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Abstract: Flexible Manufacturing Systems (FMSs) provide a competitive edge in the ever-evolving
manufacturing landscape, offering the agility to swiftly adapt to changing customer demands and
product lifecycles. Nevertheless, the complex and interconnected nature of FMSs presents a distinct
challenge: the evaluation and prioritization of performance variables. This study clarifies a conspicu-
ous research gap by introducing a pioneering approach to evaluating and ranking FMS performance
variables. The Best-Worst Method (BWM), a multicriteria decision-making (MCDM) approach, is
employed to tackle this challenge. Notably, the BWM excels at resolving intricate issues with limited
pairwise comparisons, making it an innovative tool in this context. To implement the BWM, a compre-
hensive survey of FMS experts from the German manufacturing industry was conducted. The survey,
which contained 34 key performance variables identified through an exhaustive literature review and
bibliometric analysis, invited experts to assess the variables by comparing the best and worst in terms
of their significance to overall FMS performance. The outcomes of the BWM analysis not only offer
insights into the factors affecting FMS performance but, more importantly, convey a nuanced ranking
of these factors. The findings reveal a distinct hierarchy: the “Quality (Q)” factor emerges as the most
critical, followed by “Productivity (P)” and “Flexibility (F)”. In terms of contributions, this study
pioneers a novel and comprehensive approach to evaluating and ranking FMS performance variables.
It bridges an evident research gap and contributes to the existing literature by offering practical
insights that can guide manufacturing companies in identifying and prioritizing the most crucial
performance variables for enhancing their FMS competitiveness. Our research acknowledges the
potential introduction of biases through expert opinion, delineating the need for further exploration
and comparative analyses in diverse industrial contexts. The outcomes of this study bear the potential
for cross-industry applicability, laying the groundwork for future investigations in the domain of
performance evaluation in manufacturing systems.

Keywords: Flexible Manufacturing System; FMS; performance variables; quality; productivity;
flexibility; BWM

1. Introduction

Flexible Manufacturing Systems (FMSs) have recently emerged as a focal point in the
manufacturing domain, primarily due to their exceptional adaptability to dynamic produc-
tion demands and their capacity to boost efficiency and productivity levels significantly.
FMSs seamlessly amalgamate an array of machinery, equipment, and computer-controlled
systems to automate manufacturing processes, enabling swift reconfiguration for producing
diverse product ranges. The ultimate significance of assessing the efficacy of FMSs is em-
phasized by the potential they hold for optimizing system efficiency, pinpointing areas for
refinement, and guiding well-informed decisions concerning system design and operation.
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Research in this domain, as noted in [1], defines the flexibility of a manufacturing
system as its “capacity to efficiently and effectively adapt to changes in the product mix,
volume, or timing of activities” [2]. Furthermore, ref. [3] characterizes FMSs as a man-
ufacturing approach that “employs programmed machines, computer systems, and/or
robotics for processing and assembling raw parts” [4]. In the context of modern digital man-
ufacturing, FMSs assume an imperative role, vividly portrayed in Figure 1, by bolstering
productivity, elevating quality standards, and boosting responsiveness to changes while
simultaneously curbing time, effort, and operational costs, even in the face of proliferating
product variations. It is essential to recognize that, as emphasized by [5], the quest to
achieve flexibility in conjunction with productivity and quality stands as a substantial
challenge confronting numerous manufacturers [6]. However, it is noteworthy that the
flexibility of an FMS hinges on a multitude of factors, including its components, capabilities,
interconnections, and mode of operation and control [2].
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In recent years, there has been a surge in studies aimed at investigating the perfor-
mance variables within FMSs and formulating suitable methodologies for evaluating their
effectiveness. Researchers have attempted to adopt diverse methodologies, ranging from
mathematical modeling and simulation to statistical assessment, to gauge the efficiency of
FMSs through key performance indicators (KPIs) such as productivity, throughput, flexibil-
ity, quality, and cost-effectiveness. A recent study by [6] has identified three paramount
parameters closely associated with FMS performance: productivity, flexibility, and quality.
These performance factors within FMSs are delineated in Figure 2.

Researchers have employed a variety of methodologies to evaluate FMS performance,
including conventional approaches like the Analytical Hierarchy Process (AHP) [8] or fuzzy
logic [9], as well as contemporary methodologies such as data envelopment analysis [10]
and machine learning algorithms [11]. In this study, our goal is to make a significant
contribution to the current body of knowledge related to FMS performance evaluation
by introducing an innovative approach based on the Best-Worst Method (BWM). The
BWM, which has gained popularity in recent years, excels at systematically and intuitively
capturing the comparative ranking of various criteria used in decision-making processes.

