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Abstract: A comprehensive model for micro-powered piezoelectric generator (PG), analysis of opera-
tion, and control of voltage doubler joule thief (VDJT) circuit to find the piezoelectric devices (PD’s)
optimum functioning points are discussed in the present article. The proposed model demonstrates
the power dependence of the PG on mechanical excitation, frequency, and acceleration, as well as
outlines the load behaviour for optimal operation. The proposed VDJT circuit integrates the combina-
tion of voltage doubler (VD) and joule thief circuit, whereas the VD circuit works in Stage 1 for AC
(alternating current)–DC (direct current) conversion, while a joule thief circuit works in Stage 2 for
DC–DC conversion. The proposed circuit functions as an efficient power converter, which converts
power from AC–DC and boosts the voltage from low to high without employing any additional
electronic components and generating duty cycles. The electrical nature of the input (i.e., PD) of
a VDJT circuit is in perfect arrangement with the investigated optimisation needs when using the
proposed control circuit. The effectiveness of the proposed VDJT circuit is examined in terms of
both simulation and experiment, and the results are presented. The proposed circuit’s performance
was validated with available results of power electronics interfaces in the literature. The proposed
circuit’s flexibility and controllability can be used for various applications, including mobile battery
charging and power harvesting.

Keywords: AC–DC power conversion; DC–DC power conversion; joule thief circuit; voltage doubler;
rectifier circuit; piezoelectric material; energy harvesting; rectifier

1. Introduction

A piezoelectric generator (PG) is a trending technology that transforms mechanical
vibration/oscillation, which is freely and readily available in the atmosphere, into electrical
power (EP), that is, alternating current/voltage (AC). The scientific world has increased
its focus on piezoelectric energy harvesting (PEH) devices during the past decade. In
practice, PGs are confined to low-power domains in the micro/milliwatt category caused
by physically constrained features like internal capacitance and resistance [1–4]. They
can withstand extremely high pressure but have minimal strain and make huge material
quantities challenging to use [5–9]. In contrast, most anticipated excitations are generally in
the range of 0.1 to 1 kHz and produce low voltage levels, whereas most electronic equipment
requires 3 to 5 V dc. Yet, the primary purpose of the PEH process is to operate small-scale
electronic devices, including tiny batteries, quartz clocks, and animal tracking [10–13].

It should be noted that the employed PG in the PEH process creates AC voltage due to
oscillations from the atmosphere. However, direct current (DC) is requisite for most power
electronic equipment. Consequently, the PEH process necessitates a power harvesting
circuit (PHC) known as a rectifier circuit for the rectification (i.e., AC–DC conversion) to
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utilise the produced power effectively. The schematic diagram of the PEH system used in
the current investigation is shown in Figure 1.
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Figure 1. Schematic diagram of the PEH process.

The easiest and most straightforward way to convert AC–DC is using a conventional
full-bridge rectifier circuit (FBR) compromise of four diodes. Thus, due to its forward
voltage across each diode, the output of the FBR circuit is low. Several single and dual-stage
power harvesting interfaces have been proposed in the existing literature to overcome this
issue [14–17]. The single-stage circuit is utilised for AC–DC conversion, whereas the dual-
stage circuit is employed for conversion, namely AC–DC and DC–DC. Figure 2. depicts a
flow chart of both single and dual-stage circuits. The easiest approach to converting AC to
DC is with a single-stage H-Bridge rectifier (HBR) circuit [11,18–20] to address the forward
voltage, Vf issues of conventional diodes in the FBR circuit. Nonetheless, the HBR circuit’s
outcome, in terms of output voltage and power, was limited, and the design parameters
were not appropriately defined.
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A dual-stage HBR circuit was proposed by Edla et al. [21] to address the abovemen-
tioned output voltage and power limitations. The DSHBR circuit also boosts the low output
voltage into a high output voltage. In addition, it satisfactorily charged a battery with
ratings of 1.2 V dc and 4 mA. However, due to the complex conversion processes (AC–DC
and DC–DC), the power losses in the DSHBR circuit were more than the supplied power.
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Moreover, the DSHBR circuit employed additional devices such as auxiliary integrated
circuits (ICs), multiple capacitors, and Zener diodes, resulting in significant energy dissi-
pation, expense, and complexity in design. The suggested DSHBR circuit’s yield was still
inadequate, and this investigation did not give acceptable electrical performance for the
optimisation approach.

