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Abstract: This paper presents a design synthesis method for robust controllers of active vehicle
suspensions (AVSs). Various control techniques have been applied to the design of AVSs for enhancing
ride comfort and handling performance of ground vehicles. However, most of these model-based
controller designs show poor robustness when the vehicle models are not accurate and operating
conditions vary. To address the poor robustness problem of AVSs, a new controller is designed using
the H∞ loop-shaping control technique. The controller targets robustness issues on vehicle models
with parametric uncertainties and unmodelled dynamics. To facilitate the robust controller design, a
design synthesis method is proposed: the H∞ loop-shaping controller design is formulated as a multi-
objective optimization problem, the weighting functions’ parameters of the controller are treated
as design variables, the expensive computing loads are handled by a parallel computing technique,
and the solution of the optimization problem is the desired robust AVS controller. Simulation results
demonstrate the benefits of the proposed AVS design.

Keywords: design synthesis method; active vehicle suspensions; robust controllers; H∞ loop-shaping
controller; design optimization; parallel computing

1. Introduction

With given elastic and damping features, passive vehicle suspensions show poor
ride quality when traveling in severe operating conditions, e.g., low frequency bumps, pit
holes, and high frequency road irregularities [1]. In contrast, active vehicle suspensions
(AVSs) adjust these properties to external disturbances in a broadband frequency range for
improving ride comfort and handling performance [2]. Semi-active suspensions provide a
compromised solution between passive and active suspensions in terms of performance
and cost (i.e., energy consumption) [3,4].

The linear quadratic Gaussian (LQG) and linear quadratic regular (LQR) techniques
have been used in the design of AVSs [5–8]. In these LQG/LQR-based AVS designs, forward
speed, payload, center of gravity (CG) position, and other system parameters are generally
assumed as constants. It is demonstrated that these LQG/LQR-based controllers exhibit
poor robustness to operating condition variations, parametric uncertainties, unmodelled
dynamics, and external disturbances [9,10].

To address the poor robustness of these LQG/LQR-based controllers, robust control
techniques, e.g., H∞ [11] and sliding-mode control [12–15], have been applied to the design
of active vehicle safety systems. Robustness is a fundamental requirement for a controller
design due to the differences between the dynamic model utilized for devising the controller
and the actual physical system [16]. Attempts have been made to compare the robust
control characteristics of H∞/µ-synthesis control and sliding-mode control for different
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active vehicle safety systems [17,18]. The H∞ control technique has been successfully used
for addressing robustness problems on models with external disturbances and parametric
uncertainties [19–21].

However, due to the complex conflicting suspension design requirements on ride
quality, suspension working space, and dynamic tire loading [22], the H∞-based AVS
controllers reported in the literature have not adequately addressed the trade-off design
problem [23]. Moreover, one of the challenges in the H∞ controller design is parameters’
tuning for weighting functions [16]. The weighting functions pose significant impacts on
the performance and robustness of the respective H∞ controller design. Conventionally,
the parameters of weighting functions are tuned by the trial and error approach [24]. This
parameter tuning process is time-consuming and tedious.

To tackle the aforementioned problems associated with the H∞-based AVS controller
designs, this paper proposes a design synthesis method for the H∞ controller of AVSs. A
robust H∞ loop-shaping controller (LSC) is designed for an AVS of a vehicle represented
by a quarter-car model. In the controller design, vehicle parametric uncertainties are con-
sidered. The frequency weighting functions are specified by selecting optimal values for
the parameters through solving a multi-objective optimization problem with the expensive
computation loads handled by a parallel computing technique provided in Matlab. Nu-
merical simulation is performed to demonstrate the effectiveness of the proposed design
synthesis method.

The remainder of the paper is organized as follows. Section 2 introduces the vehicle
model. Section 3 formulates the H∞ controller design problem. The proposed design
synthesis method is described in Section 4. Section 5 presents selected simulation results.
Conclusions are drawn in Section 6.

2. Vehicle Model

To investigate the ride comfort of road vehicles, various dynamic models have been
generated and used. In particular, to study the ride comfort and handling characteristics
of a passenger car, a 7 degrees of freedom (DOF) ‘full-car’ model was proposed [4,25].
In this model, the bounce, roll, and pitch of the vehicle body, as well as the bounce of
the four wheels are considered. Assuming that the car travels on a good road and the
difference between right and left wheel track undulations can be ignored, we may neglect
the roll motion of the vehicle body, and the 7-DOF model may be reduced to a 4-DOF
‘half-car’ model [25]. In the 4-DOF model, the bounce and pitch of the vehicle body, as well
as the bounce of the front and rear wheels are taken into consideration. For the half-car
model, it is assumed that the sprung mass, i.e., the mass of the vehicle body, is distributed
at three points, that is, the point of attachment of front suspension to the vehicle body,
the CG, and the point of attachment of rear suspension to the vehicle body. Considering
the fact that for conventional passenger cars, the sprung mass distribution coefficient is
within the range of 0.9 to 1.0 [26], the concentrated mass at the CG of the half-car model is
approximately zero, and the motions of the front and rear suspensions of the half-car model
are uncoupled. Thus, the 4-DOF half-car model can be further simplified and reduced to
a 2-DOF ‘quarter-car’ model, which considers the bounce of the sprung and unsprung
mass [15]. Note that the sprung mass distribution coefficient is defined as ε = ρ2

y/ab, where
ρy denotes the radius of gyration of the half-car sprung mass with respect to the lateral axis
(i.e., y axis) of the body fixed coordinate system, a the distance between the CG to the front
axle, and b the distance between the CG to the rear axle.

