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Abstract: Topology optimization (TO) is a mathematical method that optimizes the material layout
in a pre-defined design domain. Its theoretical background is widely known for macro-, meso-, and
microscale levels of a structure. The macroscale TO is now available in the majority of commercial TO
software, while only a few software packages offer a mesoscale TO with the design and optimization
of lattice structures. However, they still lack a practical simultaneous macro–mesoscale TO. It is not
clear to the designers how they can combine and apply TO at different levels. In this paper, a two-
scale TO is conducted using the homogenization theory at both the macro- and mesoscale structural
levels. In this way, the benefits of the existence and optimization of mesoscale structures were
researched. For this reason, as a case study, a commercial example of the known jet engine bracket
from General Electric (GE bracket) was used. Different optimization workflows were implemented in
order to develop alternative design concepts of the same mass. The design concepts were compared
with respect to their weight, strength, and simulation time for the given load cases. In addition, the
lightest design concept among them was identified.

Keywords: topology optimization; lattice structure; design

1. Introduction

In the literature, the structure of a component can be categorized with respect to its
physical size, from bigger to smaller, and to macro-, meso-, and microscale structures [1].
However, there are no specific size limits that separate one from the other. The macroscale
is considered the external layout of a structure, while its infill is the mesoscale structure.
The elements that constitute the infill are usually unit cells creating a periodically ordered
pattern [2]. The structure of the unit cells is a good example of a microscale structure.
According to the theory of composite materials, a unit cell is the smallest volume that can
be measured to give a representative value of the entire structure [3,4]. Hence, it is assumed
that the continuum mechanics can be applied to the macro-, meso-, and microscale levels
of a structure [1]. Figure 1 shows the three structure levels of a hollow plate where its
mesoscale structure consists of uniform cubic cells.

Figure 1. The macro-, meso-, and microscale structure of a hollow plate, based on [5,6].
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It is very common to use cellular structures inside the components to reduce their
weight or affect their physical and mechanical properties [7]. The cellular structures can be
classified into foams, honeycombs, and lattice structures [8]. The foams can be either open
or closed and are randomly generated [9]. Mesoscale structures of bones and shells are two
characteristic examples of foams. Honeycombs are cellular designs consisting of unit cells
such as hexagons with regular shape and size. They usually are two-dimensional designs
that can be extruded in the third direction. Finally, lattice structures are three-dimensional
unit cells, such as cubic and octahedral unit cells, arranged periodically, composing a
porous material structure of interconnected struts and nodes [2]. An advantage of the
lattice structures compared to foams and honeycombs is that they are flexible designs that
can be easily optimized to satisfy specific requirements. The desired material property of
a lattice structure can be achieved by changing the size, the orientation, the struts, and
the nodes of its cells [10]. Many researchers agree that the lattice structures outperform
foam and honeycomb cells due to their high stiffness, strength, energy absorption, heat
dissipation, and damping [2,11]. Due to their good mechanical properties, they can be
widely applied in various industries such as the aerospace, automotive, and biomedical
industries [12].

According to Bendsøe [13], structural optimization (SO) can be classified into shape,
size, and topology optimization. The topology of a design can be optimized in any of
its levels, i.e., at the macro-, meso-, and microscale levels, using different optimization
methods [14]. The solid isotropic material with penalization (SIMP) [13,15], the level set [16],
the bi-directional evolutionary structural optimization (BESO) [17], the smooth-edged
material distribution for optimizing topology (SEMDOT) [18], and the floating projection
topology optimization (FPTO) [19] are some notable methods for the optimization of the
macroscale. On the other hand, the homogenization-based topology optimization (HMTO)
and the size gradient method (SGM) are two popular methods for the optimization of the
mesoscale. Finally, the aforementioned methods can be easily adapted on a microscale
level [1].

There are plenty of research papers about TO, either on the macroscale or mesoscale
level. In addition, many works deal with the concurrent multiscale optimization [20].
Watts et al. [21] modified Sigmund’s 99-line Matlab code [22] to solve a three-dimensional,
multiscale compliance problem via polynomial interpolation of stiffness tensors. The
coating approach combined with the compliance TO by Clausen et al. [23] resulted in
designs with improved buckling load. Kato et al. [24] proposed a micro–macro concurrent
TO for nonlinear solids with a multiscale decoupling analysis. Hoang et al. [25] presented a
direct multiscale TO approach without material homogenization at the microscale but using
adaptive geometric components instead. Liu, Chan, and Huang [5] developed a concurrent
two-scale TO algorithm based on the BESO method for maximizing the natural frequency
of structures. White et al. [26] developed a multiscale TO using neural network surrogate
models for spatially varying lattices. Despite the fact that there are some approaches of
multiscale TO, its practical application is in its beginning since there is not a commercial
program that implements it automatically.