Another approach by Shareef et al. [22,23] proposed a rectifier-less AD-DC conversion
by utilizing the synchronous inductor method and cold start-up characteristic to obtain
efficient performance (only 0.65 mV ac was required for harvesting output of 254 µW).
This approach, however, was inefficient because it also employed additional components,
such as three capacitors, one digital logic controller, a polarity detector, three PGs, and a
millihenry spectrum of the inductor. As a result, device miniaturisation was adamant and
had high power consumption.

Later, another approach by Edla et al. [24] proposed a single-stage rectifier-less boost
converter circuit for harvesting power from high-frequency excitations. The designed
single-stage rectifier-less boosts converter (SSRBC) circuit used a PG as an impedance
source. It employed two split inductors and one filter capacitor to integrate boost and
buck-boost techniques. The designed integrated SSRBC circuit configuration worked in
both positive and negative half-cycles. In their designed topology, inductors were energised
by being enveloped by the current generated by the PG through the transistors. This aided
active rectification of ultra-low amplitude (i.e., input voltage < 0.5 V ac). The proposed
circuit converted an input voltage of 0.5 V ac that the PG generates to 5.1 V dc, which
may help develop vibration-based power conversion circuits for limited power devices,
including sensors, quartz timepieces, and portable chargers. However, this circuit was
adamant due to the employed additional components, namely polarity detectors, logic
gates, multiple inductors, switches, and transistors.

Another approach, namely the buck-boost converter circuit, was proposed by
Elie et al. [25] to address the low output voltage and power challenges and achieve a
high outcome. The proposed circuit included two stages (AC–DC and DC–DC), several
capacitors, and a sensorless IC to activate the transistors, increasing power dissipation
above an acceptable limit.

Khushboo and Azad reported the performance of synchronised power harvesting on
inductors for triboelectric power generation [26]. The proposed methodology included
a piezoelectric nanogenerator (PENG), a vertically moving arrangement of polytetrafluo-
roethylene, nylon, copper, and aluminium sheets. A convenient interface and series and
parallel coordinated transistor harvesting on inductor (SSHI) circuits were used to examine
and optimise the electrical performance of PENG’s electrical interface. The series SSHI
circuit dramatically increased the power extracted from piezoelectric ceramic materials
during walking. The proposed series-SSHI circuit generated an output dc voltage of 32.78 V
and dc output power of 55.90 µW with capacitance and resistance of 1 µF and 25 MΩ.
However, the proposed circuit comprised several diodes, inductors, and switches, which
resulted in high power dissipation.

Another method for increasing electrical output is using a non-linear switching process
by employing additional components, namely metal-oxide-semiconductor field-effect-
transistor (MOSFETs), additional inductors, polarity detectors, logic gate ICs, additional
DC power supply to activate the logic gate ICs, and comparators [4,27–30]. However, the
proposed circuits employed several auxiliary components and large inductors, diodes, and
transformers, making them unsuitable for use in the present examination, which intended
to minimise the size of the power electronics circuit (PEC), device compactness and pricing.

Most of the literature from the abovementioned literature focused on improving the
low AC voltage into high DC voltage by switching methods and employing additional
components. However, no attempt has been made to minimise conventional diodes and
boost or stabilise the output voltage without utilizing additional components.