A road vehicle represents a sophisticated vibration system with many degrees of
freedom. In general, the vehicle model fidelity increases with the degrees of freedom of
the model. However, the analysis burden becomes increasingly heavy while increasing the
degrees of freedom. It is rational to simplify the complex vibration system by considering
only its major motions. To gain a qualitative insight into the functions of the suspension
and, in particular, the effects of the sprung and unsprung mass, spring stiffness, and
damping on vehicle vibrations, a linear 2-DOF quarter-car model may be used [26]. With
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the aforementioned considerations, this study selects the linear 2-DOF quarter-car model
to explore the robust controllers for AVSs.

Figure 1 illustrates the linear 2-DOF quarter-car model with an unsprung mass mu,
sprung mass ms, tire spring stiffness kt, and a suspension with a linear spring with stiffness
ks, as well as a linear damper with damping coefficient cs [8]. As shown in the figure,
d1 denotes the external disturbance due to the road roughness, fs the actuator force, x1
the sprung mass vertical displacement,

..
x1 the sprung mass vertical acceleration, x3 the

unsprung mass vertical displacement, and x1− x3 the suspension dynamic deflection. With
the assumption of

.
x1 = x2 and

.
x3 = x4, the governing equations of motion of the 2-DOF

vehicle model can be expressed in the state-space form as:

.
x = Ax + B2u, (1a)

y = C2x + D22u (1b)

where the state, control, and output variable vector are defined as x =
[

x1 x2 x3 x4
]T ,

u =
[

d1 fs
]T , and y =

[
x1

..
x1 x1 − x3 fs

]T , respectively, matrices A, B2, C2
and D22 are provided in Appendix A.
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Figure 1. Schematic representation of the 2-DOF quarter-car model.

Considering parametric uncertainties, the system parameters cs, ks, kt, ms, and mu can
be modeled as a combination of the respective nominal value and a corresponding possible
relative perturbation as:

cs = cs(1 + pcsδcs), (2a)

ks = ks(1 + pksδks), (2b)

kt = kt(1 + pktδkt), (2c)

ms = ms(1 + pmsδms), (2d)

mu = mu(1 + pmuδmu), (2e)

where cs, ks, kt, ms, and mu are the nominal values of the system parameters cs, ks, kt,
ms, and mu, respectively, similarly pcs, pks, pkt, pms, and pmu the respectively possible
relative variations, and δks, δks, δkt, δms and δmu variable coefficients, which are bounded
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as −1 ≤ δij ≤ 1. The system parameters with uncertainties can be represented as up-
per linear fractional transformations (LFTs) [16] as Fu(Mcs, δcs), Fu(Mks, δks), Fu(Mkt, δkt),
Fu(Mms, δms), and Fu(Mmu, δmu) with:

Mcs =

[
0 cs

pcs cs

]
, (3a)

Mks =

[
0 ks

pks ks

]
, (3b)

Mkt =

[
0 kt

pkt kt

]
, (3c)

Mms =

[
−pms

1
ms

−pms
1

ms

]
, (3d)

Mms =

[
−pmu

1
mu

−pmu
1

mu

]
. (3e)

Figure 2 illustrates the block diagram to represent the 2-DOF vehicle model with
system parameters featured with uncertainties defined by Equations (2a–e) and (3a–e).
With the above-defined system parameters with uncertainties, Equation (1a,b), which
represents the dynamics of the 2-DOF vehicle model shown in Figure 1, can be rewritten as: .

x
yun
y

 =

 A B1 B2
C1 D11 D12
C2 D21 D22

 x
Pert

u

, (4a)

Pert = ∆yun, (4b)

where matrix ∆, vector yun, and Pert are defined as follows:

∆ = diag
[

δcs δks δkt δms δmu
]
, (5a)

yun =
[

ycs yks ykt yms ymu
]T , (5b)

Pert =
[

ucs uks ukt ums umu
]T , (5c)

and matrices B1, C1, D11, D12, as well as D21 are provided in Appendix A.
Extracting parametric uncertainties, Equation (3a–e) can be described in an LFT form

as illustrated in Figure 3, in which G and Gd denote the transfer function of control input
and road disturbance, respectively, and ∆ is the diagonal parametric uncertainty matrix
with singular values equal or less than unity.



Designs 2022, 6, 14 5 of 17Designs 2022, 6, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 2. The block diagram of the 2-DOF vehicle model with uncertain system parameters. 

Extracting parametric uncertainties, Equation (3) can be described in an LFT form as 
illustrated in Figure 3, in which 𝑮 and 𝑮  denote the transfer function of control input 
and road disturbance, respectively, and ∆ is the diagonal parametric uncertainty matrix 
with singular values equal or less than unity. 

 
Figure 3. LFT representation of the vehicle model with uncertain system parameters. 

3. Controller Design 
This section first introduces the controller design problem, then formulates the de-

sign problem, and ends with describing the 𝐻  LSC controller. 

