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Abstract: The range of applications of RPAs in various industries indicates that their increased
usage could reduce operational costs and time. Remotely piloted aircraft systems (RPASs) can be
deployed quickly and effectively in numerous distribution systems and even during a crisis by
eliminating existing problems in ground transport due to their structure and flexibility. Moreover,
they can also be useful in data collection in damaged areas by correctly defining the condition of
flight trajectories. Hence, defining a framework and model for better regulation and management of
RPAS-based systems appears necessary; a model that could accurately predict what will happen in
practice through the real simulation of the circumstances of distribution systems. Therefore, this study
attempts to propose a multi-objective location-routing optimization model by specifying time window
constraints, simultaneous pick-up and delivery demands, and the possibility of recharging the used
batteries to reduce, firstly, transport costs, secondly, delivery times, and thirdly, estimated risks.
Furthermore, the delivery time of the model has been optimized to increase its accuracy based on the
uncertain conditions of possible traffic scenarios. It is also imperative to note that the assessment of
risk indicators was conducted based on the Specific Operations Risk Assessment (SORA) standard
to define the third objective function, which was conducted in a few previous studies. Finally, it
shows how the developed NSGA-II algorithm in this study performed successfully and reduced
the objective function by 31%. Comparing the obtained results using an NSGA-II meta-heuristic
approach, through the rigorous method GAMS, indicates that the results are valid and reliable.

Keywords: remotely piloted aircraft system (RPAS); multi-objective optimization; NSGAII algorithm;
location-routing problem; robust optimization; SORA standard

1. Introduction

Due to the growing population of industrial cities, conventional and land transport
systems face both time and cost constraints in meeting the increasing demand of their cus-
tomers. In populated cities, the saturation of land transport vehicles has led big companies
to consider replacing them with RPAS-based distribution systems to reduce costs [1]. As
a result of this replacement, RPAS-based online companies grow, which not only leads
to more efficient, reliable, and capable RPASs but also increases the market for product
manufacture and delivery due to an increase in transport companies [2]. Often known as
smart vehicles, RPASs can be lightweight, small, cost-effective, and increasingly capable of
automatic operation [3]. Information and communications technology (ICT) is considered
to be the main activity center for RPASs. As a result of this technology, RPASs can receive
and collect data promptly and act in the defined timeframe with integrated and cooperative
performance in a supply chain, things that are close to the concept of “IoT” (Internet of
Things). In an IoT setting, interrelated components transfer data over the network, very
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similar to the role of RPASs in gathering data. Therefore, they are applicable in any IoT-
based operation [4], such as rescue missions and monitoring [5], agriculture [6] weather
forecasts, and most importantly, transport/location [7–9].

Although RPASs are increasingly popular in numerous areas of application in indus-
tries and universities [10,11], nonetheless, challenges such as heavy air traffic in urban
and non-urban permitted flying areas, flight time constraints, batteries or loading limits,
and unexpected weather conditions necessitate the design of a model for optimal routing
throughout the supply chain of distribution.

In fact, the challenge of most RPAS-based distribution network optimization models
is finding the best route when environmental circumstances of selected routes, including
ground and weather factors, are predictable and can be determined with high accuracy.
This optimization is only possible through the correct transfer of flight data, along with the
reliable and lasting communication of RPASs with ground stations or with other RPASs.
This matter, nevertheless, requires the identification of its potential risks such as loss of
in-flight communication, and most importantly, probable occurrences during the transport
since there is a probability of RPASs colliding with the ground and hitting people or other
vehicles, or any obstacle in general as the operation of RPASs expands in low-altitude
and/or uncontrolled airspace classes [12].

Concerning this, some researchers have focused on minimizing transport costs and
time in RPASs-based route planning or maximizing supply chain demands under certain
and uncertain circumstances [2,13,14]. Most have used classic Vehicle Routing Problem
(VRPD) models to simulate real situations, whose distinctions have been examined based
on their scales. Constraints such as on-demand delivery or pick-up, specific time constraints
based on soft and hard time windows, the possibility of recharging RPAS batteries in DCs,
loading-related constraints, not only stress the diversity of studies conducted but also show
to what extent potential risks prevail in a location-routing network.

This study attempts not only to cover all aspects analyzed in past studies, but also
to assess identified risks, both in the air and on the ground, on selected trajectories based
on the SORA standard [15] and reduce them by proposing a novel and developed model.
The planning for flight trajectories begins from the starting points (facility locations), splits
into DCs, and ends at the demand points. The proposed model is a multi-dimensional
and multi-echelon RPAS-based distribution system. It is formulated as an integer linear
programming (ILP) solver with the aims of minimizing transportation cost, delivery time,
and flight risks across the network. Moreover, we define a location-routing problem,
meaning that in a distribution system of RPASs, in addition to routing, DCs have been
located in the potential sites. In this way, not only can the location of each level of DCs
impact the allocation of the number of RPASs but the shipping capacity and the cost of
each transport unit can differ based on the constraint of resources in the centers [16,17]. As
a result, our model can analyze the maximum effective factors that are closer to the real
state of distribution systems. The following conditions are defined for the model which
indicates the innovation of this study.

In a real situation, it is possible to make the delivery demand at the delivery point,
meaning part of the demand would be returned after the delivery. Therefore, when
calculating transport costs, the customer’s demand is calculated simultaneously at the
time of delivery and pick-up at the demand point. At this point, the customers’ demand
has been met, but after the completion of delivery, RPASs return the pick-up demand to
the DCs. Demand may be returned for a variety of reasons including estimated errors or
incompatibility [18]. As a result, in the return route, the drones carry cargo and at the end
of each graph, the demand will no longer have a decreasing trend. Therefore, it may be
more or less than the demand requested from the origin in the destination node. Both
pick-up and delivery demand for each route have been determined by demand points that
can be changed per trip.

Assuming that many of the transported items are imperishable and there is no time
limit in delivering the product would distance the model from a real situation in a distribu-
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tion network, making the obtained results unreliable and incomprehensive [19]. Hence,
time window management has been used as follows. Each time window determines
when each delivery must take place and the model would be fined outside that timespan,
be it later or sooner than the due time. This framework is implemented in the form of
soft and hard windows. Combining the two mentioned modes in the routing of drones
is known as the pick-up and delivery problem with time windows and demand-RPAS
(PDTD-RPAS) [20]. In the RPA-based distribution network, these two aspects are rarely
investigated at the same time.

Compared to land distribution systems, the distribution network of RPAs is limited to
the number of RPAs and the transport capacity as their used batteries limit flight duration
and change with each delivery time [21]. Therefore, enhancing their performance and as-
sessing relevant variables in the model would increase its flexibility. In the proposed model,
the possibility of charging the batteries of RPAs at some DCs has been taken into account
and the estimated time has been obtained by calculating the time of charging batteries.

Factors such as uncertain weather conditions, various air traffic management errors,
losing the GPS in RPASs, or security attacks [22] all cause discernible delays in delivering
products or even cancel the service, which cannot be predicted in a certain situation and
it is impossible to define a rigorous decision-making framework based on it [23]. For this
reason, there may be different scenarios that must get as close as possible to the most certain
mode before the service is complete. Therefore, in our study as the second objective, robust
optimization has been applied according to the different probable traffic scenarios.

Aside from the numerous benefits associated with RPA distribution systems as an IoT
setting, they are always at the highest level of vulnerability compared to other transport
vehicles. This is due to the lack of sufficient and necessary instructions and security
standards for RPA operations, which limits their use at the intercity level. Based on the
Federal Aviation Administration (FAA), there have been over 4889 accidents of varying
levels of severity caused by drones spanning 2014 to 2017 [22]. Thus, the primary need
of a distribution network is to provide security against possible greater damages, which
requires the identification of probable risks in the distribution. In this study, the imposed
risks of selected trajectories were estimated by the Specific Operations Risk Assessment
(SORA) standard, which was developed by the European Aviation Safety Agency (EASA).