Therefore, to overcome this shortcoming of traditional circuits, the authors employed
a combination of conventional VD [31], and the joule thief circuits from the literature [25].
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The advantages of the proposed circuit are explained here. By employing VD and Joule
thief circuits combination, the proposed circuit minimises the forward voltage losses
across the diodes in the AC–DC conversion process (i.e., eliminating two diodes). It then
boosts the rectified voltage into high DC voltage without employing polarity detectors,
additional capacitors, inductors, Zener diodes, logic gates, or auxiliary circuits. In addition,
the proposed circuit requires no maintenance and possesses the feature of self-powering
controllability.

It can be noticed that most of the switching components were eliminated in the
proposed circuit, as summarised in Table 1. The components elimination process results in
a device miniaturisation process and low power consumption.

Table 1. List components that are employed in the proposed circuit.

Similar Circuits
Components–Quantity

Diodes MOSFETs Switch
Drivers

Additional
ICs Inductors Load

Capacitors
Load

Resistors
Auxiliary
Circuits

FBR [32] 4 (0.67 Vf) 0 0 0 0 1 1 0

Dual-stage buck-boost
converter [25] 5 1 1 1 1 3 1 0

SSRBC [24] 3 4 2 0 2 1 1 1

Hybrid rectifier [33] 3 4 1 0 2 1 1 0

Proposed VDJT 2 1 0 0 2 1 1 0

The proposed circuit is anticipated to be efficient because of its capacity to minimise the
stress between switches and inductors. In addition, it does not include any supplementary
interfaces to reduce conversion losses and costs. Because the proposed circuit asserts a
unique design and structure that does not use any effective control logic function, it is
anticipated to lessen the requirements on the supplementary controlling interfaces while
increasing the system’s total efficiency. It is expected to work for mobile battery charging
and power harvesting implementations.

2. PG Internal Characteristics and Power Conversion Circuits

This part describes the PG’s internal circuit modeling and explanation of the VD circuit
when exposed to excitation, followed by the proposed VDJT circuit.

2.1. PG Circuit Model

The PEH technology is comprised of three major components: the mechanical interface,
the PEC, and the energy storage device. The PGs are frequently positioned on cantilever
beams. When the PG is subjected to excitement, it can function as a current supply in
parallel to the internal capacitance, CP, as depicted in Figure 3a. Alternately, it also can
be considered as voltage in series with its internal capacitor, CP [5,24,34–36]. The internal
characteristics of the PG in AC voltage (i.e., positive and negative cycles) are explained
below and depicted in Figure 3b [5,8,9,11,37–42].

From Figure 3, it can be seen that the produced PG current, iac, due to mechanical
excitation, is expected to charge and discharge its internal capacitor, CP, in both half cycles.
While charging its CP, no output power (i.e., AC) is anticipated from the PG. This transition
is also known as the non-harvesting period (NHP). When the CP is fully charged, the PG’s
output power flows through its electrodes and rectifies through the PEC. This period is
called the harvesting period (HP). NHP and HP occur in both positive and negative cycles.
The intervals 1, 3 (i.e., t0–1, t2–3) and 2, 4 (i.e., t1–2, t3–4) represent NHP and HP, respectively.
In other words, the PG’s output current flows through the electrodes and rectifies through
the PEC.
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The generated current by the PG as a result of its mechanical stimulation may be
represented as [6,11,34,37]:

i ac(t) = Î acsin(ωt) (1)

where Î ac andω are the magnitude of current and angular frequency, respectively (while t
is the time).

2.2. VD Circuit

The traditional VD circuit operates in Stage 1 and in alternating modes since AC
incorporates both cycles, positive and negative. The VD circuit’s diodes are on and off and
retain rectified voltage, V dc, in the load capacitor, CL1.