3.1. Controller Design Problem 
To design the controller for active suspension using the 𝐻  control technique, the 

vehicle dynamic system is represented as a control structure in the frequency domain as 

𝑴  

𝛿  

𝑴  

𝛿  

𝛿  

𝑴  

𝑴  

𝛿  

int 1 int 2 

int 3 int 4 

𝑦  𝑢𝑚𝑢 𝑦𝑘𝑡 𝑴  

𝑢𝑘𝑡 𝛿  

𝑑  

𝑦  

𝑥  

𝑦  

𝑥  

𝑦  𝑢  

𝑓  

𝑢  𝑦  

𝑢  𝑦  

𝑥  

𝑦  

𝑦  

𝑥  
1 𝑠⁄  

1 𝑠⁄  1 𝑠⁄  

𝑮 𝑮  

∆ 

𝒚 

𝒚  𝒑𝑒𝑟𝑡 
𝑑1 𝑓𝑠 

1 𝑠⁄  

Figure 2. The block diagram of the 2-DOF vehicle model with uncertain system parameters.
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3. Controller Design

This section first introduces the controller design problem, then formulates the design
problem, and ends with describing the H∞ LSC controller.

3.1. Controller Design Problem

To design the controller for active suspension using the H∞ control technique, the
vehicle dynamic system is represented as a control structure in the frequency domain as
shown in Figure 4. As shown in the figure, r(s) represents the reference input, e(s) the
tracking error, u(s) the control input, d(s) the external (e.g., road) disturbance, y(s) the
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output, n(s) the noise of measurement, and K(s) the H∞ LSC controller to be devised. We
define the output y(s), tracking error e(s), and control input u(s) as:

y(s) = T(s)r(s) + S(s)Gd(s)d(s)− T(s)n(s), (6a)

e(s) = S(s)r(s)− S(s)Gd(s)d(s)− S(s)n(s), (6b)

u(s) = S(s)K(s)r(s)− S(s)K(s)Gd(s)d(s)− S(s)K(s)n(s), (6c)

where L(s) = G(s)K(s) denotes the loop transfer function, S(s) = [I + G(s)K(s)]−1 the
sensitivity function, T(s) = [I + G(s)K(s)]−1G(s)K(s) the complementary sensitivity func-
tion [27], which is subjected to the conservation law specified as [28],

I = S(s) + T(s). (7)
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With the consideration of additive modeling errors and removing the road disturbance
for simplicity, we illustrate the control system in the block diagram shown in Figure 5, in
which ∆(s) denotes the modeling uncertainty. The transfer function between the uncertain
input and output can be expressed as:

w(s) = −T(s)ν(s). (8)
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uncertainty.

In a controller design, the following performance criteria are usually considered [8,9,14]:
command following (CF), disturbance rejection (DR), measurement-noise attenuation
(MNA), control sensitivity minimization (CSM), and robustness to modeling errors (RME).
To achieve the objectives, the design principle is followed: (1) effectively manipulating the
controller K(s) to minimize the sensitivity function S(s) for improving CF and DR at low
frequency; and (2) appropriately tuning the complementary function T(s) for enhancing
MNA, CSM and RME at high frequency.

3.2. Design Problem Formulation

The active suspension control design is to search for a solution in terms of the H∞ LSC
controller, which stabilizes the vehicle system in the presence of potential perturbations,
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parametric uncertainties, and unmodeled dynamics. To realize the desired stability and de-
sign criteria, the controller is devised by solving two optimization problems in a frequency
range of interest. The design objective is formulated as a cost function:

min
K(jω)

∣∣∣∣∣
∣∣∣∣∣ S(jω)Gd(jω)

T(jω)

∣∣∣∣∣∣∣∣
∞
= min

K(jω)

∣∣∣∣∣
∣∣∣∣∣ [I + G(jω)K(jω)]−1Gd(jω)

[I + G(jω)K(jω)]−1Gd(jω)K(jω)

∣∣∣∣∣
∣∣∣∣∣
∞

. (9)

The first optimization problem is to ensure desired CF and DR, while the second one
intends to guarantee the required MNA, CSM, and RME. Formulation (9) is the so-called S
over T mixed sensitivity optimization [16]. These optimization problems cannot be solved
without considering a frequency range preference due to the conservation law expressed in
Equation (7), that is, minimizing one while maximizing the other. The cure to this dilemma
is the frequency shaping technique, which introduces weighting functions WS(jω) and
WT(jω) as:

min
K(jω)

∣∣∣∣∣
∣∣∣∣∣ WS(jω)S(jω)Gd(jω)

WT(jω)T(jω)

∣∣∣∣∣∣∣∣
∞
= min

K(jω)

∣∣∣∣∣
∣∣∣∣∣ WS(jω)[I + G(jω)K(jω)]−1Gd(jω)

WT(jω)[I + G(jω)K(jω)]−1Gd(jω)K(jω)

∣∣∣∣∣
∣∣∣∣∣
∞

. (10)