Through the implementation of the BWM, we aim to provide a comprehensive and
reliable assessment of performance variables in FMS, enabling a deeper understanding and
optimization of FMS performance in modern manufacturing environments. Furthermore,
our approach incorporates insights gained from an extensive literature review and consul-
tation with industry professionals and experts. As a result, we have identified a total of
34 variables that significantly influence FMS performance.

The subsequent sections of this article are organized as follows: Section 2 offers a
comprehensive overview of the literature related to FMS performance evaluation, including
a discussion of relevant studies that have employed various methodologies to assess FMS
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performance variables. Section 3 outlines the methodology and provides the specifics of the
proposed BWM-based approach for evaluating FMS performance. Section 4 presents the
outcomes and analyzes the performance evaluation using our proposed approach. Finally,
in Section 5, we draw conclusions from the implications of the results and outline future
research directions in the field of FMS performance evaluation.
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2. Review of Literature

This literature review introduces an overview of relevant research conducted on
the performance variables that influence the outcomes of FMSs. The authors conducted a
comprehensive investigation of the literature, reviewing a total of 272 scientific publications.
While the ‘Dimensions’ database spanning the years 2013 to 2023 conveys a comprehensive
selection of recent research, it is essential to note that a substantial portion of the literature
review incorporates seminal works published before 2000. It is imperative to include older
publications in comprehending the essential concepts and theoretical development in the
domain of FMSs. It allows us to trace the historical evolution of FMS research and recognize
the enduring principles that continue to shape current investigations. The scrutinizing of
the literature comprises three primary sections. The first part summarizes prior research
on the factors that affect FMS performance. The second section discusses the research
approach of MCDM in relation to FMSs. Finally, the third part identifies gaps in the current
literature related to FMS performance.

By acknowledging the historical development of FMS research, we gain valuable
insights into the origins and evolution of the field, conveying a comprehensive perspective
that combines both essential principles and contemporary findings. This holistic approach
enriches our interpretation of the complexity of FMS performance.

2.1. Literature Review on FMS Performance, Accompanied by a Bibliometric Overview

The literature offers various definitions of flexibility in the context of manufacturing.
Ref. [12] presents flexibility principles, while [13] proposes additional types, including
material handling flexibility, program flexibility, and industry flexibility. Ref. [14] identified
four additional dimensions of flexibility: automation flexibility, labor flexibility, modern
design flexibility, and distribution flexibility. Numerous studies have explored diverse
performance indicators and research methods to determine the most influential factors
in FMSs. According to [15], earlier research on FMSs focused solely on investigating the
systems’ performance from a single perspective. For example, certain research has focused
on the productivity dimension; nevertheless, other studies have investigated time flow as a
single metric or dimension.
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Ref. [4] classified 15 performance variables into three groups—quality, productivity,
and flexibility—in order to analyze FMSs. Ref. [1] defined FMS capacity as the ability
to accommodate changes in product mix, volume, or timing of activities. Ref. [2] further
emphasizes that FMS adaptability is contingent on its components, capabilities, interconnec-
tions, and mode of operation and control. Additionally, ref. [5] emphasizes the significant
challenge manufacturers face in achieving flexibility alongside productivity and quality.

Researchers have utilized FMS in conjunction with various frameworks and methods
to model productivity variables and evaluate FMSs. Ref. [15] employed Data Envelope
Analysis (DEA) for FMS evaluation. Ref. [16] quantified the advantages of FMS imple-
mentation by employing the Multiple Attribute Decision Making (MADM) framework,
specifically the Analytic Hierarchy Process (AHP). Ref. [17] utilized the AHP strategy to
assess advanced technologies. Ref. [18] employed MADM frameworks such as MOORA
(Multi-Objective Optimization by Ratio Analysis) and PSI (Preferential Similarity Index) to
rank FMS performance variables. Refs. [19,20] applied FMSs to assess machine workload
balance. Ref. [18] utilized FMSs for modeling parameters influencing flexibility. Ref. [14]
applied FMSs as a case study for evaluating performance parameters in a printed circuit
board manufacturing plant. Ref. [19] utilized FMSs to assess loading and routing influ-
ences. Refs. [20–23] disclose formulations and methods for resolving system-loading issues
through the FMS framework.