The operating modes of the VD circuit are summarised below:

Mode 1: Positive half cycle

Interval 1 (Period: NHP):

- No output
- D1: OFF

Interval 2 (Period: HP):

- D1: ON
- V ac = V dc (C1: Charged)

Mode 2: Negative half cycle

Interval 3 (Period: NHP):

- No output
- D2: OFF

Interval 4 (Period: HP):

- D2: ON
- V ac = V dc (C2: Charged)

Then, each of the voltages across the capacitors, C1, and C2, are added up to give the
total output voltage. As a result, the VD circuit’s output voltage is doubled and stored in
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the load capacitor, CL1. The VD circuit’s output power varies with rectified voltage [11,43],
and the optimum power output occurs when [5,8,9,11,37–42]:

V dc =
Î ac(t)
2ωCP

(2)

The rectified power output, PO (t), and the load capacitor, CL1, are related according
to the following equation:

〈PO(t)〉 =
2 V dc
π
− (Iac −V dcωCP) (3)

2.3. VDJT Circuit

The proposed VDJT circuit encompasses Stages 1 and 2 and has six operational modes
and is shown in Figure 4. As the VDJT circuit is regarded as an extension of the VD circuit
(i.e., Stage 1), the functioning of Modes 1 and 2 of the VD and VDJT circuits is anticipated
to be identical. As a result, the operation of Modes 3 to 6 is solely covered in this section.
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C1–2: 0.27 µF, CL1: 47 µF, R1: 0.1 kΩ, L1–2: 47 µH).

Mode 3: Primarily, the switch Q1 is OFF. When both cycles are complete in Modes 1–2,
the current runs through the CL1 (positive terminal), primary winding (L1), resistor (R1),
base-emitter (B-E), and CL1 (negative terminal). As a small current passes through the
secondary winding (L2), the collector–emitter (C-E) becomes slightly conductive.

Mode 4: Since L1 and L2 are coupled in opposite directions, they induce the voltage in
L2, i.e., positive, and turn the transistor on with a higher force. Because both L1 and L2 are
coupled in opposing ways, both create magnetic fields.

Mode 5: In this mode, the voltage induced in the L1 makes the B-E terminal widely
(Q1: ON). Consequently, more current runs through the C-E terminal. In another way,
increasing the voltage in the L1 increases the current flow through the L2 and C-E.

Mode 6: In this mode, once the core is saturated, there is no more variation in a
magnetic field. Therefore, the induced voltage in the L1 disappears (Q1: OFF), and the path
between the C-E is in non-conduction mode. Subsequently, the current flows through the
different paths through the diode, D1, charges the load capacitor, CL2, and powers the load
resistor, RL1. Later, the same procedure is reverted to Mode 1.

Since this study mainly focused on the PEC, the obtained output power through the
proposed circuit is an essential parameter for validating the effectiveness of the VDJT circuit
versus the currently utilised circuits in the research. In other words, the proposed energy
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harvesting circuits’ primary function is to harvest the maximum power. As a result, the
PG’s average input power, P ac, may be represented as [21,31]:

P ac = V ac× i ac =
VP√

2
· IP√

2
·cosϕ (4)

where V ac, iac, VP, IP are the mean and peak voltage and current; correspondingly,
ϕ denotes the phase difference between PG’s voltage and current [31].

The accumulated output DC voltage through the VDJT circuit can be deemed constant
due to using Modes 1 to 6. As a result, the VDJT’s output can be computed as the product
of the output voltage across its load capacitor, CL2, and current through its load resistor,
RL1 [31].

3. Simulation Results

The proposed circuit’s primary function is to be used in battery recharging and power
harvesting applications. Thus, to validate the applicability of the proposed circuit, it is
evaluated using two distinct power sources: ideal sinusoidal AC voltage and impedance
source (i.e., PG). This can be considered an advantage since the proposed circuit can also
be used with the ideal source (refer to Section 3). The proposed circuit’s effectiveness was
also verified with an impedance source, namely PD (i.e., Section 4).