The weighting functions, WS(jω) and WT(jω), are introduced so that they have sim-
ilar shapes of frequency response features, and can thus be minimized simultaneously.
These weighting functions are chosen from the proper, minimum phase transfer functions
of the low- or high-pass filters, depending on the application purpose [29]. A high-pass
weighting function WT(jω) is used to shrink the space of T(jω) at high frequency, while a
low-pass weighting function WS(jω) is utilized to squeeze the space of S(jω) at low fre-
quency. The resulting active suspension systems and the respective LFT form are illustrated
in Figure 6a,b, accordingly. In Figure 6b, P(s) represents the vehicle suspension model,
which consists of G(s), Gd(s), parametric uncertainties, as well as the respective weighting
functions, exogenous inputs, and exogenous outputs. The active suspension system trans-
fer function matrix, its state-space representation, input, and output interrelationship are
expressed as:

P(s) =

 0 0 wact(s)
Wp(s)Gd(s)Wre f (s) 0 Wp(s)G(s)

Gd(s)Wre f (s) Wn(s) G(s)

 def
=

 Aw B1w B2w
C1w D11w D12w
C2w D21w D22w

, (11a)

e = Fl [P(s), K(s)]d, (11b)

where Wp(s), Wre f (s), Wn(s) and wact(s) are the weighting matrix of the system output vec-

tor
[

x1
..
x1 x1 − x3

]T , weighting function of road disturbance d1, weighting function of
measurement noise d2, and weighting function of suspension actuator force fs, respectively,
Aw, B1w, B2w, C1w, C2w, D11w, D12w, D21w, and D22w denote the weighting matrices of the
matrices A, B1, B2, C1, C2, D11, D12, D21, and D22 in Equation (4a), d =

[
d1 d2

]T , and

e =
[

e1 e2 e3 e4
]T , denoting the tracking errors of the four state variables, and

Fl [P(s), K(s)] is the lower linear fractional transformation of P and K [16].

3.3. H∞ Loop-Shaping Controller

An H∞ loop-shaping controller is devised for the weighted active suspension system
by solving an optimization problem. For the H∞ LSC optimization designs, the small-gain
theorem provides a sufficient and necessary condition [16], which can be expressed as:

||Fl [P(s), K(s)]d||∞ < 1, (12)

which implies:
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1. Nominal stability and performance. The H∞ LSC controller ensures that the closed-
loop system is internally stable, and the desired closed-loop responses are achieved
for the nominal vehicle suspension model.

2. Robust stability and performance. The H∞ LSC controller guarantees that the closed-
loop system is internally stable, and the desired closed-loop responses are obtained
for all possible vehicle suspension models with parametric uncertainties.
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Figure 6. (a) Control structure of the weighted active suspension system, (b) LFT representation of
the weighted active suspension system.

While satisfying the condition specified by (12), there exist three algorithms for solving
the optimization problem defined in (10). The solutions are three designs: (1) an H∞ subop-
timal controller, (2) an H∞ LSC controller, and (3) an µ analysis and synthesis controller [16].
In this study, an H∞ LSC controller is devised.

The design of the H∞ LSC controller follows a two-step procedure. First, the vehi-
cle suspension system is pre- and post-compensated to shape the open-loop frequency
response [29]. Second, the shaped vehicle suspension system is stabilized with a controller
as illustrated in Figure 7a. For simplicity, several weighting functions are removed.

Designs 2022, 6, x FOR PEER REVIEW 8 of 17 
 

 

 
(a) (b) 

Figure 6. (a) Control structure of the weighted active suspension system, (b) LFT representation of 
the weighted active suspension system. 

3.3.𝐻  Loop-Shaping Controller 
An 𝐻  loop-shaping controller is devised for the weighted active suspension system 

by solving an optimization problem. For the 𝐻  LSC optimization designs, the small-
gain theorem provides a sufficient and necessary condition [16], which can be expressed 
as: ‖𝐹 𝑷(𝑠),𝑲(𝑠) 𝒅‖ 1, (12) 

which implies: 
1. Nominal stability and performance. The 𝐻  LSC controller ensures that the closed-

loop system is internally stable, and the desired closed-loop responses are achieved 
for the nominal vehicle suspension model. 

2. Robust stability and performance. The 𝐻  LSC controller guarantees that the closed-
loop system is internally stable, and the desired closed-loop responses are obtained 
for all possible vehicle suspension models with parametric uncertainties. 
While satisfying the condition specified by (12), there exist three algorithms for solv-

ing the optimization problem defined in (10). The solutions are three designs: (1) an 𝐻  
suboptimal controller, (2) an 𝐻  LSC controller, and (3) an 𝜇 analysis and synthesis con-
troller [16]. In this study, an 𝐻  LSC controller is devised. 

The design of the 𝐻  LSC controller follows a two-step procedure. First, the vehicle 
suspension system is pre- and post-compensated to shape the open-loop frequency re-
sponse [29]. Second, the shaped vehicle suspension system is stabilized with a controller 
as illustrated in Figure 7a. For simplicity, several weighting functions are removed. 

 
(a) (b) 

Figure 7. (a) Configuration of the shaped active vehicle suspension system with stabilizing control-
ler, and (b) robust stabilization of the left coprime factorized shaped vehicle suspension model. 