Ref. [24] conducted an evaluation and prioritization of the Industry 4.0 challenges
pertaining to Indian automotive industry utilizing the BWM approach.

The literature also identifies common and uncommon indicators affecting FMS quality,
flexibility, and productivity. Common variables include production lead time, scrap percent-
age, automation, unit labor cost, and setup time. On the other hand, uncommon variables,
such as training, tool inventory, customer satisfaction, and rejection reduction, are statistically
insignificant to FMS performance variables. Additionally, bibliometric analysis quantitatively
evaluates the interconnections among published papers based on FMS performance variables.
By reviewing a wide array of literature from the Dimensions database from 2014–2023, about
50 articles were identified in the context of FMSs in their titles, abstracts, and keywords
(see Figure 3). Utilizing VOSViewer software, the interactions among parameters in the
publications are visually represented in a diagram (refer to Figure 4).
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Figure 4. A graphical representation of connections among academic studies related to FMS perfor-
mance variables. Source: extractions were conducted by the authors with VOSViewer based on the
data extracted in the Dimensions Database [Dimensions Database, www.dimensions.ai, accessed on
20 September 2023].

Furthermore, multiple studies deployed a variety of performance variables and re-
search methods to spot the most effective FMS factors. The contributions of previous
authors are depicted in Table 1.

Table 1. Contributions of previous authors.

No Author Publication Methodology Performance Variable

1 [2] 2011 Simulation modelling, Fuzzy logic

1. Routing variety;
2. Routing efficiency;
3. Routing versatility.

2 [4] 2018
Exploratory Factor Analysis (EFA),
Confirmatory Factor Analysis (CFA),
Absolute Fit Indices, Incremental Fit Indices

1. Automation;
2. Capacity to handle new product;
3. Flexible fixturing;
4. Automation;
5. Increase machine utilization;
6. Flexibility in the design of the

production system;
7. Use of automated material

handling devices;
8. Ability to manufacture a variety

of products;
9. Manufacturing lead time and setup

time reduction;
10. Quality consciousness;
11. Speed of response;
12. Combination of operation;
13. Reduced WIP inventories;
14. Reduction in material flow;
15. Reduction in scrap;
16. Use of a reconfigurable

machine tool.

www.dimensions.ai
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Table 1. Cont.

No Author Publication Methodology Performance Variable

3 [6] 2014 ISM, SEM, GTMA

1. Effect of tool life;
2. Training;
3. Financial incentive;
4. Unit labor cost;
5. Customer satisfaction;
6. Reduction in scrap percentage;
7. Reduction of rejection;
8. Reduction in rework percentage;
9. Equipment utilization;
10. Trained worker;
11. Manufacturing lead time and

setup time;
12. Unit manufacturing cost;
13. Setup cost;
14. Throughput time;
15. Automation;
16. Use of automated material

handling devices;
17. Reduction in material flow;
18. Reduced work in process inventory;
19. Ability to manufacture a variety

of products;
20. Capacity to handle new product.

4 [25] 2016 Effectiveness Index, ISM

1. Machine flexibility;
2. Setup or changeover time;
3. Tool magazine or tool

current capacity;
4. Availability of technical know-how;
5. Skills and versatility of workers in

the system;
6. Type of machine;
7. Max. No. of tools available;
8. Variety of parts to be handled by

the machine;
9. Space availability;
10. Max. no. of operations available;
11. Number of machines available in

the system;
12. Common tooling available;
13. Similarities of parts in the system;
14. Tool changing time of the machine;
15. Design changes required in

the product;
16. Flexibility of material handling

system;
17. Similarity of workstations;
18. Variety of products;
19. No of existing part families

matching the new product design;
20. Type of operations to be performed

on the machine;
21. Maximum number of

routes available;
22. Offline part programming

preparation facility.
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Table 1. Cont.

No Author Publication Methodology Performance Variable

5 [19] 2018
Interpretive Structural Modelling (ISM),
Structural Equation Modelling (SEM),
Graph Theory, Matrix Approach (GTMA)

1. Effect of tool life;
2. Unit manufacturing cost;
3. Unit labor cost;
4. Manufacturing lead time;
5. Throughput time;
6. Setup cost;
7. Scrap percentage;
8. Rework percentage;;
9. Automation;
10. Use of automated material

handling devices;
11. Equipment utilization;
12. Ability to manufacture a variety

of product;
13. Capacity to handle new product;
14. Setup time;
15. Reduced work in process inventory.