In the LTspice software, the ideal sinusoidal AC voltage is adopted and applied to
the proposed circuit. In the experimentation, the sinusoidal source is substituted with
a PG. When a sinusoidal AC signal is applied to the proposed VDJT circuit, the AC voltage
rectifies into DC, and rectified voltage is stored in the load capacitor, CL1 (i.e., Modes 1 to 2).
When the CL1 is sufficiently charged, the joule thief circuit process occurs, as explained in
Modes 3 to 6. The applied sinusoidal current to the VD circuit (Mode 1); a stored rectified
voltage in CL1 (Mode 2); the current enveloping process in the principal and secondary
windings (Mode 3 to 4) energised L2 and CL2 as a result of switching transition (Mode 5).
The stored output voltage (Mode 6), as a result of all modes 1 to 6, are all plotted inside the
framework of Figures 5–9, respectively.

It is worth emphasizing that the accumulated rectified voltage in CL1 is a VD circuit’s
outcome, while the stored output voltage in CL2 is a VDJT circuit’s outcome. In addition,
the VDJT circuit does not operate unless the VD completely charges the CL1.
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4. Experimental Results

A conventional piezoelectric cantilever beam was fabricated from an aluminum beam
(dimensions: 205 mm × 20 mm× 1 mm). One end was attached to an excitation/mechanical
shaker (model: APS-113), and the other end carried two electromagnets functioning as a proof
mass. A macrofibres composite (MFC) patch (M2814-P2, 37 × 17 × 0.180 mm: length, width,
thickness, CP = 33.90 nF) was bonded towards the fixed end of the cantilever beam, where the
maximum potential strain existed.

A sinusoidal signal was sent by a function generator (Agilent 33210A, Santa Clara, CA,
USA) to a power amplifier (2706, B & K Agilent), which boosted the input before triggering
the shaker. The shaker created electromechanical excitations based on input oscillation
amplitude and frequency to stimulate the cantilever beam. An inductance detector is used
to measure the acceleration of the base excitation beam. Therefore, as a result of excitations,
the patched PG creates AC from stimulation, which is used as an input voltage to the VDJT
circuit. Figure 10 depicts the suggested prototype model and breadboard execution. To
verify the feasibility of the proposed circuit, the VDJT circuit was evaluated using two
different test conditions.
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In Tests 1 and 2, the AC derived from the PG via VDJT was studied by adjusting the
circuit design. In Test 1, the VDJT was examined by varying input voltage (i.e., 5, 10, 15 V
ac: ±0.2 to 0.3) at a constant frequency (i.e., 2, 5 Hz), whereas Test 2 was examined with
constant voltage (i.e., 1 V ac) at different frequencies (i.e., 10, 15, 20, 25, 30 Hz). In both
scenarios, the applied voltage to the proposed circuit was measured two times during
the experimentation to ensure accuracy. However, little voltage fluctuations occurred
during the experimentation due to the mechanical excitations and the tolerance levels are
summarised above.

In Tests 1 and 2, the output voltage through the VDJT circuit was stored in a load
capacitor for a low current flow at a set voltage level. The attained voltage is then collected
by connecting each load capacitance in parallel with the load resistor. Then, the oscilloscope
(TBS 1052B) was used to measure the output voltage across the load capacitor. Then, the
output power was calculated using the product of the output voltage across the load
capacitor and current through the load resistor. A multimeter (DT 4200) was also used
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to verify the output voltage across the load capacitor. All the testing scenarios that are
investigated through the proposed circuit are shown in Table 2.

Table 2. Testing scenarios.

Scenarios Frequency (Hz) Input Voltage V ac
(V)

Load Capacitor
(µF)

Load Resistor
(kΩ)

Test 1 2, 5 5, 10, 15
10 10–70

Test 2 10, 15, 20, 25, 30 1

The output voltage and power through the VDJT circuit obtained from Test 1 are
depicted in Figure 11a,b. The proposed circuit’s outcome is examined with varying input
voltages of 5, 10, and 15 V ac and resistances from 10 to 70 kΩ.
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4.1. Test 1: Varying Input Voltage at a Constant Frequency

Figure 11a displays that increasing the load resistances from 10 to 70 kΩ boosts the
output voltage at a given frequency irrespective of the applied input voltage. It is also
worth noting that the VDJT circuit yielded the maximum output voltage at a load resistance
of 70 kΩ. In addition, the input voltage was higher than the Vf of the diodes in the Stage 1
circuit to obtain maximum functionality. The main reason for yielding high output voltage
is explained below.