In this research paper, a two-scale TO was conducted in ANSYS software utilizing
manually the homogenization theory at both the macro- and mesoscale levels. The applied
algorithms for the macro- and mesoscale optimization were the traditional compliance
SIMP and the HMTO, respectively. Through the current study, the authors answer the
following research questions: What is gained by the existence and optimization of the
mesoscale structure? How should a combined macro- and mesoscale TO be practically
performed? For this reason, a case study of the notable jet engine bracket from General
Electric (GE bracket) was used [27]. Five different optimization workflows (mentioned as
optimization methods) of the GE bracket were implemented, trying to determine the most
efficient method in terms of structural strength. In addition, the impact of the type and the
orientation of the cells in the mesoscale structure were explored. Finally, the lightest design
solution was identified and presented among these workflows.
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The structure of the rest of the paper is as follows: in Section 2, the theoretical
background of the used approaches for the topology optimization of both macroscale
and mesoscale is introduced. In Section 3, the implemented methodology is presented
in detail. The findings in this research work are displayed in Section 4 and discussed
thoroughly in Section 5. Finally, Sections 6 and 7 encompass the conclusion and the
possible future research, respectively.

2. The Structural Optimization Problem for Macro- and Mesoscale Structures

The optimization of the macroscale structure can be described by the general SO
problem as it was presented by Bendsøe [13]. The SO problem is broadly known in its
translation to a standard minimum compliance problem with a volume constraint. The
following discretized problem is based on the homogenization theory and the interpolation
method of SIMP [28]:

min
u∈U,ρ

c(ρ, U(ρ)) (1)

subject to :
N

∑
e=1

veρe = vTρ ≤ V∗ (2)

gi(ρ, U(ρ)) ≤ g∗i , i = 1, . . . , M (3)

0 < ρmin ≤ ρ ≤ 1, e = 1, . . . , N (4)

K(ρ)U = F (5)

E(ρe) = ρ
p
e E0, p ≥ 1 (6)

where

c: compliance;
ρ: material density;
U: global displacement;
g: volume constraint;
ρe: element density;
ve: element volume’
V∗: maximum allowed volume (volume of the design space);
K: global stiffness matrix;
F: external loading vector;
E: overall structure elasticity;
p: penalization factor;
E0: Young’s modulus.

For the current optimization problem, Equation (1) is the defined objective function,
which in this case corresponds to the compliance of the structure. Furthermore, there
are four constraints in this minimum compliance problem. The first constraint, Equation
(2), is the total design volume whose value should be equal to or less than the volume of
the design space. The constraints denoted by gi (Equation (3)) represent other possible
behavioral and design constraints. At the third constraint, Equation (4), the values of the
element density are bounded between zero and one, where the former represents void
and the latter represents material. The fourth constraint, Equation (5), is the equilibrium
equation, which is further described by the elastic scaling law (Equation (6)).

According to Pan, Han, and Lu [2], the cellular shape and size of the mesoscale
structure, and thus the lattice structure, can be either uniform or nonuniform. On the
one hand, the design and optimization of uniform lattice structures can be conducted by
three different design approaches: (1) computer-aided design (CAD), (2) design based on
mathematical algorithms, and (3) design based on TO. On the other hand, the design and
optimization of the nonuniform lattice structures can be conducted either by functional
gradient design or by SO [2]. The SGM [29] and the HMTO [30] are two notable approaches
in each of these cases. The HMTO is applied in this paper.
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For the HMTO, variable-density cellular structures are used in the creation of the
mesoscale structure. This method uses the homogenization theory to obtain the real
mechanical properties of the infill as a function of the relative density of its lattice cells [4,31].
In general, the cellular structure has anisotropic behavior. In the HMTO method, the
following scaling law describes this behavior [30]:

σ = Cε (7)

where the stress, σ; the strain, ε; and the elasticity, C, can be written in matrix form:

→
σ = [σ11σ22σ33σ12σ13σ23]

T (8)

→
ε = [ε11ε22ε33ε12ε13ε23]

T (9)