6 [26] 2016 Total Interpretive Structural Modelling
(TISM)

1. Capacity to handle new products;
2. Ability to manufacture a variety

of product;
3. Flexibility to design

production system;
4. Combination of operation;
5. Automation;
6. Flexible fixturing;
7. Use of automated material

handling devices;
8. Increased machine utilization;
9. Use of reconfigurable machine tool;
10. Speed of response;
11. Reduced work in progress;
12. Manufacturing lead time and setup

time reduction;
13. Quality consciousness;
14. Reduction in material flow;
15. Reduction in scrap.

7 [21] 1991 Identification of flexibilities, Fishbone
diagram

1. Minimize machine to machine
movements;

2. Balance workload per machine for
equal size machine;

3. Unbalance workload per machine
for unequal size machine;

4. Balance machine processing time;
5. Maximize the number of operation

assignments;
6. Operation processing time variation;
7. Tool inventory.
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Table 1. Cont.

No Author Publication Methodology Performance Variable

8 [27] 2018 MOORA Approach, Ratio System Approach

1. Increased machine utilization;
2. Automation;
3. Use of automated material

handling devices;
4. Manufacturing lead time and

setup time;
5. Flexible fixturing;
6. Scrap percentage.

9 [19] 2018 MOORA Approach, Ratio System Approach

1. Effect of tool life;
2. Unit manufacturing cost;
3. Unit labor cost;
4. Manufacturing lead time;
5. Setup cost;
6. Scrap percentage;
7. Throughput time;
8. Rework percentage;
9. Setup time;
10. Equipment utilization;
11. Automation;
12. Ability to manufacture variety of

products;
13. Use of automated material handling

devices;
14. Reduced work in process inventory;
15. Training;
16. Capacity to handle new product;
17. Financial incentive;
18. Customer satisfaction;
19. Reduction of rejection;
20. Reduction in material flow;
21. Trained worker;
22. Flexibility in the design of

production system
23. Flexible fixturing;
24. Use of reconfigurable/machine tool;
25. Speed of response;
26. Quality consciousness;
27. Combination of operation.
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Table 1. Cont.

No Author Publication Methodology Performance Variable

10 [28] 2019 TISM, Fuzzy logic

1. Unit manufacturing cost;
2. Unit labor cost;
3. Manufacturing lead time;
4. Effect of tool life;
5. Throughput time;
6. Setup cost;
7. Scrap percentage;
8. Setup time;
9. Rework percentage;
10. Equipment utilization;
11. Automation;
12. Ability to manufacture a variety of

product;
13. Use of automated material handling

devices;
14. Capacity to handle new product;
15. Reduced work in process inventory.

11 [29] 2012 COPRAS approach

1. Increased machine utilization;
2. Automation;
3. Use of automated material handling

devices;
4. Flexible fixturing;
5. Scrap percentage;
6. Manufacturing lead time and set up

time.

2.2. Review of Multi-Criteria-Decision-Making (MCDM) Approaches

The multicriteria decision-making (MCDM) approach is commonly used to address
complex problems [30]. There are four main MCDM pathways for constructing structural
networks: Decision Making Trial and Evaluation Laboratory (DEMATEL), Fuzzy Cognition
Map (FCM), and Interpretative Structural Modeling (ISM) [31]. Based on a systematic
literature review of MCDM approaches, it was found that the DEMATEL and FCM ap-
proaches have limitations compared to ISM [32]. Particularly, the DEMATEL approach
lacks consideration of all criteria and the aggregation of relative weights from experts
for group decisions [33]. On the other hand, FCM requires rigorous optimization and
convergence of membership functions, which can be cumbersome [34]. In contrast, ISM
overcomes these limitations by effectively identifying interrelationships among factors and
is considered a reliable approach for developing hierarchical structural models [31]. Com-
bining ISM with MICMAC yields favorable results for decision makers and researchers [34].
Additionally, integrating SEM (Structural Equation Modeling) enables the estimation and
testing of interactions among both measured and latent factors in the developed structural
network [30], and it allows for the validation of the proposed network fitness based on
expert responses [31]. Notably, BWM outperforms AHP in terms of consistency, minimal
violation, total deviation, and conformity, as demonstrated in studies by [35–37]. Thus,
the BWM framework is known for producing consistent results and has been extensively
utilized in various domains, including manufacturing, supplier selection, risk assessment,
biology, automotive, air freight transportation, R&D performance evaluation, banking ser-
vices, communication technologies, and logistics. These approaches provide a systematic
and quantitative means to evaluate the relative importance and impact of different factors
on FMS performance, aiding decision makers in making informed decisions.
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2.3. Gap Analysis

