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Abstract: Steel plates are used in the construction of various structures in civil engineering, aerospace,
and shipbuilding. One of the main failure modes of plate members is buckling. Openings are provided
in plates to accommodate various additional facilities and make the structure more serviceable.
The present study examined the critical buckling load of rectangular steel plates with centrally
placed circular openings and different support conditions. Various datasets were compiled from the
literature and integrated into artificial intelligence techniques like Gene Expression Programming
(GEP), Artificial Neural Network (ANN) and Evolutionary Polynomial Regression (EPR) to predict
the critical buckling loads of the steel plates. The comparison of the developed models was conducted
by determining various statistical parameters. The assessment revealed that the ANN model, with
an R2 of 98.6% with an average error of 10.4%, outperformed the other two models showing its
superiority in terms of better precision and less error. Thus, artificial intelligence techniques can
be adopted as a successful technique for the prediction of the buckling load, and it is a sustainable
method that can be used to solve practical problems encountered in the field of civil engineering,
especially in steel structures.

Keywords: cut-outs; buckling load; artificial intelligence; steel plates; axial loading

1. Introduction
1.1. Background

Plate buckling analysis has a wide range of applications in a variety of engineering do-
mains, such as civil and structural engineering, mechanical engineering, marine, aerospace
engineering, etc. [1], particularly when a lightweight design is the main objective [2]. Plate
buckling is a type of destabilization that occurs when a sudden deflection occurs under
compressive load. Plates buckle when exposed to compressive stresses greater than the
critical limit [3,4]. A critical level of stress develops whenever the plates are subjected
to compressive load, causing this to occur. The origin of plate buckling is governed by
partial differential equations, which makes the interpretation exceedingly difficult [5,6].
A plate with cut-outs has a more sophisticated buckling analysis than a plate without
cut-outs [7]. Cut-outs in box girders and certain load-bearing spars save material, can
be used as windows or doors, or simply improve the design aesthetics. They also pro-
vide ventilation, accessibility for maintenance, installation, and damage assessment. As
a result, an in-depth understanding of perforated and non-perforated plate buckling is
necessary [8–13]. Perforated plates have lower structural strength than plates without
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holes, and buckling behavior is one of the most significant failures to be considered in these
systems’ safe and reliable operation.

1.2. Literature Review

The existence of cut-outs of varied sizes results in the formation of free edges in
steel plates, which causes high stresses, resulting in plate stiffness degradation and early
fracture [14–16]. Therefore, for effective design, it is critical for the design engineer to com-
prehend the stability, overall strength, and failure parameters of steel plates with cut-outs of
varied shapes and sizes. A full grasp of buckling stresses and corresponding mode shapes
is the cornerstone of dependable structural designs and constructing a straightforward
technique can give an acceptable method. Because of the issue’s difficulty, most academics
investigated the buckling performance of rectangular sheets with perforations and isotropic
support using the FEM or Rayleigh-Ritz techniques [17–20].