C =



C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

 (10)

The σij and εij are the scalar components of the stress and strain, respectively. The
homogenization method utilizes the micromechanics theory, where the FEA results of
one unit cell with different relative densities are used to predict the behavior of the entire
mesoscale structure. The scaling law of structure’s elasticity can be described by the
polynomial function with the best fit of the computational data between the elastic constants
and the arbitrary relative densities of the cell [30]. A general form of this polynomial is
the following:

C(ρr) = a1ρr + a2ρ2
r + . . . + anρn

r (11)

This polynomial represents the real mechanical properties of the mesoscale as a
function of the relative density ρr [4]. For the optimization of the mesoscale structure, a
similar formulation to the SO problem is applied:

min
u∈U,ρr

c(ρr) = uTKu =
N

∑
e=1

uT
e keue (12)

subject to : Ku = f (13)

C = C(ρr) (14)

N

∑
e=1

ρrue = V (15)

0 < ρmin ≤ ρr ≤ ρmax ≤ 1 (16)

Here the derived intermediate elements from the SIMP method are replaced by cells
with corresponding densities creating a graded lattice structure [30]. In addition, the poly-
nomial scaling law, Equation (14), replaces the fictitious elastic scaling law (Equation (6)) of
the SIMP method. Analytical calculations for the TO of both the macroscale and mesoscale
are omitted for brevity. Interested readers should be referred to the research works of
Bendsøe and Sigmund [28,32] and Cheng, Zhang, Biyikli, Bai, Robbins, and To [30].

Figure 2 presents an example of the HMTO method of a hollow cantilever plate. The
hollow plate is fixed on its right face, and a 5000 N vertical force is applied on its top
face. In the first case, uniform cubic cells were used for its mesoscale structure, while the
HMTO method was implemented in the second case resulting in an infill with a graded
cubic structure.
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Figure 2. The difference between uniform lattice structure and graded lattice structure.

The authors use the term lattice optimization (LO) when they refer to the HMTO
method. Both the described SIMP and LO methods are applied for the optimization of the
macro and mesoscale structure, respectively, in this research work.

3. Methodology

The presented case study in this paper is the known jet engine bracket by General
Electric, also called the GE bracket. This model was used by General Electric as a design
challenge in 2013 [27]. The participants in this challenge were asked to reduce the weight
of an existing aircraft engine bracket without compromising its strength. There were
629 entries, and the winner could reduce the initial weight of the bracket from 2.033 Kg to
327 g, which corresponds to nearly 84% weight reduction. The authors decided to use this
GE bracket as a case study in this paper due to its popularity and its known load cases and
boundary conditions. The given load cases were the following:

• Load case 1 (LC1): a vertical static linear load of 35,586 N;
• Load case 2 (LC2): a horizontal static linear load of 37,810 N;
• Load case 3 (LC3): a static linear load 42,258 N, 42 degrees from vertical;
• Load case 4 (LC4): a static torsional load of 564,924 Nmm horizontal at the intersection

of the centerline of the pin and the midpoint between the clevis arms.

The bracket was fixed with four bolts, and a 19.05 mm diameter pin was placed
between the clevis. Both the load cases and the boundary conditions are illustrated in
Figure 3.

The applied material was Ti-6Al-4V with 903 MPa yield strength. Its density, Young’s
modulus and, Poisson’s ratio versus temperature are depicted in Figure 4.

The CAD model of the GE bracket was given by General Electric in an IGES file format
and was downloaded from the company’s homepage. This model was used as a reference
model and was imported to ANSYS software for FEA, TO, and numerical validation. The
FEA of the GE bracket was conducted in ANSYS Mechanical. The same software was also
used for both TO and LO. According to the challenge, the intended production method was
additive manufacturing (AM). Thus, the optimized designs were not redesigned but instead
were prepared for 3D printing in ANSYS SpaceClaim. In addition, ANSYS SpaceClaim was
used for the creation of the uniform mesoscale structure. Finally, the numerical validation
studies were implemented in ANSYS Mechanical, where only the designs with an FOS > 1
(Factor of Safety) against yield were accepted. The used finite elements in all simulations
were 3 mm tetrahedrons. The chosen size of the elements was decided after a convergence
study conducted in ANSYS Mechanical.
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Figure 3. The 3D model of the GE bracket, the used load cases, and the boundary conditions: (a) LC1, (b) LC2, (c) LC3,
(d) LC4, and (e) the boundary conditions.