Finally, since multi-objective RPAS-based location-routing problems fall into NP-Hard
problems, to achieve the optimal and accurate solutions, the NSGA-II algorithm was
developed. Ultimately, issued results are compared with the GAMS method in a small-scale
problem to examine the model performance.

In general, the contributions of the model can be summarized as below:

- the RPAS-based distribution network of a supply chain was implemented at three
echelons: facility locations, DCs, and demand points, while in other studies, path
planning was not examined in more than two echelons.

- Optimization was carried out aiming to reduce three significant factors simultaneously
in the model: cost, delivery time, and imposed risk. They were modeled to be
minimized as the first, second, and third objective functions, respectively.

- Contrary to previous studies, constraints related to the demand, delivery time, and
battery usage variables were considered simultaneously to make the model close to
the real state of a distribution system.

- In the second part of the objective function in the proposed model based on different
traffic scenarios, the data on the time of delivery were considered uncertain, which
aims at finding answers close to optimized. Among the matters proposed to regulate
uncertain data, we deployed Malloy’s robust optimization model.

- In this study, the identified risks in each graph were developed in the form of a model
and minimized as the third objective. For the first time, the risk assessment approach
was conducted based on the SORA standard.

- In the level of distribution DCs, they were located along with RPAS routing planning.
- A novel NSGA-II algorithm was justified specifically for the introduced model.
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The following parts of this study are structured as below:
Section 2 reviews previous related studies that were oriented RPA networked models

with the mentioned features. Section 3 completely explains how the model is formulated
and describes its components. Section 4 is organized to present solutions according to the
different aspects of the model through the NSGA-II algorithm. Section 5 shows the given
numerical results. Section 6 explores the results, including an analysis of the validity of
the model and solutions, and ultimately, Section 7 concludes and summarizes the whole
structure of the research.

2. Literature Review

The novel industry of RPA-based distribution networks is increasingly evolving.
Therefore, numerous researchers in industrial or agricultural fields have attempted to pro-
pose reliable and flexible distribution models based on the characteristics and framework
of RPAs.

Concerning the aspect analyzed in the previous models, Section 2.1 discusses routing
problems or combined location-routing problems based on RPAs in terms of the type of
variables and proposes solutions to them. Section 2.2 explores problems with certain and
uncertain data as simultaneous modeling including modeling methods and their results.
Section 2.3 outlines frameworks developed by companies and researchers to identify and
assess the flight risks of RPAs.

2.1. Drone Routing Problem Considering Time, Demand, and Battery Constraints

In recent years, numerous studies have been conducted in this field, which has played
an effective role in developing routing and location problems of distribution centers (DCs).
A few of them introduce a novel routing model that proposes drone–truck combined
operations [2,20,24–33]. In some, batteries can be changed at stations; in others, time
windows have been used to manage the delivery time of the product, or the demand has
been considered as simultaneous pick-up and delivery. For instance, based on the modeling
approach, Kou et al. proposed a routing model with delivery time constraints [34]. To
solve the model, the variable neighborhood search (VNS) algorithm was developed. Choi,
Kitjacharoenchai, and Ribeiro et al. proposed a model based on the battery constraints of
RPAs at storage room and retailer levels, which was solved using the Large Neighborhood
Search (LNS) and CPLEX [21,33,35]. Khoufi et al. calculated the simultaneous pick-up
and delivery demand. Time window constraints were also added and NSGA-II was
used to solve the model [20]. In another study, Guerriero et al. proposed an RPA-based
routing problem with multiple objectives such as reducing the distance traveled, increasing
customer satisfaction, and reducing the number of used RPAs, and the Pareto Front was
obtained [15]. Doole et al. used an approach derived from the traveling salesman location-
routing problem to determine the shortest route the drone must travel. They applied the
ant algorithm to identify the best route and select an optimal location for DCs [16].

In urban areas, due to the extensive areas for applying RPAs, numerous routing
models have been developed as well; for example, Lin et al. proposed a path-planning
model for RPAs considering battery consumption constraints. They introduced a two-stage
control network approach which was examined by solving a numerical sample based on a
virtual city [36]. Gunawardena et al. proposed a locating model for a contaminant source
by RPAs. The model was implemented in a complex urban environment using particle
swarm optimization (PSO). [37] Li et al. designed a routing model of logistics UAV terminal
distribution in urban areas which was solved by the improved cellular automata (CA) [36].

2.2. Robust Optimization in RPA Delivery Model

Uncertain conditions could reduce the model’s prediction accuracy in any aspect of
location-routing problems; therefore, in previous studies, a variable, as uncertainty, Lynskey
et al, was investigated along with other certain variables to analyze the direct effect of
uncertainties and to propose an accurate and real model [38]. Faiz et al. designed an RPA
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distribution network for immediate rescue in the event of a crisis, where the demand was
assumed as probable at two levels of a supply chain [39]. Lynskey et al. developed a routing
model by considering atmospheric fluctuations and their impact on causing delays in the
delivery time of a distribution network [38]. Cheng and Shahzaad et al. proposed an opti-
mization approach to find an optimal flight framework with the assumption of uncertainty
during the time the batteries work. In this model, the fluctuations of atmospheric tempera-
ture on the performance of the batteries were investigated [29,40]. Di Puglia Pugliese and
Kim et al. introduced a robust optimization for a delivery network with uncertainty in
battery consumption [41,42]. Corbetta et al. defined uncertain conditions in a state where
there are probable errors during the flight, errors that differ due to types of RPAs in size
and type of driving force systems and their distinctive performance during the flight [43].
S. Sawadsitang et al. developed a tri-level multi-objective model for an RPA-based distri-
bution network that attempts to examine optimization with the probability of RPAs being
endangered or unable to take off [44]. In another paper by Chauhan et al., a probable
RPA-based location-routing model was introduced. The purpose behind optimization is to
locate suppliers in a situation where the allocation of RPAs is never determined based on
the probable usage of batteries in RPAs [16]. Ilić et al. indicated in their studies the role of
RPAs in dispatching systems in smart cities. They proposed a (SWOT-FAHP) approach to
improve their model [45].

2.3. Risk Assessment Model for RPA Delivery Model

The growing applications of RPAs in urban environments increase their chances of
falling and hitting residents or other vehicles. Therefore, designing a risk assessment model
could prevent many of those occurrences and increase the security and performance of RPAs
in a distribution network. The efforts made in this regard can be assessed qualitatively and
quantitatively. For instance, in their studies, Hu, Bertrand, Aminbakhsh, and Allouch et al.
used both qualitative methods such as AHP and quantitative methods such as a model
presentation [12,22,46,47]. Risk identification in some of them was based on international
standards such as Allouch et al. [22]. Very few of them, such as Aminbakhsh et al., used
the SORA standard; they identified probable dangers in different airspaces within the
city with high buildings [47]. Allouch and Hu et al., by proposing a third-party risk
index, showed that RPAs are at a lower risk at a height of below 30 m compared to the
rest [15,22]. Janik et al. developed a risk assessment model based on SORA standard [15].
Among the methods used to assess the risk, the assessment basis in quantitative methods
was based on known standards in a few cases. Most cases, however, were conducted
based on professional opinions and what has been mentioned in previous studies. For
instance, Shao et al. attempted to identify and estimate probable risks in a distribution
network and UAS logistics by proposing UAS Traffic Management (UTM) in his paper.
This assessment is qualitative and was carried out based on the SORA standard [48].
Denney et al. analyzed the SORA, whose main aim was to complete the current guidelines
through a disciplined and mathematical approach for risk assessment, especially when
applied to operational concepts with a greater risk that requires more accuracy in assessing
and ensuring security [49]. In a paper, Capitán et al. assessed the risk of an operation
for aerial shooting using the SORA method. The purpose behind using the SORA was to
receive a permit for UAS flights; this paper explores all the stages of the SORA, evaluates
the operational risks, and discusses corrective actions to reduce the risks in the system [50].