Numerical, experimental, and analytical methods and their combinations have been
used in several important investigations. The impact of a rectangular cut-out on a plate
was studied by Suneel Kumar et al. [21]. Several cut-out dimensions, slenderness ratios,
and area ratios were employed to get the required result. The impact of changing different
factors on the ultimate strength of a plate subjected to axial compression was determined.
Ansys simulation was used to verify the findings. The consequences of perforations on the
buckling behavior of planes in a linear manner were investigated by Maiorana et al. [22].
Under compressive stresses, the boundary condition completely supported all edges, and
circular and square holes were studied. The findings were reported on graphs for circular
and square perforations with variations in the position of the cut-outs. Sandeep Singh
et al. [23] investigated the effect of partial edge compression, modification in aspect ratio,
and the effects of cut-outs on buckling load, discovering that partial edge compression had a
larger effect on buckling strength than uniform edge compressive load, and panels without
holes had a greater critical load than panels with perforation. Although the effect of partial
edge compression on buckling load was less clear. Dadrasi [24] investigated the buckling
performance of punctured steel plates with rectangular shapes when subjected to uniaxial
compressive stress. Cut-outs in a circle or square were utilized in a variety of loading
bands, numeral, and empirical findings. For finite element analysis, ABAQUS software
was employed, and for an experimental study, a group of servo-hydraulic INSTRON8802
was utilized. The findings for plates with or without cut-outs were inspected. They found
that the critical buckling load ascended as the loading band broadened and, furthermore,
that the buckling load for plates with a circular cut-out was higher than for plates with
square cut-outs. Djelosevic et al. [25] investigated the elastic stability of panels with varied
perforation geometry. For circular, square, and rectangular apertures, several variables’
influence on the plate’s elastic stability, such as opening form, size, and direction, was
investigated, and a sensitivity factor was constructed. The presence of holes, they found,
decreased the deformation energy. Whenever thin rectangular plates with cut-outs in the
shape of a circle were uniaxially loaded, instability arose far before the yield point, and it
occurred prior to the yield point of the panel material when the plates were thick, according
to Mauro et al. [26]. The effect of change in plate thickness with a hole regarding plate
buckling was investigated by Mohamazadeh and Noh [27]. The buckling coefficient and
buckling stresses were determined using the Gerard and Becker formulas. They compared
plates with cut-outs against plates without perforations and discovered that if there was an
increase in the thickness of the plate, the buckling load and stress also increased. They [28]
also examined the effect of perforations on the buckling of thin plates. ABAQUS was used to
perform the simulations, and critical values for buckling load and corresponding stress were
computed for variations in hole diameter and plate thickness. Shariati et al. [29] studied
the buckling behavior of a panel in the shape of a rectangle with a circular hole at various
points on the panel under various boundary circumstances, and found that the boundary
circumstances had a substantial effect on the buckling behavior. For different aspect ratios,
Jana [30] investigated the buckling performance of a rectangular sheet composed of a simple
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support border for uniform axial compressive loads with a circular cut-out. For changes in
perforation size, aspect ratio, and thickness of the plate, eigenvalue buckling analysis was
performed. Using Ansys and MATLAB, he discovered that the ideal perforation location for
the highest buckling load is in the middle of the axis on which the stress is applied. Giulio
Lorenzini et al. [31] investigated the impact of several types of cut-outs on the buckling of
the plate and discovered that by selecting the right cut-out method, a high performance
might be achieved, i.e., performance could be improved by eliminating a similar quantity
of material. Using the Ritz energy equation, Adah et al. [32] develop MATLAB software to
determine the critical buckling load for a rectangular plate with an axial compression force.
Researchers determined critical buckling coefficients for a variety of boundary conditions
and then compared their results to existing literature. By examining the increase in buckling
stress caused by cut-outs, Blesa, Gracia, and Rammerstorfer [33] determined that cut-outs
can enhance plate buckling strength while decreasing weight. Caio César Cardoso da Silva
and colleagues [34] looked into the impact of hexagonal opening geometric arrangements
on buckling mechanical characteristics and found that a longitudinally hexagonal cut-out
outperforms an oblique hexagonal cut-out. The basic buckling of annular and circular
plates with guided edges [12,35] and elastic edges [36,37] was investigated by Rao and Rao.
They did not, however, consider the perforation in their research. Using the finite element
approach, Sinha et al. [5] performed a buckling study on stainless-steel plates either with
or without perforation. The influence of plate length, thickness, and diamond-shape hole-
size on buckling load values was investigated. The purpose of Gore and Lokavaraput’s
research [1] was to explore how material characteristics and geometrical modifications
influenced the buckling load bearing capacity of rectangular flat sheets joined on both sides.
A comparison was made between a solid plate and a plate with a perforation. Variations
in the orientation of the elliptical perforation and the greatest buckling load that could
be attained were explored. Fu and Wang [38] devised a new phenomenological galaxy
formation model for the critical buckling load of perforated plates with characteristic
equations based on the Timoshenko shear beam theory. The suggested model’s results
were compared to those produced using FEM and found to be in excellent agreement.
Using FEM, Hosseinpour et al. [39] investigated the behavior of steel plates with a central
circular cut-out when exposed to compressive axial force. As a consequence, an ANN-based
formula for determining perforated steel plate’s ultimate strength was developed, and its
reliability was contrasted to that of previous research formulas.