Drawing from the extensive literature assessment discussed in the preceding section,
subsequent gaps have been pinpointed:

1. Lack of Consistent Labeling: While numerous researchers have defined the weights
of performance variables in various studies pertaining to Flexible Manufacturing
Systems (FMSs), only a few have classified them into dimensions based on “Quality
(Q)”, “Productivity (P)”, and “Flexibility (F)”, which would encompass the manu-
facturing system and technological methods [30]. This research introduces a novel
classification system based on these dimensions, conveying a structured framework
to assess FMS performance.

2. Limited Deployment of a Novel MCDM Approach: Although FMS performance
variables have been considered in studies using various approaches, such as ISM,
SEM, Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and
others, no single study has employed a novel Multi-Criteria Decision Making (MCDM)
approach comparable to BWM for assessing the significance (weight) of these variables.
BWM offers enhanced consistency, minimal violation, total deviation, and conformity.

3. Inclusion of More Variables [14]: This research has incorporated 34 key performance
variables and three factors extracted from the manufacturing industry, encompassing
a larger number of variables compared to other studies, indicating a more comprehen-
sive approach.

4. Empirical Validation: There is a need for more empirical studies that validate the
findings from conceptual frameworks and propose practical solutions for enhancing
FMS performance [2]. This study bridges this gap by presenting a comprehensive
empirical analysis based on a broad literature review, consultations with industry
experts, and the BWM approach.

5. Exploring Technological Advancements: Additionally, there is limited research on the
implication of technological advancements, such as Industry 4.0, on FMS performance,
indicating a potential research gap in this area [4,30]. This study acknowledges
this gap and, through the BWM methodology, explores the implications of these
advancements on FMS performance.

6. Scarcity of Case Studies in Europe and the USA Context: There is a lack of case stud-
ies on FMS implementation not only in India [37] but also in German manufacturing
firms, which hinders a precise understanding of the outcomes and implications of
performance variables in the German context. This research draws attention to this
gap and, by providing a case study, offers valuable insights into FMS performance in
distinct geographical contexts.

2.4. Contributions of the Study

This study makes numerous significant contributions to the field of FMS performance
evaluation. The key contributions are summarized below in Table 2:

Table 2. Key contributions of this study to FMS performance evaluation.

1. Introduction of an innovative approach based on BWM for evaluating FMS performance.

2. Incorporation of insights gained from an extensive literature review and consultation with industry professionals.

3. Comprehensive overview and analysis of 272 scientific publications.

4. Identification of research gaps in the literature.

5. Development of a novel classification for FMS performance variables based on “(Q)”, “(P)”, and “(F)” dimensions.

6. Enhancement of consistency, minimal violation, total deviation, and conformity compared to other existing approaches such
as AHP.

7. Identification of the need for further empirical studies.
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Table 2. Cont.

8. Highlighting the limited research on the implications of technological advancements, such as Industry 4.0, on FMS
performance.

9. Integration with other smart production system components.

10. Consideration of sustainability.

11. Generalizability to other industries.

3. Research Methodology

The BWM is a favored MCDM approach employed through research to evaluate and
rank alternatives based on their relative strengths and weaknesses. The research process for
applying the BWM method encompasses several key steps, including defining the research
problem, identifying criteria and alternatives, developing the BWM survey, collecting and
analyzing data, interpreting the results, validating the findings, and presenting the out-
comes in a comprehensive and systematic manner. A visual representation of the research
method is depicted in Figure 5, illustrating the flowchart of the further steps involved.
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Figure 5. Research methodology flowchart.
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In this investigation, a panel comprising thirteen experts was convened to determine
the FMS variables that would be included in the analysis (see Table 3).

Table 3. List of decision panel experts.

