper is a possible starting point for
certification purposes, integrating the key requirements of mapping failure modes, failure
consequences, and setting appropriate reliability targets. It is intended to be applied to early
concepts of green VTOL aircraft, and help visualize these concepts on a common basis, not
generate them. There are no limits to the innovation combined with experience that could
help generate viable concepts, but this will also be driven by the specification, i.e., mission
length, mission type, payload weight, number of people to be carried, level of autonomy,
operating environment, speed, etc. To develop the methodology further, the overall
power requirements and power distribution though sub-elements is required, derived
from mission profiles, to support more detailed trade-off studies, including projections for
take-off mass, losses, cost, as well as more detailed reliability and efficiency predictions all
becoming possible. Concept designs are usually evaluated relatively against other concept
designs, and a successful candidate selected based on many factors in this way. In the
approach taken here, reliability and efficiency are the only figures of merit proposed, being
the only quantitative measures to help provide decision making at the early stages of
design conception that are not related to scale or power distribution factors.

Other related future work is needed to support the concept and more detailed trade-
off studies to assess the viability of green VTOLs. The confidence in the reliability and
efficiency data used in the studies here is low, as it relies on information supplied to the
public domain by operators and suppliers of key components and sub-systems. Up-to-date
and representative data (considering environment, loading, and application domain) for
the reliability data would be welcomed, though it is acknowledged that this information
is commercially sensitive. There is also a great need to understand how aircraft stability
for multi-rotor aircraft concepts suffers with complete and partial loss of propulsion and
lift capability, as this dramatically changes the consequences of failure and allocation of
target reliabilities to minimize risk. Finally, advances in the performance of electrical
components and sub-systems such as motors, generators, PCUs, and batteries needs to
gather pace, in terms of reliability and efficiency improvements, in order that viable green
VTOL architectures can be safely operated.
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69. Fajdiga, M.; Jurejevčič, T.; Kernc, J. Reliability Prediction in Early Phases of Product Design. J. Eng. Des. 1996, 7, 107–128.

[CrossRef]
70. Fragola, J.R. Reliability and risk analysis data base development: An historical perspective. Reliab. Eng. Syst. Saf. 1996, 51,

125–136. [CrossRef]
71. EASA. Proposed Special Condition for Small-Category VTOL Aircraft, European Union Aviation Safety Agency (EASA), Doc.

No: SC-VTOL-01, Issue: 1 (Proposed), 15 October, 2018. Available online: https://www.easa.europa.eu/sites/default/files/dfu/
SC-VTOL-01.pdf (accessed on 9 September 2021).

72. Roland Berger Strategy Consultants. Aircraft Electrical Propulsion—The Next Chapter of Aviation? 10 October, 2017. Avail-
able online: https://www.rolandberger.com/en/Publications/New-developments-in-aircraft-electrical-propulsion-(CH).html
(accessed on 9 September 2021).

73. Boggero, L.; Corpino, S.; De Martin, A.; Evangelista, G.; Fioriti, M.; Sorli, M. A Virtual Test Bench of a Parallel Hybrid Propulsion
System for UAVs. Aerospace 2019, 6, 77. [CrossRef]

https://www.researchgate.net/post/Can_anyone_give_me_failure_rates_of_lithium_ion_NMC_pouch_cells#view=5895f53896b7e47ec829eb59
https://www.researchgate.net/post/Can_anyone_give_me_failure_rates_of_lithium_ion_NMC_pouch_cells#view=5895f53896b7e47ec829eb59
http://doi.org/10.3390/en8010172
http://doi.org/10.1109/epe.2005.219673
http://doi.org/10.1051/matecconf/201930403008
https://nari.arc.nasa.gov/sites/default/files/attachments/5_FAA_EVTOL%20Crashworthiness%20Moving%20Forward.pdf
https://nari.arc.nasa.gov/sites/default/files/attachments/5_FAA_EVTOL%20Crashworthiness%20Moving%20Forward.pdf
https://evtol.com/opinions/safety-is-about-more-than-aircraft-design/
https://evtol.com/opinions/safety-is-about-more-than-aircraft-design/
https://www.easa.europa.eu/sites/default/files/dfu/moc-2_sc-vtol_-_lssue_1_-_23-06-2021.pdf
https://www.easa.europa.eu/sites/default/files/dfu/moc-2_sc-vtol_-_lssue_1_-_23-06-2021.pdf
https://ntrs.nasa.gov/citations/20180007847
https://ntrs.nasa.gov/citations/20180007847
http://doi.org/10.1016/j.paerosci.2018.06.004
http://doi.org/10.1016/j.phpro.2012.03.316
https://assets.publishing.service.gov.uk/media/5f452e37d3bf7f69a89b6c24/DJI_Matrice_210_UAS_registration_na_030319_01-20.pdf
https://assets.publishing.service.gov.uk/media/5f452e37d3bf7f69a89b6c24/DJI_Matrice_210_UAS_registration_na_030319_01-20.pdf
http://doi.org/10.1109/LRA.2020.3048875
https://assets.publishing.service.gov.uk/media/602bb22f8fa8f50388f9f000/Alauda_Airspeeder_Mk_II_UAS_reg_na_03-21.pdf
https://assets.publishing.service.gov.uk/media/602bb22f8fa8f50388f9f000/Alauda_Airspeeder_Mk_II_UAS_reg_na_03-21.pdf
http://doi.org/10.2514/6.2017-3272
http://doi.org/10.2514/6.2018-4149
http://doi.org/10.1016/S0167-4730(97)00009-X
http://doi.org/10.1080/09544829608907931
http://doi.org/10.1016/0951-8320(95)00110-7
https://www.easa.europa.eu/sites/default/files/dfu/SC-VTOL-01.pdf
https://www.easa.europa.eu/sites/default/files/dfu/SC-VTOL-01.pdf
https://www.rolandberger.com/en/Publications/New-developments-in-aircraft-electrical-propulsion-(CH).html
http://doi.org/10.3390/aerospace6070077