+ + + + 

𝒅 𝑑  

𝑑  𝑦  

𝑓  𝑒  𝑦 
𝑮  𝑾  𝐾 

𝑟 𝑮 − 𝑾  𝑛 𝑾  𝑒  

𝑦  𝑓  

𝒅 𝒆 

𝑲(𝑠) 

𝑷(𝑠) 

𝒅 𝑮 (𝑠) 

+ + 

𝑮 (𝑠) 

𝑲(𝑠) 

𝑾1(𝑠) 𝑾2(𝑠) 𝑮(𝑠) + + + + 

+ − 
𝒅 

𝒚 𝒖 

∅ 

𝑲(𝑠) 

𝑮𝑑(𝑠) ∆𝑴 ∆𝑵 

𝑴 𝑵 

Figure 7. (a) Configuration of the shaped active vehicle suspension system with stabilizing controller,
and (b) robust stabilization of the left coprime factorized shaped vehicle suspension model.

Given the state-space equation defined in Equation (1a,b) for representing the vehicle
system, transfer function matrix G(s) can be derived using Laplace transform with the
assumption of zero initial condition of the state variables. Similarly, for the resulting pre-
and post-weighted transfer function matrix Gs(s), the open-loop transfer function and the
respective state-space model of the shaped vehicle suspension model can be cast as:

Gs(s) = W1(s)G(s)W2(s) = Ds + Cs(sI−As)
−1Bs

def
=

[
As Bs
Cs Ds

]
, (13)
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where matrices As, Bs, Cs, and Ds are the counterparts of A, B2, C2, and D22 in Equation (1a,b),
W1(s) and W2(s) denote the weighting functions for pre- and post-compensating the sus-
pension system to shape the open-loop response, respectively.

To constitute a left coprime factorization of the shaped vehicle suspension model [16],
it is assumed that the weighted transfer function matrix Gs(s) can be expressed as:

Gs(s) = M−1(s)N(s). (14)

For Gs(s), the normalized left coprime factorization can be derived by solving the
filter algebraic Riccati equation:(

As − BsDT
s R−1Cs

)
Zs + Zs

(
As − BsDT

s R−1Cs

)T
− ZsCT

s R−1CsZs + Bs

(
I−DT

s R−1Ds

)
BT

s = 0, (15)

where the solution, i.e., the normalized left coprime factorization is:[
N(s) M(s)

] def
=

[
As + HCs Bs + HDs H

R−1/2Cs R−1/2Ds R−1/2

]
, (16)

with H = −
(

ZsCT
s + BsDT

s

)
R−1, R def

= I + DsDT
s , and Zs ≥ 0.

The LSC controller is devised as a robust stabilizer with the left coprime factorized
uncertainties and the road disturbance as shown in Figure 7b. Note that considering the
introduced perturbations, i.e., ∆M and ∆N, shown in Figure 7b, the perturbed vehicle
system transfer function can be described by:

Gs∆(s) = (M(s) + ∆M(s))−1(N(s) + ∆N(s)), (17)

where ∆M and ∆N are unknown but stable transfer functions, which denote the uncertainty
in the nominal vehicle system model. The design objective of robust stabilization is to
stabilize not only the nominal vehicle model Gs(s), but also the perturbed model Gs∆(s).

To maximize the robust stability of the closed-loop vehicle system shown in Figure 7b,
we need to minimize:

γ
def
= ||

[
I K

]T
(I−GsK)−1M−1||∞ (18)

The achievable minimum value of γ for all stabilizing controllers K is given by:

γmin =
{

1− λmax

[
ZsXs(I + ZsXs)

−1
]}−1/2

, (19)

where λmax(.) represents the maximum eigenvalue, and Xs is the solution of the algebraic
Riccati equation,(

As − BsS−1DT
s Cs

)T
Xs + Xs

(
As − BsS−1DT

s Cs

)
−XsBsS−1BT

s Xs + CT
s

(
I−DsS−1DT

s

)
Cs = 0, (20)

where S = I + DT
s Ds. Thus, with γ > γmin, an LSC controller K can be found from the

state-space and described by:

Ks
def
=

[
As + BsF + γ2(LT)−1ZsCT

s (Cs + DsF) γ2(LT)−1ZsCT
s

BT
s Xs −DT

s

]
, (21)

where F = −S−1(DT
s Cs + BT

s Xs
)

and L =
(
1− γ2)I + XsZs.

4. Proposed Design Synthesis Method

Figure 8 shows the proposed design synthesis method for robust controllers of active
vehicle suspensions. This is a two-layer design optimization approach. In the design
optimization of the H∞ loop-shaping controller for AVSs, all the parameters for the relevant
weighting functions of the controller are treated as design variables. Initially, n sets of the
design variables are randomly selected in the design space by a genetic algorithm (GA) at
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the top layer [30]. Considering the expensive computational loads due to the application of
the GA, we use the parallel computing technique available in Matlab [31]. The scheduler
parallelly sends each of the n design variable sets to the respective Worker of the parallel
computing system. At the bottom layer, with a given design variable set, such as set i,
the respective Worker i ‘operates’ the virtual vehicle with the H∞ LSC-based AVS under a
specified testing maneuver. After the virtual testing, the required performance measures
denoted by Mi,j (j = 1, 2, . . . , N), which are acquired from the respective numerical sim-
ulation response. After the virtual test for all the Workers from 1 to n, we can achieve a
performance measure matrix Mi,j with the size of n× N. With the performance measure
matrix, the defined constraints and the objective function are evaluated.