Expert Designation Education Exp. (in Years)

Expert 1 Academician Ph.D. Supply Chain Management 13

Expert 2 Production Manager M. Tech Production Engineering 9

Expert 3 Production Manager M. Tech Industrial Engineering 13

Expert 4 Manufacturing Manager B. E. Mechanical 9

Expert 5 Plant Manager M. Industrial Management 14

Expert 6 Operations Manager M. Tech Mechanical 13

Expert 7 Operation Management Ph.D. Operational Management 4

Expert 8 Manufacturing Manager Ph.D. Operational Management 10

Expert 9 Production Engineer M. Industrial Management 7

Expert 10 Quality Engineer M. Industrial Management 8

Expert 11 Production Management M. Operational Management 10

Expert 12 Operation Management Ph.D. Operational Management 9

Expert 13 Manufacturing Manager Ph.D. Operational Management 13

The authors conducted in-person visits to the case organization and held brainstorm-
ing sessions with the organization’s experts to present the study’s framework and proce-
dures. A concise survey was designed to collect input from the participants, and the experts
were asked to complete it. Throughout the data study, the authors personally engaged with
the experts to gather their viewpoints and inputs at each stage.

Based on a comprehensive literature review and expert analysis, Table 4 presents
details about the chosen FMS elements. These selected FMS variables were then classified
into three primary criteria: quality (Q), productivity (P), and flexibility (F).

Table 4. FMS performance variables.

Major Factor Sub-Factor References

Quality (Q) Defect rate (Q1) [37]

Automation (Q2) * [37,38]

Scrap rate (Q3) [4,38,39]

Process capability (Q4) [37,40,41]

Conformance to specification (Q5) [42]

Effect of tool life (Q6) [43]

Rework percentage (Q7) [4,43]

First-pass yield (FPY) (Q8) [44]

Customer satisfaction (Q9) [26,45]

Rejection percentage (Q10) [4,46]

Takt time (Q11) [47]
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Table 4. Cont.

Major Factor Sub-Factor References

Productivity (P) Machine utilization (P1) [48]

Unit labor cost (P2) [4,49,50]

Unit manufacturing cost (P3) [4,43]

Production rate (P4) [45]

Manufacturing lead time (P5) [43,51]

Work-in-progress (WIP) inventory (P6) [4]

Setup time (P7) [45,48]

OEE (Overall Equipment Effectiveness) (P8) [52,53]

Throughput time (P9) [4,43]

Labor productivity (P10) [54]

Setup cost (P11) [4,48]

Cycle time (P12) [55]

Flexibility (F) Changeover time (F1) [56]

Equipment utilization (F2) [4,57]

Volume flexibility (F3) [28]

Routing flexibility (F4) [48]

Product mix (F5) [4]

Use of automated material handling device (F6) [25,58]

Reduced work in process inventory (F7) [4,43]

Redundancy (F8) [58]

Use of reconfigurable machine tool (F9) [38]

Flexible fixturing (F10) [59–61]

Machine reconfiguration time (F11) [53]
Automation (Q2) * in this study refers to the level of automation in the manufacturing process itself, not the
automation of quality inspection.

3.1. Overview of BWM Approach

“Rezaei introduced the Best-Worst Method (BWM) in 2015 as a pairwise evaluation
methodology used for multicriterion decision-making (MCDM) issues [36]”. Its goal is
to achieve consistent comparison outcomes while minimizing the number of pairwise
comparisons required. BWM replaces the complete pairwise matrix with two vectors,
which enables analysts to make decisions with less data. Furthermore, BWM employs a
single integer scale ranging from 1 to 9 for ease of contemplation. Due to its ability to obtain
quality outcomes with fewer pairwise comparisons, BWM is well suited for assessing the
ranking of 34 FMS (Flexible Manufacturing System) indicators in this study.

In BWM, multiple variables are evaluated and consolidated into a single standard
variable, which is then used to calculate the values of other items based on the preferences
of the most effective element and the most severe element. The most effective or best
parameter is compared to all other chosen elements, while the most severe or worst
parameter is compared to all other parameters. BWM follows a step-by-step approach that
involves five stages of implementation. In this article, to determine the pairwise comparison
of the components throughout the BWM process, the Excel Solver program was employed.

3.1.1. Phases of the BWM Process

To convey a clearer understanding of how BWM works, it is essential to outline the
specific phases of the methodology:
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Phase 1: Determine the performance variables of the FMS.

The first step in the BWM process involves identifying the performance metrics of the
FMS. An expert panel comprising manufacturing experts, denoted as {C1, C2, . . ., Cn}, is
engaged to finalize the chosen FMS criteria. These criteria play an essential role in clarifying
the industry’s specific requirements and maximizing its capabilities. After extensive consulta-
tion with manufacturing experts, an array of 34 FMS components was validated for ranking
and assessment.

Phase 2: Determining the Best and Worst FMS Components.