Analyzing the papers mentioned showed that, in most previous studies, optimization
in the dimensions mentioned in certain and uncertain conditions was separately examined.
However, proposing a multiple objectives model that could simultaneously analyze all the
factors and can better define the real condition of an RPA-based distribution network and
the obtained results are more reliable and accurate. Therefore, in addition to the develop-
ment of common objectives in a distribution network such as a reduction in transport costs
and delivery time, this paper introduces a robust optimization model by defining various
traffic scenarios. Moreover, to increase the accuracy and efficiency of the proposed model
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among the risk assessment models based on international standards, in the form of the third
objective, probable risks based on the SORA standard were identified. Further, the Analytic
Hierarchy Process was used to allocate their proper weights and calculate the extent of their
influence on transport conditions on selected routes. To make the conditions more similar
to the real distribution network of RPAs, this study attempted to take into account the
constraints of recharging a used battery, soft and hard time windows, and the simultaneous
pick-up and delivery demand in the model. Afterward, to achieve non-dominated answers
within a reasonable time, the NSGA-II algorithm was developed according to the features of
the model. Further, for the accuracy test for the model, the obtained results were compared
carefully using GAMS.

3. Methodology

Reviewing the most recent studies showed that location-routing optimization by
RPASs has been modeled from different aspects. This study introduces a new multi-
objective model integrating location-routing problem issues as a joint location-routing
problem (MLRP). This model considers delivery and pick-up demands simultaneously
and a time window to increase customer satisfaction. In addition, this research considers
different factors affecting the stability of routes to select the best route with the lowest level
of overall risk for the shipment of parcels. We try to cover all characteristics which need to
be assessed in this model. It is assumed that in a three-echelon supply chain of a delivery
pick up dispatching system, a set of k remotely piloted aircraft (RPA) provides services at
first, for demand points at the lowest level having a set of P locations; second, a set of F
facility locations at the highest level with a set of D distributors; and finally, for the level of
distributors with a set of candidate locations D for construction. Locating at the second
echelon occurred simultaneously as the best route is optimized in the whole process of the
supply chain. The problem is modeled in the form of a multi-objective mixed-integer linear
programming (MILP) model as presented below.

3.1. Objective Function
3.1.1. The Function of Cost

In our delivery network, cost includes transportation, construction of DCs, delayed
delivery penalty, and preparing cost. In detail, RPASs deliver parcels to the demand
points by a heterogeneous transport fleet. They have different velocities, capacities, battery
consumption, and purchase costs. Therefore, to optimize the operation cost, each part of
cost objective function is formulated based on its components. In our model, start points
are the facility locations where the service is produced and is ready to dispatch, DCs must
be allocated to a facility location. In the meanwhile, they are constructed in the potential
areas. Hence, in addition to shipping costs, battery consumption and fixed costs for RPASs,
the cost of building DCs, and providing services are also added to the problem. Moreover,
two types of time constraints are defined for providing services to demand points. The
first constraint is the hard time window, meaning that providing service to demand point
i should not be earlier than bi and the time later than αi. The second constraint is the
soft time constraint; according to it, in the period [Esi, Lsi], service for demand point i
is performed earlier than time Esi and later than the time Lsi. At this point, the system
will be penalized, and the deviation is allowed as long as the hard time window is not
violated. In this situation, service will not be provided at that time. Therefore, the cost of
time windows penalties is added to the model accordingly. There are two types of demands
at the demand points: the delivery demand based on which the goods are loaded from
the DCs and delivered to the demand point and the pickup demand based on which the
goods/services are picked up from the demand point and returned to the DCs. In this way,
shipping cost may consist of pick-up demand on the way back to the DCs.

DCs are divided into two types D1 and D2. D1 are those where drones can recharge at
their location, and D2 are those where drones cannot recharge at their location. Hence, D2
will not have recharging cost at their centers.
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3.1.2. The Function of Time

The time optimization is accomplished by the second objective (Z2). As it was men-
tioned before, RPA velocity has different modes according to different routing scenarios
while they are distinctive by the level of air traffic conditions. In a way, there is a set of
U scenarios adjusted with possible routes which end in the set of j nodes. The number
of scenarios is determined by experts who investigate the traffic conditions based on the
following factors in the possible routes from nodes i to j.

Air traffic was happening in the RPA delivery system due to factors including:
Air parcels: The revocation or postponement was caused by situations in the control

of an airline (for example, conservation or capacity issues, uploading/unloading, loading,
and so on).

Severe climate: In the carrier’s assessment, remarkable climatic conditions (real
or predicted) cause a flight to be delayed or canceled, such as a tornado, snowstorm,
or windstorm.

The National Aviation System (NAS): Postponements and revocations are provided by
NAS because of various factors such as weather circumstances that are not extreme, airport
procedures, high traffic volume, and air transportation management.

RPAs that are arriving tardily: A prior flight having a similar RPA had a delay in
arriving, leading the current flight to depart delayed.

Safety: Postponements or revocations induced by the re-loading of RPAS as a conse-
quence of a safety defect or unusable screening tools.

Due to the uncertainty condition of scenarios, robust optimization is the appropriate
method to estimate the solutions exactly. This optimization is done while unexpected
conditions are considered and controlled. We used the Mulvey model [51] as the general
form of robust optimization.

3.1.3. The Function of Risk

To improve the navigation program’s security and safety, the third goal proposed in
this research is to minimize the overall potential risk along the flight paths. We require
the capability to sort these into certain groups because several risks may be considered
by the RPA dispatching system. After that, to generate relevant risk-evaluation indexes
established by Erkut et al. [52], for each path, the risk index was calculated as ∑(i,j)∈A p̆ijlk

i
where p̆ij and lk

i are likelihoods for an event occurring and its repercussions, respectively.
The number of valuables transported by the RPASs, weighted by the experts and historical
data can be specified as lk

i .
The significance of each component is determined by the decision makers’ perspectives;

however, it should be remembered that each of the risk factors stated has a distinct level of
significance which is examined in each scenario in the classification of the SORA standard.
Then, the linguistic variables of experts are classified in proportionate range of the adopted
degrees of the assessment scale which gives p̆ij. Table 1 shows the likelihood of events
expressed by the frequency of their occurrence.

Table 1. Likelihood of events expressed by the frequency of its occurrence.

Rating Category Description Value

Certain Expected to occur regularly under
normal circumstances 10

Very likely Expected to occur at some time 7.5

Possible May occur at some time 5

Unlikely Not likely to occur in normal
circumstances 2.5

Rare Could happen but probably never will 0
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In the next step, to achieve lk
i , the AHP method is applied. Accordingly, the risk of

route (Sk
ij) is calculated based on the instructions stated as follows.

The AHP technique is used to convert these factures to a unique facture. As a result,
the path risk (Sk

ij) is determined using the following commands:

1. Identifying and weighing efficacious risk indicators for the path (assessed by the
SORA approach).

2. Employing average to specify the weights of each facture.
3. Calculating the risk of each route by applying the weights (lk

i ) assigned to the route
risk variables through the equation ∑(i,j)∈A p̆ijlk

i .
4. Designing a risk matrix for the pathways from node i to node j.
5. The third goal’s function is to choose the route with the minimum risk via our pro-

posed model.

The factors must be defined before the optimization of the model, so they are calculated
according to the related various features. AHP is a multi-criterion decision-making (MCDM)
method for ranking several alternatives with respect to their various criteria. The AHP
is applicable when the weight of proposed criteria is unknown. According to the AHP
methodology, each possible route can be ranked by the risks measured in weights. They
are estimated by individual experts’ experiences and recorded historical data.

By taking advantage of the proposed model, the risk value can be considerably reduced
with only a slight increase in the classical objective function value.

At present, risk analysis is necessary to carry out operations that go beyond the stan-
dard European scenarios. It focuses on assigning two classes of risk to a RPAS-operation,
a ground risk class (GRC) and air risk class (ARC). In fact, the risk model includes risks
affecting both the ground and the air.