Firstly, an input voltage of 5 V ac was applied to the proposed circuit at 2 Hz. As shown
in Table 2, when the input voltage was higher than Vf of the VDJT diodes (Stage 1), the
AC voltage was rectified into DC voltage and retained in the load capacitor, CL1. After CL1
is fully charged, the switch, Q1, is activated, and Stage 2 operation begins. As a result,
the accumulated current in CL1 flows in both windings, namely L1 and L2, whereas the
weak current goes via the terminal called C-E. Since L1 and L2 are connected in reverse
directions, the current induces a magnetic field in L1 and L2. The induced voltage in the L2
turned on the switch with a higher bias. This occurred as a result of a rapid switching
process, namely ON and OFF. Once the core was saturated, there was no change in the
magnetic field. Thus, the induced voltage in the primary winding disappeared.

Accordingly, the switch was turned OFF, and the stored L2′s magnetic field was
transferred via D1 and gathered in the CL2. Here, the stored voltage in the CL1 (Stage 1)
was represented by the rectified voltage, V dc, while the accumulated voltage in the CL2
was denoted by the output voltage, VO. Note that all the load resistors were connected in
parallel with the CL2, and the outcome was taken using an oscilloscope.

Similarly, other input voltages, namely 10 and 15 V ac, were applied at the same
frequency, and the output was taken, as shown in Figure 11a. When the output voltage was
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stored in CL2, the voltage across the terminals and the current through the load resistor RL2
was measured, and the calculated output power is depicted in Figure 11b. The proposed
circuit generated the highest output voltage of around 14 VO and the highest output power
of approximately 3000 µW when the input voltage was 15 V ac and the frequency was 2 Hz,
as shown in Figure 11.

Similarly, at a frequency of 5 Hz, the same input voltages were applied to the proposed
VDJT circuit, and the calculated output voltage and power is represented in Figure 12a,b.
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Regardless of the applied voltage to the proposed circuit at a frequency of 5 Hz, the
increasing output voltage and power trend are consistent, and the outcome is shown in
Figure 12. Contrary to the output voltage, the inclination of output power against the load
resistances is rather different.

It is worth mentioning that the main reason for causing higher output voltage and
power in comparison with 2 Hz is the high frequency that was applied to PG. In other
words, when the applied frequency increased, the current produced by the PG was high
due to capacitive reactance. Therefore, the output power applied to the VDJT was also
increased. Consequently, the output voltage and power were higher in the case of 5 Hz
compared to 2 Hz. However, the trends in both cases, namely 2, 5 Hz with an input voltage
of 5, 10, and 15 V ac, are similar.

Furthermore, the suggested VDJT circuit contains just two diodes, while the typical
FBR circuit contains four. Therefore, the voltage drop across the two additional diodes has
been decreased. As a consequence, the output voltage and power were augmented as well.

Further examination of Figure CL1–2 reveals that the excitation frequency significantly
influences the proposed system’s effectiveness. The output voltage of the proposed circuit
at both frequencies 2 and 5 Hz is shown in Figure 13.

Even though the applied input voltage was set to 5 V ac, the higher output voltage
was attained at a high frequency [18]. The governing factors for the higher output through
VDJT, when the frequency was higher, are as follows [41–44]:

1. While the frequency incremented, PG generated more current due to a decrease in
capacitive reactance.

2. When the PG current was increased, its output power was also increased, resulting in
higher output power of the VDJT circuit.