As stated above, the buckling examination of plates with varied perforation shapes,
sizes, orientations, and locations has been the subject of various research. Their findings
showed that plate buckling is influenced by perforations’ form, size, and direction. Yet,
there are several opportunities to investigate the influence of these factors in various
combinations [5]. Plates are integral structural members with wide applications in civil
engineering, aerospace, and shipbuilding. They are used in construction as it reduces
the weight of structures considerably. They are used as the main load-carrying structural
member in all these applications. Columns are one-dimensional load-carrying members and
plates are two-dimensional load-carrying members used in buildings, bridges, airplanes,
and ships. Buckling is the major failure phenomenon observed in plates. Buckling happens
when plates are subjected to axial compressive loads. It is important to ensure that plates
fail by yielding rather than by buckling. This can be done by keeping the critical buckling
stress above yield stress. The support conditions of the plates affect the critical buckling
load. The width-thickness ratio of the plates can be adjusted to ensure that buckling stress
is above yield stress for different support conditions. Analytical formulas are available
for calculating the critical buckling load in plates with different support conditions [40].
Openings or cut-outs are provided in plate elements for increasing the serviceability of
the plate structural elements used in structures. The presence of openings always changes
the load-carrying capacity and structural stability of plate structures. Openings create a
redistribution of stresses and change the buckling behavior. It develops stress concentration
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around the openings. Openings reduce the mass of the plates, and it has been found that
the presence of openings increases the critical buckling load capacity of plates [41,42].

Analysis of plates with openings is very complex, and due to this complexity, finite
element methods (FEM) are usually sought after for such analyses, which are validated
using experimental methods. Many FEM and experimental studies have been conducted
to study the behavior of plates with openings [43,44]. While experimental studies are de-
structive and costly, FEM studies are less costly, non-destructive, and less time-consuming.
Using the data sets from experimental and FEM studies, the critical buckling load of plates
with openings has been calculated using the buckling coefficient method [45] and predicted
using various statistical methods [46]. Meanwhile, Wu et al. [47] deployed the differential
quadrature method (DQM) to analyze the isotropic and composite laminated plates and
shells with particular consideration to the hierarchical finite element method (HFEM). This
research utilized the layer-wise theory with linear expansion in each layer to develop a
p-version curved laminated composite. It was found that this method used fewer degrees
of freedom and less input data to model a complicated case based on interpolation on arc
length coordinates. The Bezier method was also used by Kabir et al. [48] for nonlinear
vibration and post-buckling of random checkerboard composites reinforced with graphene
nano-platelets. This robust Bezier-based solution recommended a probabilistic model to
determine a matrix modulus of the graphene nano-platelets reinforced composite.

Artificial intelligence (AI) has many applications to the civil engineering field, specifi-
cally in predicting the buckling load of stiffened panels, imperfect reticulates shells, and
thin cylindrical shells [49–52]. It can reduce the complexity of practical civil engineering
problems to a large extent by making use of already existing experimental studies and
results. Civil engineering design practices have moved from their infancy to a state of ma-
turity through the development of design codes. These design codes have been developed
based on years of exhaustive experimental studies conducted in relevant areas. AI is one
step ahead of these methods due to its capacity to handle large data sets [53,54]. This will
bring more accuracy to the results predicted. In this research paper, the critical buckling
load of rectangular steel plates with circular cut outs loaded with uniaxial compressive
load was predicted with different AI techniques.

2. Materials and Methods
2.1. Steel Setup and Experimental Data Collection

In the present study, a critical buckling load of rectangular steel plates with circular
cut-outs loaded with uniaxial compressive load as depicted in Figure 1 was studied.
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Figure 1. Uniaxial loaded steel plate with a centrally placed circular opening under uniformly
distributed loading (UDL).

The support conditions considered are simply supported on all four sides (SSSS),
clamped free clamped free (CFCF) and simply supported clamped simply supported
clamped (SCSC). Figure 2 depicts the various support conditions.
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Figure 2. Support conditions of the steel plate.

The independent variables considered are the aspect ratio (length/breadth ratio) of
the plate, the thickness of the plate, and the radius of the circular opening, whereas the
dependent variable is the buckling load. AI techniques like genetic programming, artificial
neural network, and evolutionary polynomial regression have been used to predict the
critical buckling loads of steel plates.

2.2. Collected Database and Statistical Analysis

At the end of the loading exercise, 103 experimental test results were collected for
rectangular steel plates with centrally placed circular holes with different configurations as
presented in the Appendix A to determine their buckling load. Each record contains the
following data:

• Aspect ratio (length/width) (L/W),
• Slenderness ratio (width/thickness) (W/t),
• Loss ratio (hole diameter/width) (D/W),
• Boundary conditions (buckling coefficient in width dir. x buckling coef. in length dir.)

(Kx.Ky), where K = 2.00 for clamp-free, 1.00 for simple-simple, 0.75 for simple-clamp,
and 0.50 for clamp-clamp,

• Relative buckling stress (buckling stress/yielding stress) (Fb/Fy), where buckling
stress = buckling load/net area = Pb

(L−D)t

The collected records were divided into training (73 records) and validation sets (30
records). The validation set (testing set) was randomly selected and it was the hold-out of
the training process and used to test the trained model. Tables 1 and 2 summarized their
statistical characteristics and the Pearson correlation matrix. Finally, Figure 3 shows the
histograms for both inputs and outputs.