Figure 4. Properties of the Ti-6Al-4V: (a) density, (b) Young’s modulus, and (c) Poisson’s ratio.

3.1. Optimization of the Macroscale

The macroscale structure of the GE bracket was optimized using TO. The applied
method was SIMP with compliance and minimization of mass as objective function and
response constraint, respectively. Firstly, the GE bracket was topologically optimized for
each of the four load cases separately and then for all of them together. The authors’
intention was two-fold. On the one hand, we wanted to show the sensitivity of the TO-
results to the load changes. On the other hand, we wanted to manually identify the worst
load case, which in this case study was LC4. An implementation of a p-norm or related
soft-max function could automatically identify the worst-case scenario via the calculation
of maximum displacement due to random combinations of the given load cases. The best
design solutions in terms of weight were identified and further tested for their strength in
validation studies.

3.2. Combining the Macro- and Mesoscale Optimization

At this point, a lattice infill was added inside the structure. The applied cell structure
was a 12 mm cubic cell oriented in the z direction. Designs with either uniform or variable-
density lattice infill were used. The LO method presented in Section 2 was used for
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the optimization of the mesoscale structure. Five different optimization workflows were
conducted for a 50% weight reduction. The load cases were gradually added to the
TO of the bracket. The authors intended to compare the derived design solutions by
different optimization combinations at the same weight, as well as observe the change in
the designs by adding load cases. The used optimization methods in this research paper
were the following:

1. Lattice: Initial layout with uniform lattice infill;
2. LO: Topology optimization of the mesoscale with variable-density lattice infill;
3. TO: Topology optimization of the macroscale;
4. TO_Lattice: Topology optimization of the macroscale and uniform lattice infill;
5. TO_LO: Topology optimization of the macroscale and topology optimization of the

mesoscale with variable-density lattice structure.

On the one hand, a multibody part was created based on the original IGES file of the
GE bracket for the Lattice and the TO_Lattice methods. This part consisted of the main
body, the bolt areas, and the clevis arms. Bonded contacts were applied between the bodies.
Both the lattice infill and the TO density were limited to the main body, while the bolt areas
and the clevis arms were used for the application of the boundary conditions and the load
cases, respectively. Hence, in the Lattice method, the clevis arms and bolt areas were 100%
solid, while in the TO_Lattice, they were used as ‘frozen area’ for the TO. On the other
hand, for the remaining three methods, LO, TO, and TO_LO, a similar multibody part was
used, but in this case, pin areas were created instead of the whole clevis arms. The two
different multibody parts are shown in Figure 5.

Figure 5. The multibody parts used both for the FEA, the optimizations, and the validation studies:
(a) multibody part for the Lattice and TO_Lattice, and (b) multibody part for the LO, TO, and TO_LO.

3.3. In the Pursuit of the Best Design Solution in Terms of Weight

The same optimization methodologies were implemented in the identification of the
lightest design solutions with FOS>1. However, a preliminary research of the cell type and
orientation was conducted. Three different lattice cells were checked with the same criteria
in the x, y, and z orientation. These were the cubic, the octahedral, and the octet. A 6 mm
internal thickness was used for the bracket. In addition, the applied strut thickness in each
cell was 4 mm, while the cell size was chosen in a way that all three infills could result
in a 50% weight reduction. Hence, 12, 16, and 24 mm cell sizes were used in the cubic,
octahedral, and octet cells, respectively. The lattice cell, as well as its orientation with the
best FOS, was used in the Lattice, LO, and TO_Lattice, and TO_LO methods. The lightest
design was identified among the five implemented methods for the load cases applied
simultaneously. The results for FEA, optimizations, and validation studies are presented in
the next section.
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4. Results

As described in the methodology, a TO of the bracket’s macroscale structure was
conducted in the first step for independent and combined load cases. The design solutions
were compared for maximum weight reduction. In the second step, multiscale optimiza-
tions, combining macro and/or mesoscale optimization, were carried out using the Lattice,
LO, TO, TO_Lattice, and TO_LO methods for 50% weight reduction and gradually added
load cases. A research study of the cubic cell type (cubic, octahedral, and octet) and cell
orientation was conducted in the third step. Finally, the identified cell type, including
its orientation with the best solution, was adapted to the optimization methods for the
creation of the lightest design solutions.