Designs 2022, 6, x FOR PEER REVIEW 10 of 17 
 

 

4. Proposed Design Synthesis Method 
Figure 8 shows the proposed design synthesis method for robust controllers of active 

vehicle suspensions. This is a two-layer design optimization approach. In the design op-
timization of the 𝐻  loop-shaping controller for AVSs, all the parameters for the relevant 
weighting functions of the controller are treated as design variables. Initially, n sets of the 
design variables are randomly selected in the design space by a genetic algorithm (GA) at 
the top layer [30]. Considering the expensive computational loads due to the application 
of the GA, we use the parallel computing technique available in Matlab [31]. The sched-
uler parallelly sends each of the n design variable sets to the respective Worker of the 
parallel computing system. At the bottom layer, with a given design variable set, such as 
set i, the respective Worker i ‘operates’ the virtual vehicle with the 𝐻  LSC-based AVS 
under a specified testing maneuver. After the virtual testing, the required performance 
measures denoted by 𝑀 ,  (𝑗 = 1,2, … ,𝑁), which are acquired from the respective numer-
ical simulation response. After the virtual test for all the Workers from 1 to 𝑛, we can 
achieve a performance measure matrix 𝑀 ,  with the size of 𝑛 𝑁. With the performance 
measure matrix, the defined constraints and the objective function are evaluated. 

 
Figure 8. Schematic representation of the proposed design synthesis method for robust controllers 
of active vehicle suspensions. 

Similar to the cost function defined in [8], in this research, we specify the objective 
function at the top layer as: 𝐽 = + + + , (22) 

Optimizer (GA) 

Scheduler  

Worker n 
(parameter set n)  

𝐻∞ Loop-shaping 

control algorithm 
𝐻∞ Loop-shaping 

control algorithm 
𝐻∞ Loop-shaping 

control algorithm 
𝐻∞ Loop-shaping 

control algorithm 

 Measures: 1, 2, …, N  Measures: 1, 2, …, N  Measures: 1, 2, …, N   Measures: 1, 2, …, N  

Solution 
Yes No 

Worker 1 

(parameter set 1) 

Worker 2 

(parameter set 2) 

Worker n-1 

(parameter set n-1) 

Meet convergence criteria?

Figure 8. Schematic representation of the proposed design synthesis method for robust controllers of
active vehicle suspensions.

Similar to the cost function defined in [8], in this research, we specify the objective
function at the top layer as:

J =
σ1 ϕ1

ϕ
p
1

+
σ2 ϕ2

ϕ
p
2

+
σ3 ϕ3

ϕ
p
3

+
σ4 ϕ4

ϕ
p
4

, (22)

where σi, i = 1, 2, 3, 4, are weighting factors, ϕ1, ϕ2, ϕ3, and ϕ4 are the root mean square
(RMS) values of the vertical acceleration of sprung mass, vertical acceleration of unsprung
mass, suspension dynamic deflection, and wheel deflection achieved by the H∞ LSC-
based AVS, while ϕ

p
1 , ϕ

p
2 , ϕ

p
3 , and ϕ

p
4 represent the RMS values of the passive suspension

relative to ϕ1, ϕ2, ϕ3, and ϕ4, respectively. With the objective function defined by (22), the
number (N) of performance measures acquired for each virtual testing during the process
shown in Figure 8 is 4, and we have the performance measure matrix Mi,j with the size
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of n× 4 after the virtual test for all the Workers from 1 to n. Note that the number (n) of
Workers of the design optimization is dependent on the slave notes of the master-slave
computer cluster used for the design optimization [32,33]. In (22), the objective function
is formulated in the form of the so-called scalarization [34,35], which converts a multi-
objective optimization problem into a single objective one. This will significantly facilitate
design optimization. The use of normalization aims at ensuring the same order of digital
value of each performance measure involved in the objective function.

After the objective function evaluations, the performance index vector, i.e.,
[J1, J2, . . . , Jn]

T , is achieved for the n sets of design variables. At this point, if the conver-
gence criteria, e.g., a predefined total generation number, an acceptable error between the
best objective function values of the last two generations, etc., are satisfied, the optimization
process terminates; otherwise, this performance index vector is feedbacked to the GA at
the top layer. Based on the returned performance index values corresponding to the given
sets of design variables, the GA creates the next generation of design variable sets using
genetic operators, such as selection, crossover, and mutation. This process repeats until
the optimal variable set, i.e., the best weighting function parameter set for the H∞ LSC
controller is identified.

5. Results and Discussion

To perform the design optimization of the vehicle suspension system with the H∞
loop-shaping controller, the vehicle model parameters take the nominal values listed in
Table 1. To assess the performance of the AVS designs, the road disturbance is defined by:

d1(t) =

{
0.025[1− cos(8πt)], 0 ≤ t ≤ 0.25

0 otherwise
, (23)

Table 1. The nominal parameter values of the passive vehicle suspension system [36].

ms (kg) mu (kg) ks (N/m) cs (N/m/s) kt (N/m)

299.0 59.0 16,182.0 1000 190,000

Table 2 lists the weighting functions and compensators, which are designed with the
conventional frequency shaping technique [27,28]. These weighting functions are applied to
road disturbance d1, measurement noise d2, control input fs, as well as outputs x1,

..
x1, and

x1 − x2 to reshape the closed- and open-loop frequency characteristics while designing the
H∞ loop-shaping controllers as shown in Figures 6a and 7a, respectively. Table 3 provides
the respective weighting functions derived from the design optimization using the method
shown in Figure 8.