• Ground risk elements

The ground risk class (GRC) is provided using JARUS’ SORA approach by applying
risk ratings generated by RPAS classifications of activities to specify the level of ground risk.
The ground risk level is specified by (1) the maximum RPAS attributes such as a wingspan
of 1, 3.8 m or greater, (2) their relating normal kinetic energy of 700 J, 34 kJ, 1084 kJ, or larger,
and (3) operational circumstances such as VLOS, BVLOS, as well as population region,
their innate RPAS ground risk levels ranging from minimum to maximum. Each different
condition of class influences the severity of ground risk. The intensity of ground danger
varies depending on the level. It is evident that the kinetic energy of the RPAS imposes
significant damage to the people or objects on the ground.

• Air risk elements

SORA takes a more comprehensive approach to air risk management, allowing for
better flexibility. This shows how reduction may be applied strategically and tactically.
Flexibility is concerned with a meaningful collection of traffic density regulations with an
ongoing execution function of noticing, deciding, and preventing.

The SORA utilizes three air risk categories (ARC), which ARC-b, c, and d processes
require appropriate equipment stability and confidence. ARC is a descriptive rating for
which an RPA might interact with manned aircraft in the National Airspace System (NAS).
It is a preliminary assumption for cumulative collision risk in the airspace, before applying
any reduction [53].
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3.1.4. Mathematical Model

Based on the above definitions, the model can be described as follows: variables of the
model have been described in Appendix A at the end of this study.

Z1 = min ∑
k∈K

∑
d∈vd

∑
j∈v

∑
i∈v

Xijkd·FCk·dxij·C + W2· ∑
i∈p

Ei + W3· ∑
i∈p

Li

+ ∑
d∈D

∑
k∈K

Zd· f ixd

+ ∑
d∈D

∑
k∈K

∑
i∈p

Xdikd· f ix′k + ∑
f∈F

Yd f ·ded·Cp f

(1)

An objective function Z1 that minimizes the total operation cost for the drones trans-
ferring, cost of battery consumption along each route, the fixed cost of using the drones,
the cost of constructing distributors at candidate locations, the cost of not complying with
the soft time window, and the cost of preparing.

Z2 = min ∑
uεU

pu·∑
iεP

siu + λ ∑
uεU

pu (∑
i∈P

siu − ∑
uεU

pu ∑
i∈P

siu)
2 (2)

In the second objective function, the service time is minimized.

Z3 = minmax ∑
i,j i∈P∪D

sk
ij Xijkd (3)

The third objective function is modeled to minimize risk index; it is measured by the
sum of the imposed routing risk the weight of which is multiplied in the weights of its
included components (factors) for each node i to j.

Subject to:
∑

d∈D
∑
k∈K

∑
i∈P∪D

Xijkd = 1, ∀j ∈ P (4)

∑
j∈P∪D

Xdjkd = ∑
i∈P∪D

Xjdkd, ∀d ∈ D, k ∈ K (5)

∑
i∈D∪P

Xijkd = ∑
i∈D∪P

Xjikd, ∀d ∈ D, k ∈ K, j ∈ P (6)

∑
d∈D

∑
i∈v

Xdikd ≤ 1, ∀k ∈ K (7)

∑
i∈D,i 6=d

∑
j∈P

Xijkd = 0, ∀d ∈ D, k ∈ K (8)

∑
i∈P

∑
j∈D,j 6=d

Xijkd = 0, ∀d ∈ D, k ∈ K (9)

Xiikd= 0, ∀d ∈ D, k ∈ K, i ∈ D ∪ P (10)

Siu +
dxij

Vku
−M·

(
1− Xijkd

)
≤ Sju, ∀d ∈ D, k ∈ K, i ∈ D ∪ P, j ∈ P, u ∈ U (11)

Siu +
dxij

Vku
+ M·

(
1− Xijkd

)
≥ Sju, ∀d ∈ D, k ∈ K, i ∈ D ∪ P, j ∈ P, u ∈ U (12)

Sdu = 0, ∀d ∈ D, u ∈ U (13)

ai ≤ Siu ≤ bi, ∀i ∈ P, u ∈ U (14)

LOk = ∑
d∈D

∑
i∈v

∑
j∈P

rj × Xijkd, ∀k ∈ K (15)

LOk ≤ Qk, ∀k ∈ K (16)

Lj ≥ LOk − rj + pj −M·
(

1− Xdjkd

)
, ∀d ∈ D, k ∈ K, j ∈ P (17)
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Lj ≤ LOk − rj + pj + M·
(

1− Xdjkd

)
, ∀d ∈ D, k ∈ K, j ∈ P (18)

Lj ≥ Li − rj + pj −M·(1− ∑
d∈P

∑
k∈K

Xijkd), ∀j ∈ P, ∀i ∈ D (19)

Lj ≤ Li − rj + pj + M·(1− ∑
d∈P

∑
k∈K

Xijkd), ∀j ∈ P, ∀i ∈ D (20)

Lj·( ∑
d∈D

∑
i∈P∪D

Xijkd) ≤ Qk, ∀j ∈ P (21)

Eiu ≥ (ESi − Siu), ∀i ∈ P, u ∈ U (22)

Liu ≥ (Siu − LSi), ∀i ∈ P, u ∈ U (23)

Ai = full, ∀i ∈ P1 (24)

Ai ≤ Aj − DXji·FCk + M·
(

1− Xjikd

)
, ∀i ∈ P2, j ∈ P ∪ D, k ∈ K, d ∈ D (25)

Ai ≥ AT, ∀i ∈ P (26)

Zd·M ≥ ∑
k∈K

∑
i∈P

Xdikd, ∀d ∈ D (27)

M· ∑
f∈F

Yd f ≥ Zd, ∀d ∈ D (28)

ded = ∑
k∈K

∑
i∈P∪D

∑
j∈P

ded × Xijkd, ∀d ∈ D (29)

ded = capd, ∀d ∈ D (30)

∑
f∈F

∑
d∈D

Yd f ·ded ≤ cap f , ∀ f ∈ F (31)

FCk ≥ Siu +
dxid
Vku
−M·(1− Xidkd), ∀k ∈ K, i ∈ P, d ∈ D, u ∈ U (32)

∑
k∈K

∑
i∈P∪D

∑
j∈P

Si × Xijkd ≤ DAY, ∀k ∈ K, (33)

Xijkd, Zd, Yd f = 0 or 1 (34)

Lj, Siu, LOdk ≥ 0 (35)

sk
ij ≤ µ ∑

iεP∪D
Xjikd, ∀j ∈ P, k ∈ K (36)

sk
ij ≤ µ ∑

iεP∪D
Xijkd, ∀j ∈ P, k ∈ K (37)

sk
ij = 0, ∀j ∈ D, k ∈ K (38)

Constraint (4) ensures that a RPA is allocated to one demand point and meets its
demand. Constraint (5) ensures that any RPA leaving the DC finally returns to the same
DC. Constraint (6) ensures that any RPA that allocated to a node to provide service to
any demand point. Constraint (7) ensures that every RPA is applied in just one distrib-
utor. Constraints (8) and (9) ensure that if a RPA leaves a DC, that RPA is assigned only
to that DC. Constraint (10) ensures that no additional edges stem from each node to it-
self. Constraints (11) and (12) examine the starting time of service for per demand point.
Constraint (13) mentions that the start time of the RPA is zero. Constraint (14) ensures
compliance with the hard time window limit. Constraint (15) calculates the quantity of first
loading of the RPA.