4.1. FEA of the GE Bracket

The FEA of the GE bracket was conducted before the optimization of the design. The
maximum von Mises stress as well as the FOS against yield were determined in each load
case and in the case of the combined load cases (LC1234). The results are shown in Figure 6.
The horizontal static linear load (LC2) and the static torsional load (LC4) resulted in the
lowest (1.46) and the highest (2.77) FOS, respectively. The FOS of the combined load cases
was 2.71, which is close to the result of the LC4. It seems that the load path created by
the static torsional load dominates the load paths by created the other three load cases. In
addition, all the results of the FOS were higher than one, showing that there was place
for optimization.

Figure 6. The FEA of the original design in each load case and at all load cases: (a) LC1, (b) LC2, (c) LC3, (d) LC4, and
(e) LC1234.

The maximum von Mises stress, the minimum FOS against yield, and the simulation
time of the FEA of the GE bracket are summarized in Table 1.

4.2. Exploring the Different Load Cases

The design solutions from the TO of the GE bracket’s macroscale structure in each of
the LC and in all of them combined are shown in Figure 7. In addition, Table 2 presents the
results of the weight, maximum von Mises stress, FOS against yield, and simulation time
in each case.



Designs 2021, 5, 77 9 of 15

Table 1. The FEA results of the GE bracket.

Load Case Max Von Mises Stress (MPa) Min FOS Time (sec)

LC1 590 1.53 14

LC2 618 1.46 14

LC2 568 1.59 14

LC4 326 2.77 13

LC1234 333 2.71 83

Figure 7. The best T -solutions in each load case and at all load cases: (a) LC1, (b) LC2, (c) LC3, (d) LC4, and (e) LC1234.

Table 2. The results of the validation studies of the TO of the macroscale structure.

Load Case Weight (g) Weight Reduction (%) Max Von Mises Stress (MPa) Min FOS Time (sec)

LC1 638 68.7 822 1.1 348

LC2 674 67.0 760 1.19 378

LC2 543 73.4 869 1.04 566

LC4 475 76.7 472 1.92 1332

LC1234 492 75.9 624 1.45 1935

As it is observed in Figure 7, each load case led to a completely different design
solution. The initial weight of the GE bracket was 2.033 Kg. The best solution in terms of
weight was achieved in the LC4 with a 76.7% weight reduction (475 g). The optimized
design for all load cases (LC1234) gave a solution with a slightly higher weight (492 g).
Furthermore, the design solutions presented in Figure 7 show the sensitivity of the TO.
An eventual change either in the load cases or the boundary conditions could lead to a
completely different design.

4.3. Identification of the Best Optimization Method

The next step was the optimization of the GE bracket with the implementation of the
five optimization methods presented thoroughly in Section 3: (1) Lattice, (2) LO, (3) TO,
(4) TO_Lattice, and (5) TO_LO. The optimization goal in all methods was the reduction
of the bracket’s weight by 50%. The GE bracket was optimized, while the four LCs were
gradually added in each optimization method. Thus, 20 simulations were conducted at
this point. Figure 8 depicts the derived design solutions in the case where all the LCs were
applied. Table 3 presents the results of the minimum FOS against yield from the validation
studies in each case.

The Lattice method with the use of uniform lattice infill resulted in the lowest FOS
among all the optimization methods. Both LO and TO with the optimization of the
mesoscale with variable-density lattice infill and the optimization of the macroscale, respec-
tively, had similar results. The fourth method (TO_Lattice) with the optimization of the
macroscale and the uniform lattice infill outperformed the previous methods. Finally, the
TO_LO with both the optimization of the macro- and mesoscale resulted in stiffer solutions
in each case. It seems that the use and the optimization of the infill in the topologically
optimized layout of the bracket strengthen its structure.
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Figure 8. The design solutions in the five different methods for a 50% weight reduction in all LCs: (a) Lattice, (b) LO, (c) TO,
(d) TO_Lattice, and (e) TO_LO.

Table 3. The FOS results of the validation studies of macroscale and mesoscale TO.

Load Case
Method

Lattice LO TO TO_Lattice TO_LO

LC1 1.01 1.15 1.29 1.42 1.57

LC12 1.27 1.29 1.3 1.4 1.58

LC123 1.17 1.47 1.48 1.75 1.84

LC1234 2.06 2.13 2.15 2.33 2.84

4.4. A Preliminary Research of the Cell Type and Orientation

The results of the preliminary research for the cell type and orientation of the bracket’s
infill are presented in this section.