Table 1. Statistical analysis of collected database.

(L/W) (W/t) (D/W) (Kx.Ky) (Fb/Fy)

Training set
Min. 1.00 41.67 0.08 0.50 0.01
Max. 10.00 700.00 0.90 4.00 1.02
Avg 1.80 92.10 0.21 2.51 0.36
SD 1.51 113.76 0.17 1.60 0.32
Var 0.83 1.24 0.82 0.64 0.88

Validation set
Min. 1.0 20.0 0.1 0.5 0.0
Max. 10.0 500.0 0.6 4.0 1.0
Avg 2.1 90.0 0.2 2.0 0.3
SD 1.8 98.5 0.2 1.6 0.3
Var 0.82 1.09 0.83 0.79 0.91
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Table 2. Pearson correlation matrix.

L/W W/t D/W Kx.Ky Fb/Fy

L/W 1.00
W/t 0.04 1.00
D/W −0.14 −0.21 1.00
Kx.Ky −0.28 −0.44 0.28 1.00
Fb/Fy −0.31 −0.27 −0.11 −0.23 1.00
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2.3. Research Program

Three different artificial intelligence (AI) techniques were used to predict the buckling
stress of perforated plates or plates with cut outs. These techniques are gene expression
programming (GEP), artificial neural network (ANN) and polynomial linear regression
optimized using a genetic algorithm which is known as evolutionary polynomial regression
(EPR). All three developed models were used to predict the values of relative buckling
stress (Fb/Fy) using an aspect ratio (L/W), slenderness ratio (W/t), loss ratio (D/W), and
boundary conditions (Kx.Ky). Each model of the three developed models was based on a
different approach (evolutionary approach for GEP, mimicking biological neurons for ANN,
and optimized mathematical regression technique for EPR). However, for all developed
models, prediction accuracy was evaluated in terms of the sum of squared errors (SSE).

The following section discusses the results of each model. The performance accuracies
of developed models were evaluated by comparing the (SSE) between predicted and
calculated (Fb/Fy) values.
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3. Results and Discussion
3.1. Prediction of Relative Buckling Stress (Fb/Fy)
3.1.1. Model (1)—Using GEP Technique

The developed GP model started with 50 gene/chromosomes and settled at 250 gene/
chromosomes. The population size, survivor size, and number of generations were 1000,
300, and 200, respectively. Equation (1) presents the output formulas for Fb/Fy,. The
average error percentage of the total set is 22.7%, while the R2 value is 0.932.

Fb
Fy = 0.9

(
W
L

)exp ( W
C.L )

+
(√

W/D
Kx.Ky + W

5.6D

)( t
W
)(

1− D
W

)
where C = 0.422

( √
D/W

(W/D)−log(0.42 Kx.Ky) + 1
) (1)

3.1.2. Model (2)—Using ANN Technique

A GRG-trained ANN with one hidden layer and a HyperTanh activation function was
used to predict the same Fb/Fy values. The used network layout of a 4-4-1 ANN model
and its connation weights are illustrated in Figure 4 and Table 3. The developed ANN was
created and trained using SPSS software. It was sequentially trained with a learning rate
of 0.05, the model stopped training when the reduction in errors between two successive
epochs was less than 1%. Since ANN has a nonlinear activation function, it cannot be
converted into an equivalent equation. The average error percentage of the total dataset for
this network is 10.4% and the R2 value is 0.986. The relative importance values for each
input parameter are illustrated in Figure 5, which indicated that the aspect ratio (L/W) was
the most important factor, followed by the sereneness ratio (W/t), while other factors have
less influence, which agrees with a previous work [55].
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Table 3. Weight matrix for the developed ANN model.