Table 2. Weighting functions devised with conventional frequency shaping technique.

Wref (s) Wn (s) Wact (s) Wx1 (s)
0.0633

0.0798s+1 0.0157 8.658s+77.88
s+140.7

16.35
s2+8.678s+17.91

W ..
x1
(s) Wx1−x2 (s) W1 (s) W2 (s)

2.389
0.4554s+1

10.28
0.0786s+1

2.474e7s+4.768e7
s+3859 1

Table 3. Weighting functions devised by using the proposed design synthesis method.

Wref (s) Wn (s) Wact (s) Wx1 (s)
0.1252

0.5512s+1 0.0196 1.197s+2.138
s+58.47

4.304
s2+6.357s+9.718

W ..
x1
(s) Wx1−x2 (s) W1 (s) W2 (s)

1.328
0.7701s+1

1.474
0.7612s+1

1.6e7s+3.7e7
s+2791 1
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The performance of the H∞ LSC-based AVSs is compared against that of the baseline
design. For the benchmark, three designs are considered: (1) the baseline design, i.e., the
vehicle model shown in Figure 1 without the force actuator fs; (2) the controlled nominal
design, that is, the H∞ LSC-based AVS is designed with the vehicle model parameters
taking the nominal values listed in Table 1 and with the application of weighting functions
listed in Tables 2 and 3 the controlled uncertain design, in which the vehicle system is
modeled with uncertain parameters and the H∞ LSC-based AVS is optimally devised
using the proposed design synthesis method. For simplicity, hereafter the three designs
are denoted by Design 1, 2 and 3. For Design 3, 100 design cases are obtained with
the maximum parametric uncertainty of ±30% for sprung mass ms and the maximum
parametric uncertainty of ±10% for all other vehicle model parameters. The performance
comparison of the three designs is shown in Figure 9.
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Figure 9a,c,e,g show the performance of the three designs in terms of time-history of
sprung mass vertical displacement, sprung mass vertical acceleration, suspension dynamic
deflection, and actuator force, respectively. Since the curves of Design 3 (with 100 design
cases) overlap their counterparts of Design 2 in the aforementioned figures, and it is difficult
to distinguish the curves of Design 3 from the respective curves of Design 2, we replot the
curves of Designs 1 and 2 shown in Figure 9a,c,e,g in Figure 9b,d,f,h, respectively. Moreover,
to facilitate the performance comparison, the curves for the average performance measures
of the 100 cases of Design 3 are used to represent the performance of this design, and the
respective average performance curves are also shown in Figure 9b,d,f,h.

To facilitate quantitative comparison of the performance measures among the three
designs, the maximum performance measure values shown in Figure 9b,d,f,h are listed in
Table 4. Compared with Design 1, Design 2 significantly reduces the maximum sprung
mass travel by 52.34% and marginally decreases the maximum sprung mass vertical accel-
eration by 0.52% at the expense of degrading the maximum suspension dynamic deflection
by 13.16% and consuming the control effort with the maximum peak actuator force of
940.476 N. Moreover, with respect to Design 1, Design 2 responds to the road disturbance
faster in terms of all system outputs. A close observation of the performance difference
between Designs 2 and 3 discloses that, within the given bounded model parameter varia-
tion ranges, the parametric uncertainties pose no significance on the sprung mass travel,
suspension dynamic deflection, and sprung mass acceleration. To quantitatively compare
the performance measures of Design 2 and 3, we assume that the latter is represented by
the average design of the 100 design cases. With respect to Design 2, Design 3 improves
performance by reducing the maximum sprung mass vertical displacement by 3.47%, the
maximum sprung mass vertical acceleration by 12.11%, and the maximum actuator force by
7.59% at the cost of marginally increasing the maximum suspension dynamic deflection by
1.02%. Interestingly, compared with and Design 2, Design 3 improves the performance in
maximum sprung mass travel, maximum sprung mass vertical acceleration, maximum con-
trol effort, and maintaining approximately the same maximum peak value of suspension
deflection. This implies that the optimal design of the H∞ LSC controller with parameter
uncertainty attenuates the level of conflicting performance measures of the AVS with a
H∞ sub-optimal controller reported in [36]. This benefit of the H∞ LSC controller may
be attributed to the application of the proposed design synthesis method for optimally
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tuning the parameters of the weighting functions to compromise the trade-offs among the
conflicting performance measures of AVSs.

Table 4. Comparison of the maximum performance measure values among the three designs.

Performance Measures Design 1 Design 2 Improvement a Design 3 b Improvement c

maximum sprung mass vertical displacement (m) 0.0363 0.0173 52.34% 0.0167 3.47%

maximum sprung mass vertical acceleration
(
ms2) 4.0638 4.0426 0.52% 3.5532 12.11%

maximum suspension dynamic deflection (m) 0.0433 0.0490 −13.16% 0.0495 −1.02%

maximum actuator force (N) 940.476 869.048 7.59%

a Improvement: performance measure improvement of Design 2 with respect to that of Design 1. b Design 3:
the average performance measure of the 100 design cases of Design 3. c Improvement: performance measure
improvement of Design 3 with respect to that of Design 2.