4.4.1. Cell Type

The first step in this preliminary research was the optimization of the GE bracket using
three different cell types: 12 mm cubic, 16 mm octahedral, and 24 mm octet for its uniform
lattice infill. The Lattice method was also conducted here with a 50% weight reduction. A
section view of each design is depicted in Figure 9.

Figure 9. Three different cells in the z orientation: (a) cubic, (b) octahedral, and (c) octet.

4.4.2. Cell Orientation

In addition, the orientation of the bracket was changed from z to both x and y, resulting
in the different orientations of the lattices. Hence, nine optimizations were carried out in
total. The octet infill in the z orientation gave the highest FOS (2.54). Figure 10 shows the
uniform octet infill of the bracket in the three orientations. In addition, Table 4 presents the
results of the validation studies.

4.5. The Best Design Solutions in Terms of Weight

The identified cell type and its orientation from the previous section (24 mm octet
with z orientation) was used for the infill in the Lattice, LO, TO_Lattice, and TO_LO
optimization methods. Figures 11 and 12 show the best design solutions and their FOS
plots, respectively, in each method.
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Figure 10. Three different orientations of the octet cell: (a) x orientation, (b) y orientation, and (c) z orientation.

Table 4. The results of the validation studies of the different cell types and their orientation.

FOS

Orientation/Cell Type Cubic (12 mm) Octahedral (16 mm) Octet (24 mm)

x 2.06 2.40 2.45

y 2.06 2.36 2.39

z 2.06 2.43 2.54

Figure 11. The best design solutions in the different optimization methods: (a) Lattice, (b) LO, (c) TO, (d) TO_Lattice, and
(e) TO_LO.

Figure 12. The FOS in the five different optimization methods: (a) Lattice, (b) LO, (c) TO, (d) TO_Lattice, and (e) TO_LO.

The analytical results of the simulations are presented in Table 5. Both TO_Lattice and
TO_LO gave design solutions that were lighter than the winner of the challenge in 2013
(327 g). The TO_LO gave the best solution with only 290 g, which corresponds to an 85.8%
reduction of the initial weight of the GE bracket. It seems that both the use of uniform
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lattice structure and the optimization of it with LO could give better design solutions.
However, the TO gave the quickest optimized design with a 1.04 g/sec weight reduction
ratio. Hence, when the optimization goal is the biggest weight reduction, both TO_Lattice
and TO_LO are suggested, with the former resulting in a quicker design solution. On the
other hand, the TO is the best option when a designer wants to find a quick solution with
sufficient weight reduction and high strength (FOS = 1.45 in our case).

Table 5. The results of the validation studies of the five optimization methods.

Method Weight (g) Weight
Reduction (%)

Max Von Mises
Stress (MPa) Min FOS Time (sec) Weight Reduction

Ratio (g/sec)

Lattice 589 71.1 822 1.07 2015 0.68

LO 535 73.8 760 1.06 2998 0.49

TO 492 75.9 869 1.45 1935 1.04

TO_Lattice 314 84.6 472 1.01 2037 0.81

TO_LO 290 85.8 624 1.02 4646 0.37

5. A Comparison of the Optimization Methods

Five optimization methods were implemented for the optimization of the GE bracket:
(1) Lattice, (2) LO, (3) TO, (4) TO_Lattice, and (5) TO_LO. From these methods, the Lattice
and the TO_Lattice with the uniform lattice structure were applied to a multibody bracket
where the clevis arms were excluded from the optimization. On the other hand, a pin
area was excluded, instead of the clevis arms, from the optimization of the other three
methods. In addition, bolt areas were used in both cases for the boundary conditions.
The difference in these two multibody parts also shows the difference between these two
groups of methods. Using either the TO, the LO, or the combination of them, TO_LO, a
designer can identify the load paths and the critical areas in the structure, wherein the
GE bracket is the clevis arms. From the derived designs of these methods, as depicted in
Figure 11, we can see that the main part of the clevis arms’ material was not removed in
the TO. Furthermore, the infill in this area was almost solid at the LO and TO_LO. The
optimization algorithm could identify the crucial areas automatically, while in the Lattice
and TO_Lattice method, the designer had to preserve the vulnerable areas of the structure
based on the load paths identified by the TO.