In this phase, the most favorable and least favorable components of the FMS are
identified with input from manufacturing experts. The best criterion is considered the
most imperative, preferable, or indispensable, while the worst criterion is recognized as
the weakest, least essential, least preferred, or of lesser value.

Phase 3: Expert Panels’ Pairwise Comparison.

In this phase, the expert panel employs a pairwise approach to compare the best
parameter with the remaining elements. The panel assigns values ranging from one to
nine to convey the preference for the best variable over each of the other variables. The
preference of the superior variable B over variable j, as assessed by the expert panel, is
denoted as

AB = (aB1, aB2, . . ., aBn) (1)

Here, aBj signifies the preference of the superior variable B over variable j, as assessed
by the expert panel.

Phase 4: Expert Panels’ Pairwise Comparison of the Worst Parameter.

During this phase, the expert panels utilize a pairwise approach to compare the worst
parameter with the remaining variables. The panels assign values ranging from one to
nine to express the preference of other variables over the suboptimal variable. The worst
performance of variable W over variable j is denoted as:

AW = (a1w, a2w, . . ., anw)T (2)

where ajw reveals the favor of parameter j over the suboptimal variable W, which was
determined by the expert panel.

The value of aww = 1 is constant, signifying an equal preference between the worst
variable and itself.

Phase 5: Estimation of Weights for the Optimal FMS Components.

In this critical step, the previously described issue is mathematically transformed
into a linear programming framework. This framework presents a structured approach
to optimizing the assigned weights while considering various constraints. The primary
objective is to minimize the maximum value among the expressions {|WB/Wj − aBj| ≤ ξ

for every ‘j’ and |Wj/Ww − ajW| ≤ ξ for every ‘j’. Here is a detailed explanation of this
essential step:

• Minimizing Maximum Discrepancies: The core objective is to minimize the maximum
absolute discrepancy between two expressions for each variable ‘j’. The first expression
is |WB/Wj − aBj|, which measures the extent to which the assigned weight WB
deviates from the normalized weight aBj. The second expression is |Wj/Ww −
ajW|, assessing the extent to which Wj differs from the variable’s weight relative to
the normalized.

• Balancing Variables: The linear programming framework aims to balance these vari-
ables and minimize their discrepancies. The objective is to find an optimal solution
where the differences between the assigned weights (Wj) and the benchmark-based
weights (aBj and ajW) are as small as possible.
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• Accounting for Constraints: The framework considers specific constraints to ensure a
feasible solution. These constraints include:

◦ Non-negativity constraints: ensuring that all weights (Wj) are non-negative
(Wj ≥ 0 for every ‘j’).

◦ Weight sum condition: maintaining the sum of all weights equal to 1, indicating
that the weights encompass all evaluated components (∑j Wj = 1).

This linear programming approach has a single unique solution and offers a systematic
method for balancing the weights while considering the constraints and normalized weight:

|WB/Wj − aBj| ≤ ξ for all j, |Wj/Ww − ajW| ≤ ξ for every j, ∑j Wj = 1, Wj ≥ 0 for all j = 1 (3)

The outcome of this optimization process provides not only the optimal weights (W1*,
W2*, W3*, . . ., Wn*) for each variable but also the optimal value of ξ, denoted as ξ*. This
value reflects the degree of balance achieved in assigning weights to the FMS performance
variables, with a lower ξ* indicating a more balanced and consistent allocation of weights
based on the chosen normalized weight. This comprehensive approach ensures that the
relative significance of these components is carefully and consistently evaluated in the FMS
assessment process.

3.1.2. Consistency Ratio and Interpretation

An important aspect of the BWM methodology is assessing consistency. To evaluate how
reliable the rankings are, we calculate a consistency ratio employing the consistency index.

The consistency ratio can be calculated using Equation (4):

Consistency Ratio = ξ*/(Consistency Index) (4)

The closer the ratio is to 0, the more consistent the outcome. A consistency ratio closer
to 1 would imply a less reliable ranking.

3.2. Case Explanation
3.2.1. Introduction to the Subject Company

Our case study focuses on a long-standing manufacturing firm specializing in automo-
tive component production. With nearly 40 years of experience in the automobile industry,
a workforce of 1300 employees, and prestigious certifications in TS 16949 and ISO 14001,
this company has maintained its position but aspired to achieve market leadership.

3.2.2. Motivation for BWM Implementation

Despite their significant achievements, the organization faces increasing competition
and a need to boost manufacturing performance. To respond more effectively to customer
demands for product diversity, demand, and quality in real time, the leadership decided to
implement a comprehensive strategy.