The above observation indicates that, for Design 3 with the given bounded model pa-
rameter variation ranges, parametric uncertainties pose minor impacts on the performance
of the AVS. To further examine this issue, we conduct a parametric sensitivity analysis
for this design. Each time, only one parameter is allowed to be varied and others are
fixed at their nominal values. The selected parameter varies until it approaches a value,
at which the controller loses its stability. This value is denoted as the threshold value of
this parameter, and the variation range constrained by the threshold value is defined as the
threshold uncertainty. Table 5 lists the threshold uncertainties of all the model parameters.

Table 5. The threshold uncertainties of vehicle model parameters (% of nominal values).

ms mu ks cs kt

100.0 25.0 41.0 21.0 39.0

6. Conclusions

This paper proposes a design synthesis method for robust controllers of active vehicle
suspensions (AVSs). This method provides a framework for two-layer design optimization
problems. At the top layer, the specified objective function and constraints are evaluated,
and an evolutionary algorithm, i.e., a genetic algorithm, is introduced to search in the
design space to find optimal design variables for the robust controller. At the bottom
layer, the robust controller and the vehicle model are integrated to form a virtual vehicle
with robust active suspensions. With a design variable set from the top layer, the robust
controller is updated, and a numerical simulation is performed to mimic a testing maneuver
and to extract performance measures from the dynamic responses of the simulation. The
acquired data are feedbacked to the top layer for evaluating the objective function and
constraints. The proposed method is applied to the search of optimal parameters for the
weighting functions of an H∞ loop-shaping controller for a vehicle with AVS. To address
the problem of expensive computational loads of design optimization, a parallel computing
technique is recommended.

The proposed method systematically deals with parametric uncertainties and unmod-
elled dynamics of a vehicle model with AVS. The optimal H∞ loop-shaping controller
designed using the method achieves robust stability and performance with specified pa-
rameter uncertainties. With the given testing condition and the specified vehicle model
parameter variation ranges, compared with the H∞ loop-shaping controller design with the
nominal model parameter values and the weighting functions determined using the con-
ventional technique, the optimal controller design based on the proposed method improves
performance by reducing the maximum sprung mass vertical displacement by 3.47%, the
maximum sprung mass vertical acceleration by 12.11%, and the maximum actuator force
by 7.59% at the cost of marginally increasing the maximum suspension dynamic deflection
by 1.02%. With the resulting robust controller, the stability margin of the active suspension
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system on individual parametric uncertainties can be easily identified. The achieved para-
metric uncertainty thresholds may be used as a guideline for robust controller designs of
active vehicle suspensions. Simulation results indicate that a compromised design solution
can be achieved for the conflicting performance measures of active suspension by optimally
tuning the weighting functions of the H∞ loop-shaping controller. The application of the
proposed method can be extended to the robust controller designs for other active vehicle
safety systems, e.g., active steering and anti-roll systems.

Author Contributions: Conceptualization and methodology, S.Z. and Y.H.; writing—original draft
preparation, S.Z.; supervision, Y.H.; funding acquisition, Y.H. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada, grant number RGPIN/327063-2012.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Y.H. would like to thank the team members of the Multidisciplinary Vehicle
Systems Design Laboratory, University of Ontario Institute of Technology. These team members have
done a preliminary study on the robust controller designs for active vehicle suspensions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Matrices A, B2, C2, and D22 shown in Equation (1a,b) are provided as follows.

A =


0 1 0 0

−ks/ms −cs/ms ks/ms cs/ms
0

ks/mu

0
cs/mu

0
−(ks + kt)/mu

1
−cs/mu

, (A1)

B2 =


0 0
0
0

kt/mu

1/ms
0

−1/mu

, (A2)

C2 =


1 0 0 0

−ks/ms −cs/ms ks/ms cs/ms
1
0

0
0

−1 0
0 0

, (A3)

D22 =


0 0
0 1/ms
0
0

0
1

. (A4)

Matrices B1, C1, D11, D12, and D21 shown in Equation (4a) are provided as follows.

B1=


0 0 0 0 0

−pcs/ms −pks/ms 0 −pms 0
0

pcs/mu

0
pks/mu

0
pkt/mu

0
0

0
−pmu

, (A5)
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C1 =


0 cs 0 −cs
ks 0 −ks 0
0 0 −kt 0

−ks/ms −cs/ms ks/ms cs/ms

ks/mu cs/mu −
(

ks + kt

)
/mu −cs/mu

, (A6)

D11 =


0 0 0 0 0
0 0 0 0 0
0

−pcs/ms
pcs/mu

0
−pks/ms
pks/mu

0
0

pkt/mu

0
−pms

0

0
0
−pmu

, (A7)

D12 =


0 0
0 0
kt
0

kt/mu

0
1/ms
−1/mu

, (A8)

D21 =


0 0 0 0 0

−pcs/ms −pks/ms 0 −pms 0
0
0

0
0

0
0

0
0

0
0

, (A9)
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