Constraint (16) examines the capacity limitation of the RPA for the first loading.
Constraints (17) and (18) calculate the loading weight on the RPA after leaving the initial
demand point across the route. Constraints (19) and (20) calculate loading weight on the
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RPA after leaving other demand points. Constraint (21) ensures that the RPA capacity
limitation for loading weight on the RPA across the route. Constraints (22) and (23)
calculate the soft time window deviation for demand points. Constraint (24) illustrates
that after the service to demand points with charging availability, battery is full in the
RPA. Constraint (25) calculates the amount of battery in the RPA after finishing service to
demand points where recharging is available. Constraint (26) ensures that the RPA battery
constraint is considered. Constraint (27) indicates constructed DCs. Constraint (28) ensures
that each DC constructed and assigned to one facility location. Constraint (29) calculates
the amount of demand for each DC. Constraint (30) determines the demand limitation
of each DC. Constraint (31) examines the demand limitation of each facility location.
Constraint (32) calculates the travel time for every RPA. Constraint (33) investigates the time
limitation of the travel length daily. Constraint (34) demonstrates the variables zero and
one. Constraint (35) demonstrates variables greater than or equal to zero. Constraint (36)
ensures that the imposed risk for route i to j is lower than M denotes a large positive
constant. Constraint (37) ensures that the imposed risk for route j to i is lower than M
denotes a large positive constant. Constraint (38) ensures that the risk of routes ending in
facility locations is zero.

3.1.5. Assumptions

- The drones make one-to-many delivery trips at the first echelon (from the facility
location to the DCs) and many-to-many trips at the second echelon (from DCs to
demand points and back) until the battery needs to be re-charged. It includes a
minimum energy also set for emergencies.

- We do not consider one-to-many vehicle routing type trips, which are consistent with
the initial applications of RPA deliveries by private companies.

- We also do not consider battery recharging during the planning period for DCs where
recharging is not possible and assume that the RPA battery is recharged between
planning periods, but for those where it is possible, the service time at each site
includes refueling time (time to recharge the RPA’s battery), if needed.

- The length of the planning period is shorter (6 h to a day or 2 days) compared with
the planning period for a typical facility location problem.

- Another important assumption for the development of the mathematical model is
related to the first m actions. They are dummy event locations used to represent the
RPAS’s initial positions. Thus, no time windows are associated with these events, but
they are simply born at the scenario starting time instant and remain active for all
durations of the scenario itself.

- We refer to the RPA as any aircraft capable of moving autonomously at varied and
heterogeneous velocity, capacity, battery consumption, and purchasing cost.

- Each RPA can serve more than one demand point per dispatch as long as its flight
range and load carrying capacity are not violated.

- RPAs can return to the same DCs along the route.
- Multiple RPAs can be dispatched simultaneously from any DCs, which allows the use

of a swarm of RPAs to enhance the overall productivity of the system.
- We assume that applied RPAs have the battery capacity to cover the longest planning

period, and before per dispatch, operators ensure that drones have enough battery to
the end of the route.

- There are limited DCs equipped with recharging stations
- Customers are served only by RPAs.
- RPAs can be dispatched and collected several times from the same DCs.
- RPA batteries are replaced with fully charged batteries each time.
- Packages are loaded and unloaded from the RPAs once the RPAs deliver to DCs or

demand points.
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- After battery replacement and package loading/unloading, the RPA can be dispatched
again to serve a new set of demand points. The process is repeated until all demand
points in the service area have been reached.

4. Solution Representation

By combining several aspects of the location-routing problems, a multi-objective
Location-Routing problem with Drones (LRPD) model was developed, which is considered
an NP-Hard problem in terms of dimensions and the required time to solve it. Therefore,
metaheuristic algorithms could optimize all three objectives during a reasonable time and
obtain a set of efficient answers considering the constraints. In this study, the NSGA-II
algorithm was developed to solve the model. Selecting the best solution among each
generation of solutions is the development basis of this model. We deployed a novel
approach to generate the initial population which is based on the total number of demand
points and RPAs. The following sections describe the methodology of it in our developed
algorithm. Moreover, for the reliability and efficiency test of the model, the problem was
solved on a small scale and then assessed.

All the numerical experiments were conducted in MATLAB software and on a Laptop
with Intel Core I7 Duo 3.7 GHz and 8 GB RAM.

4.1. Non-Dominated Arranging Genetic Algorithm II NSGA-II’s Construction

NSGA-II is a famous algorithm established by Pareto solutions notions that were
initially created by [54]. Unlike single-objective issues, multi-objective issues do not
have an optimum solution. As a result of this algorithm, which is described as the non-
dominated sorting genetic algorithm (NSGA-II), a collection of practical non-dominated
solutions is developed. For non-dominant population rating, the method initially selects
two parental solutions from which they continuously retrieve a superior child solution via
an intersecting function.

To establish if a solution is dominant or non-dominant, it should initially be analogized
with every other solution. A category of solutions will be discovered, none of which are
dominant or non-dominant, and these solutions will also include the initial front of non-
dominant fronts. Available solutions are ignored throughout the initial front and then
continued using the idea of dominance to define additional fronts. Indeed, a solution x will
triumph over a solution y if the following criteria are met:

- Solution x is not worse than another solution y for any of the goal’s functions.
- x is strictly superior to y in at least one of the n goal’s functions. This procedure will

be repeated until all non-dominant solutions have been eliminated.

The following characteristics may be found in several NSGA-II algorithm elements.

4.1.1. Initial Population

The initial population is divided into three groups. There are n + k − 1 cells in the first
segment. The starting population is produced by a line with n + k − 1 cells having ordinal
numbers 1 to n + k − 1, where n is the number of demand points and k is the number of
RPAs. The numbers 1 to n represent the number of demand locations, while the numbers
n + 1 to n + k − 1 represent RPAs delivery to distribution facilities and in the other way, the
endpoint of the path and the usage of another RPA. The sequence of services to the demand
points is shown by the placement of the numbers in the columns. RPA k is represented by
the number n + k which represents the demand points that may be handled by that RPA,
correspondingly. If the demand point number is not before the RPA number, it means that
the RPA has not been used and that none of the RPAs have been allocated to it. After the
final RPA number, all demand points are allocated to the last RPA, correspondingly. RPAs
are allocated to RPAs in this segment. The second portion has k + d − 1 cells, where k is
the number of RPAs and d is the number of possible placements for DCs. This segment,
like the previous one, is devoted to distribution facilities. The final part is made up of
d + f − 1 cells, where d represents the number of DCs and f represents the number of sites.
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In this segment, the employed DCs are assigned to the sites in the same manner as in the
previous two segments.

To illustrate further, an example of the original population is provided. Figures 1–4
show an example with eight demand points, three RPAs, and three distributor candidate
sites. In the first segment, the scores 1 through 8 represent demand points, while 9 and
10 represent the first and second distributors. Demand points 4, 6, and 8 are supplied
by the first RPA, demand points 1 and 3 are handled by the second RPA, and demand
points 7, 2, and 5 are supplied by the third RPA, as seen in Figure 1. In the following
segment, the numerals 1 through 3 represent the number of RPAs, while the numbers 4 and
5 represent the first and second distributors. According to the proposed approach, the first
and second RPAs are assigned to distributor 1, and the third RPA is assigned to distributor 2.
Distributor 3 has not been built to this level yet. In the third segment, the numbers 1 through
3 represent the number of distributors, while the number 4 represents the initial facility
sites. According to the solution in Table 2, distributor number 1 is assigned to the second
facility site, whereas distributor number 2 is assigned to the second facility site.
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Table 2. Solution of example.

Demand Points Distributor Number of RPA Route

2 1 1 4-6-8

2 1 2 1-3

1 2 3 7-2-5

4.1.2. Parents Selection

When the adaptability of the goal functions among each chromosome is determined
and the population is sorted based on the requirements of domination, new parents form a
new population. In other words, superior individuals have a better probability of marrying
and passing on their characteristics to another generation. The tournament selection
method is employed to pick each parent. In this procedure, two individuals are chosen
randomly, and the best of these are chosen to become parents. A similar procedure is
followed to choose the next parent.