H1 H2 H3 H4

(Bias) 13.70 1.37 9.75 8.58
L/W 10.88 −6.93 2.93 13.16
W/t −3.84 3.82 21.04 −3.67
D/W −0.63 −0.49 −1.57 0.85
Kx.Ky −5.89 7.93 −3.19 −3.07

H1 H2 H3 H4 (Bias)

Fb/Fy −5.23 −10.61 −27.02 −10.32 −22.31
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3.1.3. Model (3)—Using EPR Technique

Finally, the developed EPR model was limited to quadrilateral level, for 4 inputs; there
are 70 possible terms (35 + 20 + 10 + 4 + 1 = 210) as follows:

i=4

∑
i=1

j=4

∑
j=1

k=4

∑
k=1

l=4

∑
l=1

Xi.Xj.Xk.Xl +
i=4

∑
i=1

j=4

∑
j=1

k=4

∑
k=1

Xi.Xj.Xk +
i=4

∑
i=1

j=4

∑
j=1

Xi.Xj +
i=4

∑
i=1

Xi + C

The GA technique was applied to these 70 terms to select the most effective 10 terms
to predict the values of Fb/Fy. The outputs are illustrated in Equation (2). The average
error percentage and R2 values were 15.3% & 0.970 for the total datasets. The results of all
developed models are summarized in Table 4.

Fb
Fy =

Kx.Ky.L2

4165 W.D +
Kx.Ky.W.D+53540 t2

605 L.t +
1.7W(2.1Kx.Ky−1)

L(Kx.Ky)3

−
(

W
L

)2( 30760 t+W
41565 t

)
+

28.9 t[1−(2 Kx.Ky)2]
W(Kx.Ky)3 − 0.25

(2)

Table 4. Accuracies of developed models.

Technique Developed Eq. SSE Error % R2

GEP Equation (1) 0.65 22.7 0.932
ANN Figure 2 0.14 10.4 0.986
EPR Equation (2) 0.30 15.3 0.970

The relations between calculated and predicted values for all developed models are
shown in Figure 6.
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4. Conclusions

This research presented three models using three AI techniques (GEP, ANN and
EPR) to predict the values of relative buckling stress (Fb/Fy) using an aspect ratio (L/W),
slenderness ratio (W/t), loss ratio (D/W), and boundary conditions (Kx.Ky). The results of
comparing the accuracies of the developed models can be concluded in the following points:

- Both ANN and EPR have the most similar prediction accuracy, 89.6% and 84.7%,
respectively, while the GEP model has the lowest prediction accuracy (77.3%).

- Although, the error percentage of the ANN and EPR models were so close, the output
of the EPR model was closed form equations which could be manually used or as
software unlike the ANN output which cannot be manually used.

- The summation of the absolute weights of each neuron in the input layer of the
developed (ANN) model indicated that aspect ratio (L/W) had major influences on
the relative buckling stress rather than the slenderness ratio (W/t), while the loss ratio
(D/W) and boundary conditions (Kx.Ky) had less impact on (Fb/Fy).

- The GA technique successfully reduced the 70 terms of conventional polynomial regres-
sion quadrilateral formula to only 10 terms without significant impact on its accuracy.
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- Like any other regression technique, the generated formulas were valid within the
considered range of parameter values, beyond this range the prediction accuracy
should be verified.
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Appendix A. Utilized Database

L/W. W/t. D/W. Kx.Ky Fb/Fy. L/W. W/t. D/W. Kx.Ky Fb/Fy.