Analogously, the voltage and resistances utilised were used to compute the output
power, shown in Figure 14, for both frequencies, i.e., 2 and 5 Hz. The proposed design
has a maximum output power of 3000 µW at a frequency of 2 Hz with an input voltage
of 15 V ac. Likewise, at a frequency of 5 Hz, the proposed circuit produced the maximum
output power of 5500 µW.
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4.2. Test 2: Constant Input Voltage by Varying Frequencies

The performance of the developed circuit was also tested at various frequencies with
keeping the applied input voltage constant at 1 V ac (at a frequency of 10 Hz). It should be
noted that at each frequency, the input voltage was adjusted to 1 V ac. Figure 15 shows that
independent of the frequency, the output voltage increases with the increase of the load
resistance. The rise in output voltage, corresponding to Test 1, showed a consistent trend
with the load resistance.

At first, 1 V ac input voltage was given to the VDJT circuit at 10 Hz. Since the produced
voltage by the PG was greater than Vf, the output voltage and power through the VDJT
circuit [25,45] were increased. Consequently, the load capacitor, CL2, stored the output
voltage, and the recorded output voltage is shown in Figure 15.

It should be noted that similar to Test 1, the output voltage and power rose when the
load resistance increased in the test settings. In summary, the proposed circuit generated
the highest output voltage of 1.85 Vo and output power of 50 µW at a frequency of 30 Hz,
as shown in Figure 15.

4.3. Comparison of VDJT Circuit with the Literature Circuits

It is evident that the proposed VDJT circuit consistently generated high output voltage
and power in both Tests 1 and 2. To verify the effectiveness of the proposed circuit, its
output was also compared with the recently published papers in the existing literature, as
described in Table 3.
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Table 3. Comparison of outcome of circuits in the literature.

Literature Circuits No. of PGs Acceleration
(g: m/s2)

Input Voltage
(V)

Input Power
(µW)

Output Power
(µW)

[34] 1 - 8 480 800

[25] (similar circuit) 1 1.5
Frequency

1100
66 (resonance) Not mentioned

[7] (similar circuit) 1 1.5 10 (not resonance) 4901 3410

[39] (similar circuit) 1 - 3 676 520

[46] 1 - 10 900 195

[47] 1 - 8.6 238 167.2

[48] 1 - 4.2 2905 2000

[49] 1 - 1.5 10,756 6800

[21] 1 - 10 - 84.2

[39] 1 - 3 - 510

VDJT 1 - 15 7600 5500

Generally, it is found that the VDJT circuit consistently delivered a significant output
in comparison with the well-known buck-boost circuit and the circuits listed in the research.
Furthermore, it is found in Table 3 that the suggested VDJT circuit outperforms various
similar existing circuits in terms of production voltage and power.

5. Conclusions

This paper proposed and investigated a voltage doubler joule thief (VDJT) circuit
to find the PG’s optimum points and output voltage and power dependence on varied
vibration frequency and load resistances. To enhance the principles of VD and boost circuits,
the VDJT circuit is proposed in this paper. It incorporates the well-known traditional voltage
doubler circuit and the joule theory circuit in both Stages 1 and 2. The VDJT circuit was
able to satisfy device miniaturisation standards and offer an efficient AC–DC conversion
process without employing supplementary interfaces.

The applicability of the VDJT circuit was validated by simulation by employing the
ideal AC source and laboratory testing by employing the impedance power source (i.e.,
PG). The VDJT circuit converted an input voltage of 15 V ac at a frequency of 5 Hz into
an output voltage of 18 VO and power of 5500 µW, and at this instant, it is capable of
delivering an efficiency of 72.3%. In conclusion, The VDJT circuit proved its functionality
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as an effective solution for the low output voltage and power from the traditional circuit.
Although the proposed circuit converts low voltage into high voltage and boosts the low
voltage into high voltage, the design of controlling methodology of boosting voltage in the
Stage 2 process needs to be investigated.
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