4.1.3. The Crossover Operator to Produce New Children

Following the selection of two parents using the tournament technique, the two-point
intersecting method is used to generate additional offspring, with two intersecting points
chosen randomly for each section of the initial two-by-two solution. The genes from the
first parent among these two points are given straight to the first kid, whereas the leftover
genes in the second parent are transcribed to the first child.

If the born children fulfill the capacity and time limitations, they enter the new genera-
tion; otherwise, two parents are chosen randomly for the intersecting. This procedure is
repeated until the new offspring outperforms its parents in terms of adequate function. In
the time frame limitation, for instance, if the kid is born inside the set window of time, it
will be counted as a new generation; in this situation, the carrying time will be modified.

4.1.4. Mutation Operator

When the intersecting operator is accomplished, the mutation operator is applied
to the following step. In this algorithm, both operators are hunting for fresh space. The
neighborhood hunt is done using this operator to increase the variety of a newly produced
population, and the search space is expanded to attain the complete optimal. Each offspring
throughout this operator can change randomly to generate a random number. If this score
is smaller than the mutation rate, the offspring will be modified by the mutation operator
in a manner that the first two genes are picked randomly, then the numbers between them
are switched for a genetic mutation.

Following the formation of a novel generation of Pareto solutions, grouping is con-
ducted by utilizing the non-dominance value and crowding distance. If two populations
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come from separate fronts, the solution with the lowest front number is chosen; if they
come from a certain front, the solution with the maximum crowding distance is chosen to
establish a mating pool.

Eventually, the grouping technique is used to create a population of precise size,
NPOP (Number of Population). By repeating the preceding procedures in succession,
the new population is employed to develop the next new offspring. This procedure is
continued until the halting condition is satisfied. A set number of iterations is used as the
terminating factor.

5. Computational Result

To validate and prove the accuracy of the model, a problem with 8 demand centers,
4 candid locations for DCs, 4 facilities, 3 RPA models, and 5 probable scenarios for air traffic
was randomly created on GAMS. Thus, conformance to the constraints and the values
of the three objective functions were evaluated. Figure 4 illustrates the schematics of the
results obtained through GAMS. As apparent, the location of the fourth candidate was
eliminated while all the RPAs were allocated to DCs.

In the next step, to ensure compliance with delivery time constraints and transport
capacity in the model, Figures 5–8 are proposed to demonstrate the constraints of hard and
soft time windows and transport capacity on each route based on the characteristics of the
examined RPA, respectively. Figure 7 indicates the initial loading constraint and Figure 8
present the weight constraints of RPA transport on permitted flight trajectories. In Figure 7,
number 1 indicates distributor 1 from route 1, number 2 indicates distributor 1 from route 2,
number 3 indicates distributor 2 from route 1, number 4 indicates distributor 2 from route
2, number 5 indicates distributor 3 from route 1, number 7 indicates distributor 4 from
route 1, and number 8 indicates distributor 4 from route 2.
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5.1. Input Data for NSGA-II Parameters

To assess the model, the developed NSGA-II algorithm was solved through a small-
scale problem and the results are compared using GAMS. In this sense, we elaborate
sequential solution of the model through the following sections. In this model, the parame-
ters of the algorithm were determined using the Taguchi method as depicted in Table 3.
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Table 3. Parameters for NSGA-II.

NSGA-II Value

npop 50

maxit 400

PC 0.4

Pm 0.7

5.2. Input Data for Risk Model Parameters

This section calculates the input risk indices for each route. According to the mentioned
stages, in Section 3.1.3, determining factors in the risk of each route are categorized as air or
ground risks based on the SORA standard, which covers all the stages of RPA operations
from the pre-flight stages such as take-off to in-flight failures in RPAs such as the excessive
use of batteries in harsh weather conditions to post-landing. In this location-routing model
with RPAs, the distribution network was considered in the urban environment, which
further increased the chances of an accident for RPAs in a flight at a low height. In the
SORA standard, the investigated risk level varies depending on the fly zone, and factors
such as the region’s population and the type of applied RPA play a role.

SORA categorizes operational safety objectives (OSO) into the following categories:

- The RPA has a technical issue (OSO # 1-OSO # 10);
- External systems that support RPA functioning are deteriorating. (OSO # 11-OSO # 13);
- Errors made by individuals (OSO # 14-OSO # 20);
- Unpleasant performing conditions (OSO # 21-OSO # 24) [48].

According to the SORA categorization, we believe RPA will be conducted in VLOS
(Visual Line of Sight) on infrastructure and individuals. We suppose that a Hexa-rotor RPA
is deployed to deliver a delivery weighing 12 kg. The RPA flies at 5–8 m/s and travels
at 35–50 m AGL, quicker than 40 min. This represents the current state-of-the-art and a
typical RPA platform being used in many ongoing delivery tests and trials.

The first step in determining the hazard of an operation is to calculate the value of the
kinetic energy that the RPA may have. The hazard analysis data are as below, calculated
with the following Formula (39) and the manufacturer’s data:

Ek =
mv2

2
(39)

Ek = kinetic energy (J), m-mass (kg), v-velocity
[m

s
]

[55].

a. Selected RPA: Arm pitch 83 cm hexa-rotor, Maximum Take-off Weight (MTOW)
m = 12 kg, cruise speed v = 8 m/s.

b. Population: n/SS = high populated (10,000 n/m2 or 3853 n/km2).
c. Arm pitch 0.83 × 0.83 m from a hexa-rotor.
d. Kinetic energy of RPA (KE): 384 Joules, from a hexa-rotor.
e. MTOW (m): 12 kg.
f. Velocity (v): 8 m/s (maximum operating speed of hexa-rotor H83)

The hazard level is analyzed by the likelihood of probable occurrences between
selected routes considering the main elements of ground risk and air risk of the SORA
standard, based on the given features of the used RPA. It should be mentioned that the
innate ground risk (GRC) may be calculated using this data. The flight during the real
incident might have to be classified as VLOS over a populated area. This flight type has a
GRC of 5 on the present 10-point scale, as given in Table 4.
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Table 4. Intrinsic ground risk (GRC) determination [48].

Max UAS
Characteristics 1 m/Approx. 3 ft 3 m/Approx. 10 ft 8 m/Approx. 25 ft >8 m/Approx. 25 ft

Typical kinetic
energy Expected

<700 J
(approx. 529 Ft Lb)

<34 KJ
(approx. 25,000 Ft Lb)

<1084 KJ
(approx. 800,000 Ft Lb)

1084 KJ
(approx. 800,000 Ft Lb)

Operational scenarios

VLOS/BVLOS over
controlled ground area 1 2 3 4

VLOS in sparsely
populated

environment
2 3 4 5

BVLOS in sparsely
Populated 3 4 5 6

VLOS in populated
Environment 4 5 6 8

BVLOS in populated
Environment 5 6 8 10

VLOS over gathering
of people 7

BVLOS over gathering
of people 8

5.3. AHP Ranking Method

As a result of the circumstances, each of them provides feedback at various phases of
the service AHP, which is a Multi Criteria Decision Making (MCDM) approach that is used
to handle a variety of analytical hierarchical issues efficiently [56,57]. AHP is employed
to compare risk variables related with human error and incident generates in the marine
transportation industry. Relying on a pairwise analogy matrix of criteria and options,
AHP assesses both quantitative and qualitative factors. The AHP idea is for analytical
decision-making, allowing the decision-maker to select the best choice from a collection of
options associated with a set of criteria.

The capacity of AHP to verify and decrease the variance of expert opinions is its major
benefit. At the same time, eliminating bias in decision making, assigning properties to each
criterion, merging qualitative and quantitative assessments, and powerful systematization
are all aspects of this procedure.

In this research, AHP is utilized to generate a matrix of weighted risks of Sn = {1, ...., n},
where n is the number of possible nodes between points i and j in each level of supply
chain management. At this moment, we execute the following phases of the process:

1. Create an enforced routing risk matrix, S =
{

Sije
}

m×n, with m = n representing the
number of risk criteria. The criteria are based on the SORA approach and contain
elements that influence the occurrence of events that cause an incident.