1.5. 48. 0.20. 4.0. 0.25. 1.5. 48. 0.35. 1.0. 0.08.
1.5. 48. 0.50. 4.0. 0.25. 1.5. 48. 0.20. 4.0. 0.25.
1.5. 48. 0.40. 4.0. 0.24. 5.0. 200. 0.10. 0.5. 0.02.
1.0. 63. 0.08. 1.0. 1.02. 1.5. 48. 0.10. 4.0. 0.23.
1.5. 48. 0.10. 4.0. 0.29. 1.7. 600. 0.10. 0.5. 0.02.
1.5. 48. 0.40. 4.0. 0.26. 1.5. 48. 0.30. 4.0. 0.28.
1.5. 48. 0.25. 1.0. 0.07. 1.5. 48. 0.50. 4.0. 0.30.
1.0. 83. 0.11. 1.0. 0.95. 1.5. 48. 0.70. 4.0. 0.37.
1.5. 48. 0.50. 4.0. 0.30. 1.5. 48. 0.10. 4.0. 0.24.
1.0. 50. 0.16. 1.0. 0.90. 1.0. 42. 0.16. 1.0. 0.96.
1.6. 48. 0.10. 4.0. 0.17. 2.5. 400. 0.10. 0.5. 0.02.
1.0. 63. 0.14. 1.0. 0.95. 2.0. 100. 0.50. 1.0. 0.17.
1.1. 48. 0.10. 4.0. 0.45. 10.0. 50. 0.10. 0.5. 0.07.
1.5. 48. 0.30. 4.0. 0.24. 1.5. 48. 0.30. 4.0. 0.25.
1.0. 63. 0.11. 1.0. 1.01. 1.5. 48. 0.15. 4.0. 0.13.
2.5. 80. 0.10. 0.5. 0.39. 1.5. 48. 0.08. 1.0. 0.05.
1.5. 48. 0.30. 4.0. 0.26. 3.3. 300. 0.10. 0.5. 0.02.
1.5. 48. 0.50. 4.0. 0.31. 1.5. 48. 0.10. 4.0. 0.20.
1.0. 50. 0.14. 1.0. 0.79. 1.4. 700. 0.10. 0.5. 0.01.
2.0. 100. 0.10. 0.5. 0.39. 10.0. 100. 0.10. 0.5. 0.02.
1.0. 83. 0.14. 1.0. 0.93. 1.5. 48. 0.60. 4.0. 0.22.
1.1. 48. 0.10. 4.0. 0.49. 2.0. 100. 0.60. 1.0. 0.20.
1.0. 100. 0.08. 1.0. 0.98. 1.1. 48. 0.10. 4.0. 0.51.
1.7. 120. 0.10. 0.5. 0.38. 2.0. 100. 0.30. 1.0. 0.14.
2.0. 100. 0.40. 1.0. 0.15. 1.5. 48. 0.10. 4.0. 0.28.
1.5. 48. 0.10. 4.0. 0.23. 1.5. 48. 0.50. 4.0. 0.34.
1.5. 48. 0.20. 4.0. 0.23. 2.0. 250. 0.10. 0.5. 0.06.
1.0. 83. 0.08. 1.0. 0.99. 1.1. 48. 0.10. 4.0. 0.51.
2.1. 48. 0.10. 4.0. 0.09. 2.0. 100. 0.10. 1.0. 0.11.
2.1. 48. 0.10. 4.0. 0.09. 1.5. 48. 0.40. 4.0. 0.28.
2.1. 48. 0.10. 4.0. 0.09. 3.3. 60. 0.10. 0.5. 0.40.
1.0. 83. 0.16. 1.0. 0.90. 1.5. 48. 0.40. 1.0. 0.16.
1.5. 48. 0.08. 4.0. 0.12. 2.1. 48. 0.10. 4.0. 0.08.
1.4. 350. 0.10. 0.5. 0.06. 1.0. 50. 0.08. 1.0. 1.03.
3.3. 150. 0.10. 0.5. 0.07. 2.0. 500. 0.10. 0.5. 0.02.
1.5. 48. 0.40. 4.0. 0.29. 10.0. 20. 0.10. 0.5. 0.44.
1.5. 48. 0.60. 4.0. 0.31. 1.6. 48. 0.10. 4.0. 0.19.
1.0. 100. 0.11. 1.0. 0.93. 1.7. 300. 0.10. 0.5. 0.06.
2.1. 48. 0.10. 4.0. 0.09. 1.0. 63. 0.16. 1.0. 0.90.
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L/W. W/t. D/W. Kx.Ky Fb/Fy. L/W. W/t. D/W. Kx.Ky Fb/Fy.

1.4. 140. 0.10. 0.5. 0.35. 1.6. 48. 0.10. 4.0. 0.20.
1.0. 42. 0.11. 1.0. 1.02. 1.5. 48. 0.15. 1.0. 0.06.
1.5. 48. 0.10. 4.0. 0.22. 1.5. 48. 0.60. 4.0. 0.31.
1.6. 48. 0.10. 4.0. 0.17. 1.5. 48. 0.45. 1.0. 0.20.
1.5. 48. 0.20. 4.0. 0.25. 1.5. 48. 0.50. 1.0. 0.23.
2.0. 100. 0.20. 1.0. 0.12. 1.5. 48. 0.10. 4.0. 0.22.
1.5. 48. 0.25. 4.0. 0.14. 5.0. 100. 0.10. 0.5. 0.07.
1.5. 48. 0.90. 4.0. 0.52. 1.0. 42. 0.14. 1.0. 1.02.
1.5. 48. 0.10. 4.0. 0.21. 2.5. 200. 0.10. 0.5. 0.06.
1.0. 100. 0.14. 1.0. 0.92. 1.0. 50. 0.11. 1.0. 1.01.
1.1. 48. 0.10. 4.0. 0.49. 1.6. 48. 0.10. 4.0. 0.19.
1.5. 48. 0.38. 4.0. 0.21. 5.0. 40. 0.10. 0.5. 0.41.
1.0. 100. 0.16. 1.0. 0.88. . . . . .
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