The Lattice method gave designs with the lowest FOS against yield both in the
independent and in the combined load cases. In addition, its best-identified solution had
the worst weight reduction among the other methods. However, the size of the used octet
cell for the lattice infill was big (24 mm) for computation time reasons. It is expected that a
smaller cell size could give better solutions. However, it is not clear if homogenization can
be used to investigate the effect of varying cell size since it assumes an infinitely small cell
size. Thus, higher-order methods are required to confront this ‘scale effect’ [33]. Additional
research is recommended regarding the choice of the ideal cell type, as well as its properties
such as size and strut diameter. The design of the uniform lattice structure can be conducted
either in CAD software where the validation of the design is also possible or using the
infill properties of slicer software during the 3D printing preparation of the design. The
removal of the remaining powder of the 3D material has to be taken into account in the
case of selective laser sintering (SLS) as a 3D printing method. For this reason, the front
and the bottom of the solid wall of the bracket were removed.

The LO could give better design solutions than the Lattice both in terms of FOS and
weight reduction. The optimization of the mesoscale with variable-density lattice infill
placed the cells with the higher density in the critical areas and the cells with the smaller
densities in the less crucial areas. This arrangement of the cells resulted in a stronger infill
structure compared to the uniform infill. An advantage of both the Lattice and LO methods
was that the outer geometry of the bracket was preserved with their optimized solutions.



Designs 2021, 5, 77 13 of 15

From the exploration of the different load cases using TO, it was shown that the
topologically optimized results are vulnerable to the designer’s choices. A small change
to load cases, boundary conditions, and preserved areas could give different designs.
However, a rough TO is suggested at the beginning of the optimization process both for
the identification of the load paths and design inspiration. In addition, the TO was the
quickest among the other optimization methods, making it the ideal option when a rapid
solution is demanded.

The combination of the TO with the uniform lattice infill, TO_Lattice, could further
reduce the weight of the bracket without compromising its strength. The creation of the
infill structure can be also conducted here either in CAD software for validation or directly
in the slicer software. This method utilizes the ideal identified layout of the structure as a
base for the application of the lattice infill. On the other hand, when variable-density lattice
infill is used instead of uniform, the optimization could lead to even lighter designs. Both of
these methods led to lighter design solutions compared to the winner of the challenge. The
TO_LO method resulted in a design that was 7.6% lighter than the design of the TO_Lattice.
However, the optimization time of the latter was only a little bit higher compared to the
TO, but half that of the TO_LO. Thus, the TO_Lattice method gave the best results in terms
of optimization time and weight. The TO_LO is recommended when the main goal of the
optimization is weight reduction and in the cases where every gram counts. Finally, the
removal of any solid side of the bracket was not possible in these two methods, making
SLS 3D printing inappropriate for these designs. Thus, fused deposition modeling (FDM)
could be used as an alternative 3D printing method (Figure 11d,e)). However, the diameter
of the cells’ struts should be designed to be not smaller than the recommended minimum
thickness of the 3D printer.

6. Conclusions

In this paper, the benefits of the existence and optimization of the mesoscale structure
were researched. For this reason, a jet engine bracket from General Electric (GE bracket)
was optimized for its weight using five optimization methods: (1) Lattice, (2) LO, (3) TO,
(4) TO_Lattice, and (5) TO_LO. The bracket was optimized either for its macroscale (TO)
or its mesoscale (LO) structure, or for both of them (TO_LO). The results showed that
when the optimization of the macroscale structure is combined with the use of uniform or
variable-density lattice infill, it could lead to interesting lightweight solutions. The lightest
identified design weighed 290 g, 85.8% less than the initial design. In addition, this design
was 11.3% lighter than the winner of the design challenge in 2013. The proposed design
was topologically optimized, and then its layout was used as a design space for a variable-
density lattice infill consisting of 24 mm octet cells. Furthermore, the TO is suggested for
rapid optimization of structures, while the TO_Lattice and TO_LO are recommended for
the highest weight reduction based on the practical insights of this research work.

7. Future Research

The integration of microscale optimization in the presented optimization methodolo-
gies, the adaption of multiple lattice cells in the lattice infill [34], or further exploration
of other lattice cells and triply periodic minimal surfaces (TPMS) are interesting topics
for further research that could possibly improve the identified designs in this paper. In
addition, the smoothness of the topological boundaries could be further improved using
new element-based algorithms, such as the SEMDOT and FPTO. Finally, a commercial
optimization platform that can conduct simultaneous multiscale optimization of structures
could be a useful tool for CAD designers looking for new lightweight structures.
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