In reality, the issue choice (probability of occurrence in our research) is frequently
separated into a hierarchy of sub-problems (adverse event causes), each of which may be
evaluated separately.

2. Experts provide a numerical scale to each pairing of n criteria (Si, Sj) at the first level
of hierarchy.

According to experts in our research, it is vital to include the personnel operating the
RPA in detecting difficulties early in the history of the service. They assist in the delivery of
the service and have direct interaction with the customer.

Furthermore, it is suggested in the proposed strategy to incorporate staff of the orga-
nizations offering the service at the client’s location in the risk inspection process. Their
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expertise and experience are crucial in determining the reasons for recognized unfavorable
occurrences and analyzing the repercussions of their occurrence [58]. As a consequence,
since their perspective is very analytical, staff of service organizations should actively
engage in defining the grounds of the deployment.

Numerical scales are assigned by performing pairwise comparisons among the criteria
in terms of their influence on an element at a higher level in the hierarchy. The scale runs
from one to nine, with both numbers indicating an important rating. Table 5 illustrates
these results.

Table 5. The importance values of numerical scales.

Importance Scale Definition of Importance Scale

1 Equally important preferred

2 Equally to moderately important preferred

3 Moderately important preferred

4 Moderately to strongly important preferred

5 Strongly important preferred

6 Strongly to very strongly important preferred

7 Very strongly important preferred

8 Very strongly to extremely important preferred

9 Extremely important preferred

The concept Sije refers to expert e’s personal preference for criterion Si over Sj.

3. Once all the experts express their judgement, the geometric mean of their values are
computed as follows:

Sij =
√

Sij1, Sij2, Sij3 (40)

The acquired Sij is then placed as its input into the matrix D:

D =

S11 · · · S1m
...

. . .
...

Sn1 · · · Snm


4. At this stage, the weights of the criteria are computed by summing the columns of the

normalized Matrix W, which, as said by Saati [59], is a comparison matrix with the
following attributes.

Sij > 0; Sij =
1

Sji
∀i where j = 1, 2, . . . .., n (41)

When the elements of Matrix W meet the requirement while also satisfying the condi-
tion, it is said to be consistent (2):

Sij × Sje = Sie ∀e where j = 1, 2, . . . .., n (42)

The arrangement of options is determined by utilizing a matrix to approximate the
comparison matrix W.

P =

P11 · · · P1m
...

. . .
...

Pn1 · · · Pnm
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The components of matrix W are consistent assessments provided as weight ratios
between criteria Sij =

Si
Sj

where i, j = 1, 2, ....., n
The weights of the criteria of the order vector p are indicated by Pi.

P = (P1, P2, . . . .., Pn)
T

Following arithmetic normalization, the standardized order vector looks like this

P∗ = (P1
∗, P2

∗, . . . .., Pn
∗)T

where
P∗ =

pi

∑n
i=0 pi

Erkut et al. suggested determining the assessment matrices using the maximum
eigenvalue approach, as follows [52]:

D·P = λmax·P λmax > n

where λmax is the matrix W’s maximal eigenvalue.
It is vital to highlight that the inconsistency of the comparison matrix W has to be

less than 10% for a valid comparison, this is, the number of moments condition (2) is not
fulfilled must be fewer than 10%.

Computation should be conducted numerous times to form a conclusion when con-
fronted with an incompatible matrix to achieve convergence among the set of solutions
into subsequent repetition of this procedure. The original data are then transformed into
understandable absolute values and normalized weights using the following formula:
w = (w1, w2, w3, . . . , wn):

The consistency of assessments, as said by [52], may also be examined utilizing
Equation (9).

Consistency ratio = CR =
CI
RC

(43)

and,

Consistency index = CI =
λmax − n

n− 1
(44)

Table 6 has the RC (random consistency index). Because all 1 × 1 or 2 × 2 comparison
matrices include dependent column(s), RC is considered to be 0. It leads CR to go toward
infinity, i.e., matrices with sizes 1 and 2 are often consistent.

Table 6. Random consistency (RC) index (n = size of the reciprocal matrix).

n 1 2 3 4 5 6 7 8 9 10

RC 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

5. In the final matrix Sij, rank the criteria in decreasing order of the computed values;
the inputs of Sij are used as the value of sk

ij in Equation (39).

According to the steps above, sk
ij matrix is achieved as Table 7 with the following

assumed input data: 3 distributors, 8 demand points, and 3 RPAs.
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Table 7. The resulting sk
ij matrix through the AHP method.

RPA 1

sk
ij 1 2 3 4 5 6 7 8

1 167 60 28 87 176 56 234 34

2 117 39 40 83 123 34 256 47

3 123 121 22 22 147 78 278 67

RPA 2

1 147 78 36 90 144 43 246 46

2 123 43 57 61 187 45 215 67

3 136 134 17 15 245 81 209 89

RPA 3

1 193 56 28 84 148 57 296 59

2 119 68 57 62 197 43 257 54

3 142 123 19 14 223 79 211 68

6. Results and Discussion

Table 8 demonstrates the results of the objective function differentiation using GAMS
and NSGA-II. The difference between the results of both methods indicates that the perfor-
mance of the algorithm with a small-scale problem, less than ten, is less different from its
exact method. However, an increase in the scale of the problem increases the duration of its
implementation in the exact method, even though not much difference can be observed in
the optimal value of objective functions in both the rigorous and metaheuristic methods.

Table 8. Comparison of the answer of NSGA-II with the exact solution in small sizes.

Number of
Demand Points

NSGA-II GAMS

Z1 Z2 Z3
Elapsed
Time(s) Z1 Z2 Z3

Elapsed
Time(s)

N = 4 449,297,460 10,004 9978 56.43 449,297,478 1049 9967 78.65

N = 5 650,779,184 15,613 10,310 56.153 650,779,184 15,620 10,311 109.34

N = 6 602,471,673 11,643 12,347 60.300 602,471,513 11,640 11,981 123.56

N = 7 487,170,264 15,486 11,219 53.99 487,350,634 15,590 11,209 168.43

N = 8 669,350,742 12,305 10,267 56.040 669,350,736 12,307 10,236 172.78

N = 9 674,892,002 14,822 10,290 57.90 674,891,988 14,903 10,293 193.2

N = 10 674,066,352 12,822 11,709 53.224 674,066,367 12,945 11,734 214.93

Figure 9 illustrates a set of Pareto Front answers to all three objective functions. The
dispersion of the obtained points can be observed in all the points of the objective function.
The convergence process of the algorithm shows that considering the used operators, the
algorithm has not fallen to the local optimum, and in the generated generations, most of
the objective function space has been analyzed in the 400th iteration.
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To practically assess the model, the optimal value of the Pareto Front during each
iteration is compared in Table 8. Objective functions were optimized with different scales
of problem to show the accuracy of the model. Furthermore, it indicates how the proposed
NSGA-II algorithm will behave when more points needs to be investigated in a location-
routing model. The improvement process of objective functions shows that each objective
function has drastically declined. However, it is not possible to determine a specific value
for each as the most optimal specific value to define multiple objective functions, and based
on their priorities in decision-making, the decision-makers prefer the optimization of one
objective function over the other. For example, if the minimum transport cost and a rise in
the security of distribution systems are in question, in a problem with 8 demand points,
Z1 decreases by 35.40%, Z2 by 56.79%, and Z3 by 28.90%. Table 9 illustrates the analysis
of the sensitivity of the model based on its parameters such as time variation in different
scenarios in the second objective function with 8 demand points. The lighter the air traffic,
the shorter the distribution time. The selected route will also differ.

Table 9. Comparison of objective functions value in different scenarios.