Designs 2021, 5, 68 20 of 20

74. Bowman, C.L.; Felder, J.L.; Marien, T.V. Turbo- and Hybrid-Electrified Aircraft Propulsion Concepts for Commercial Transport. In
Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, OH, USA, 9–11 July 2018; Paper No.
AIAA 2018-4984. Available online: https://ntrs.nasa.gov/search.jsp?R=20180005437 (accessed on 9 September 2021).

75. Dean, T.; Wroblewski, G.E.; Ansell, P.J. Mission Analysis and Component-Level Sensitivity Study of Hybrid-Electric General
Aviation Propulsion Systems. J. Aircr. 2018, 55, 2454–2465. [CrossRef]

76. Domone, J. “The Challenges and Benefits of the Electrification of Aircraft”. Atkins, 2018. Available online: https://www.
snclavalin.com/~{}/media/Files/S/SNC-Lavalin/documents/beyond-engineering/electrification-white-paper.pdf (accessed on
9 September 2021).

77. Insight, “Electrical Power Systems –07”, Aerospace Technology Institute (ATI), July, 2018. Available online: https://www.ati.org.
uk/media/ntlocbb4/insight_07-electrical-power-systems.pdf (accessed on 9 September 2021).

78. Schömann, J. Hybrid-Electric Propulsion Systems for Small Unmanned Aircraft. Ph.D. Thesis, Technical University of Munich,
Munich, Germany, 2014. Available online: https://mediatum.ub.tum.de/doc/1183222/document.pdf (accessed on 9 September
2021).

79. Booker, J.D.; Yon, J.; Williamson, S.; North, D.; Mellor, P.H. Development of a Power Generation System and Quadruplex Direct
Electric Drive for a Helicopter Tail Rotor. In Proceedings of the AIAA SciTech Forum, Orlando, FL, USA, 6–10 January 2020.
Paper No. AIAA 2020-0118. [CrossRef]

80. CAA. Helicopter Tail Rotor Failures. Civil Aviation Authority (CAA), Paper 2003/1, November 2003. Available online: https:
//publicapps.caa.co.uk/docs/33/CAPAP2003_01.pdf (accessed on 9 September 2021).

81. Zakrajsek, J.; Dempsey, P.; Huff, E.; Augustin, M.; Grabill, P.; Decker, H. Rotorcraft health management issues and challenges. In
Proceedings of the 1st International Forum on Integrated System Health Engineering and Management in Aerospace, Nampa, CA.
Paper No. NASA/TM-2006-214022, 2006. Available online: https://core.ac.uk/reader/10516600 (accessed on 6 October 2021).

82. Booker, J.D.; North, D.; Yon, J.M.; Mellor, P.H. Generator configuration for helicopter quadruplex electric tail rotor. J. Eng. 2019,
2019, 4471–4474. [CrossRef]

83. Usman, N.T. Stator Winding Faults investigation in Permanent Magnet Synchronous Motor using Motor Signatures: Part I. In
Proceedings of the 19th International Conference on Electrical Drives & Power Electronics (EDPE), The High Tatras, Slovakia,
24–26 September 2019; pp. 160–168. [CrossRef]

https://ntrs.nasa.gov/search.jsp?R=20180005437
http://doi.org/10.2514/1.C034635
https://www.snclavalin.com/~{}/media/Files/S/SNC-Lavalin/documents/beyond-engineering/electrification-white-paper.pdf
https://www.snclavalin.com/~{}/media/Files/S/SNC-Lavalin/documents/beyond-engineering/electrification-white-paper.pdf
https://www.ati.org.uk/media/ntlocbb4/insight_07-electrical-power-systems.pdf
https://www.ati.org.uk/media/ntlocbb4/insight_07-electrical-power-systems.pdf
https://mediatum.ub.tum.de/doc/1183222/document.pdf
http://doi.org/10.2514/6.2020-0118
https://publicapps.caa.co.uk/docs/33/CAPAP2003_01.pdf
https://publicapps.caa.co.uk/docs/33/CAPAP2003_01.pdf
https://core.ac.uk/reader/10516600
http://doi.org/10.1049/joe.2018.8233
http://doi.org/10.1109/EDPE.2019.8883929

	Introduction 
	Methodology 
	Symbolic Representation 
	Figures of Merit 
	Block Modelling 
	Reliability and Efficiency Data 
	Reliability Targets 

	Single-Propulsion Channel Study 
	Case Studies 
	Electric Tail Rotor (ETR) 
	All Electric VTOL 

	Conclusions 
	References