Scenarios PS Optimal Solution Activated
Location Z1 Z2 Z3

1 0.03
1→ (1,5)_(5,4)_(4,7)

2→ (2,3)
3→ (6,8)

1,2,3 669,350,742 1.2305 10,267

2 0.04
1→ (1,5)_(5,4)_(4,7)

2→ (2,3)
3→ (6,8)

In this table, two scenarios with the most estimated time in the nodes are determined
along with the probability of their occurrence (PS). In both, the values of the first and
third objective functions remain unchanged while the second objective function slightly
decreases. Interestingly, the optimal routing in the second scenario, with the shortest
estimated time, has remained unchanged like the first scenario, which indicates that the
first robust model presented shows the most optimal legitimate solutions in any traffic
mode with high accuracy. By taking into account that there is not much difference in the
values of the objective function, it can be concluded that the model gives identical results if
the probable scenarios are disregarded.

Additionally, in multi-objective optimization models, the defined objectives do not get
minimized and optimized in one way, and a decrease in a minimization problem may lead
to an increase in the other. Therefore, the optimization behavior of each of them during the
implementation of the algorithm is analyzed to determine the accuracy and precision of
the obtained Pareto Front. Therefore, Table 10 shows the pay-off and how, in the case of the
optimization of one objective function, the rest has changed.

Table 10. Pay off table of problem.

The Objective Function Z1 Z2 Z3

Z1 627,592,605 11,155 9311

Z2 727,991,324 7321 9366

Z3 820,942,970 14,059 8661

The process of the objective function values shows that a decrease in Z1 would increase
Z2 and Z3. Further, a decrease in Z2 would increase Z1 and Z3, while a decrease in Z3
would increase Z2 and Z1. As a result, the optimization process of objective functions is the
opposite of each other.



Designs 2022, 6, 55 24 of 29

Parameters Analysis

In most proposed models, a change in the defined parameters could drastically impact
the obtained results. If the results remain unchanged or slightly changed despite great
changes in the input parameters, the model has high efficiency and accurate performance.
Therefore, Table 11 was obtained through an increase in the costs of the transport unit.

Table 11. Sensitive analysis of goals value.

Z1 (Cost) Z2
(Time)

Z3
(Risk) Cost (fix′k) Activate

Location
Optimal Solution for

Locations

669,350,742 12,305 10,267 496 1,2,3
1→ (1,5)-(5,4)-(4,7)

2→ (2,3)
3→ (6,8)

449,989,508 18,749 10,836 478 1,2,3
1→ (1,5)-(5,4)-(4,7)

2→ (2,3)
3→ (6,8)

426,296,864 14,888 11,679 356 1,2,3,4

4→ (4,7)
2→ (2,3)
3→ (6,8)
1→ (1,5)

412,789,234 19,329 11,345 280 1,2,3
1→ (1,5)-(5,4)-(4,7)

2→ (2,3)
3→ (6,8)

367,879,215 21,354 11,236 130 1,2,3,4

4→ (4,7)
2→ (2,3)
3→ (6,8)
1→ (1,5)

As can be observed from Table 8, with a decrease in the parameter of the fixed cost
of each RPA, the cost function decreases, whereas, the robust function of delivery time
increases but not much change can be seen in the risk function. Although the optimal route
was changed, the three candidate locations 1, 2, and 3 were chosen for the construction of
DCs in any state of unit cost. This shows that in each state of cost change, the mentioned
locations are efficient for the construction of DCs.

7. Conclusions

This study has proposed an RPA-based multi-objective location-routing distribution
network for notional delivery RPAS incorporating air and ground risk assessments. The
model is characterized by hard and soft time windows, pick-up and delivery demand,
and battery consumption limitations; and through the objectives of the model, robust
optimization is applied to reduce delivery time then the model is solved by the developed
NSGA-II algorithm. The results reveal that although numerous factors could be effective
in a distribution operation, it is possible to control flight security in each aspect of the
distribution and delivery operations including cargo transport, delivery time, and used
battery capacity. According to the results, the proposed model has been able to optimize
all three objectives and decline by 31.9% on average. Furthermore, its slight difference
with the results of the GAMS method indicates the success of the NSGA-II algorithm in
solving the model. In addition, although different scenarios are determined, candidate
locations (1,2,3) and the selected path have remained unchanged for both scenarios which
shows the consistency and reliability of the model

Along with all the mentioned advantages of our model, this study confronted serious
errors in practice which need to be considered for future research. In more detail, in
optimizing the second objective function, uncertainties in air traffic conditions can be
categorized as several scenarios, but it is difficult to determine which scenario is most likely
to occur. Therefore, we assigned two scenarios that can be clearly near to the real state
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of potential routes. In addition to this, in the process of analysis of the imposed risks, as
the expert’s opinions are linguistic variables, it was a time-consuming approach to classify
them with respect to the SORA standards categories.

Author Contributions: Conceptualization by J.L., R.C.M. and A.M., methodology by L.H. and A.M.,
investigation by all, writing—original draft preparation by L.H. and A.M., writing—review and
editing by all and supervision R.C.M. and J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by “the Carleton University: international seed grant”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

RPAS Remotely Piloted Aircraft System
SORA Specific Operation Risk Assessment
ICT Information and Communications Technology
DC Distribution Center
IOT Internet of Things
FAA Federal Aviation Administration
EASA European Aviation Safety Agency
MLRP Multi-objective Location-Routing Problem
NAS National Aviation System
MCDM Multi Criteria Decision Making
LRPD Location-Routing problem with Drones
ARC Air risk class
GRC Ground risk class
MTOW Maximum Take-off Weight
OSO Operational safety objectives
NPOP Number of Population
NSGA-II Non-dominated sorting genetic algorithm II

Appendix A

sets

Decision Variables

D: A set of distributor candidate locations

F: A set of facility locations

P: A set of demand points

K: A set of drones

D1: A set of demand points where recharging is possible

D2: A set of demand points where recharging is not possible

U: A set of different scenarios
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Parameters

Parameters Description

ri: The amount of delivery demand of demand points i

Pi: The amount of pickup demand of demand points i

Si: Time to provide service to demand points i

Qk: Loading capacity of each RPA k

ai: The earliest time allowed to provide service to distributor i in the hard time window

bi: The latest time allowed to provide service to distributor i in the hard time window

M: Optional large number

ESi: The earliest time allowed to provide service to distributor i in the soft time window

LSi: The latest time allowed to provide service to distributor i in the soft time window

W2: Cost per unit time deviation from the earliest time allowed in the soft time window

W3: Cost per unit time deviation from the latest time allowed in the soft time window

f ix′k: Fixed cost of using RPA k

C: Cost of one charging unit

AT: Minimum amount of charging allowed inside the RPA

C f f : Preparing cost of a unit in facility location f

f ixd: Cost of constructing distributor candidate location d

TSi: Time to provide service to demand point i

DAY: The length of a working day

cpji: RPA battery consumption from node i to node j

dxij: The distance between node i and node j

full: Battery charging capacity

pu: The probability of occurrence of scenarios u

Vku: The velocity of RPA k in event u

capd: The capacity of candidate location of distributor d

cap f : The capacity of facility location f

L0k: The load on RPA k when leaving the distributor

Sk
ij : The risk of route deriving from node i to node j with RPA k

xijkd :
The variables zero and one. If RPA k ∈ K belonging to candidate distributor locations d

travels from node i to node j, it is equal to one and otherwise zero

siu: The time to start providing service to demand point i in scenario u

Lj: The weight of the load remaining on the RPA after service to demand point j

Zd The variables zero and one. If distributor d is constructed, it is equal to one and otherwise zero

Eiu:
The time deviation from the earliest time allowed to provide service to demand point i in the

soft time window in scenario u

Liu:
The time deviation from the latest time allowed to provide service to demand point i in the

soft time window in scenario u

FCk The time to end the route of RPA k

ded The center demand of distributor d

Yd f
Variables zero and one. If distributor d is assigned to facility location f, it is equal to one and

otherwise zero

Ai: The amount of battery available on the RPA
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