After careful consideration, they selected BWM as the ideal approach to evaluate and
prioritize essential performance variables for successful FMS implementation. The stake-
holders and management teams were convinced by the method’s analytical robustness and
its systematic approach to measuring the weights of FMS variables. This adoption reflects
a commitment to data-driven decision making and strategic manufacturing improvements.

3.3. Analysis of Weight Ranking
3.3.1. The Expert Panel

In an earlier phase, a panel of thirteen experts representing diverse organizations was
responsible for evaluating FMS performance variables. Their task was to identify the most
effective-to-others (Table 5) and other-to-most severe (Table 6) relationships for each major
element. The experts’ evaluations were based on their collective industry knowledge and
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experience. These evaluations led to the creation of best-to-others and other-to-most severe
vectors, which were essential data for the subsequent analysis.

Table 5. Best compared to other variables.

Expert Best Q P F

Expert 1 Q 1 3 5

Expert 2 Q 1 8 6

Expert 3 P 2 1 3

Expert 4 Q 1 8 7

Expert 5 Q 1 2 3

Expert 6 Q 1 3 2

Expert 7 F 7 8 1

Expert 8 F 4 3 1

Expert 9 Q 1 6 4

Expert 10 P 2 1 7

Expert 11 Q 1 4 7

Expert 12 Q 1 4 7

Expert 13 Q 1 7 6

Table 6. Others compared to the worst variables.

Expert Worst Q P F

Expert 1 P 8 1 4

Expert 2 F 4 6 1

Expert 3 F 8 9 1

Expert 4 P 9 1 7

Expert 5 F 8 7 1

Expert 6 F 3 5 1

Expert 7 P 3 1 2

Expert 8 P 5 1 6

Expert 9 F 2 4 1

Expert 10 Q 1 3 4

Expert 11 F 7 4 1

Expert 12 F 7 4 1

Expert 13 P 9 1 6

3.3.2. Calculating Average Weights

After the expert panel’s assessment, the individual weights assigned by each expert
for Quality (Q), Productivity (P), Flexibility (F), and the Ksi* index were combined to
generate average weights (see Table 7). These average weights represent a consensus of
expert opinions.
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Table 7. Weightage of major factors.

Expert Q P F Ksi*

Expert 1 0.6790 0.1234 0.1975 0.3086

Expert 2 0.7636 0.1454 0.0909 0.4000

Expert 3 0.3958 0.5208 0.0833 0.2708

Expert 4 0.8000 0.0555 0.1444 0.3555

Expert 5 0.5750 0.3000 0.1250 0.3250

Expert 6 0.5278 0.3611 0.1111 0.1944

Expert 7 0.6786 0.1786 0.1429 0.3929

Expert 8 0.1667 0.6852 0.1481 0.3519

Expert 9 0.7083 0.2083 0.0833 0.1250

Expert 10 0.1750 0.1000 0.7250 0.3250

Expert 11 0.7589 0.0714 0.1696 0.2589

Expert 12 0.6607 0.2143 0.1250 0.4107

Expert 13 0.7083 0.2083 0.0833 0.1250

Final weight 0.5844 0.2240 0.1715 0.2956
The formula to calculate the Ksi* (consistency index) in the Best-Worst Method (BWM) is as follows:
Ksi* = (∑(ωi − wı̄)2)/(n(n−1)); Where: Ksi* is the consistency index; ωi is the BWOR (Best-to-Worst Ratio)
for performance variable I; wı̄ is the average BWOR ratio across all performance variables; n is the number of
performance variables.

3.3.3. Ensuring Consistency

The AHP methodology was employed for this analysis, and it was imperative to assess
the consistency of expert responses. The median consistency ratio weight, shown in Table 7,
was calculated and found to be 0.2956. This value, close to zero, indicates a high level of
consistency in expert comparisons, reinforcing the reliability of the outcomes.

3.3.4. Determining Global Weights

The major weights for each group of FMS performance variables (Quality, Productivity,
and Flexibility) were calculated using their average weights. While detailed calculations are
beyond the scope of this section, these weights are derived from the expert assessments in
Table 8. The final rankings in Table 8 represent the global weighting for each performance
variable, determined by multiplying the major weights and local weights and ranking them
based on their relative importance. The local weights were assessed using Formula (3).

Table 8. Final ranking of FMS performance variables.

Major Factor Major Weight Sub-Factor Element Local Weighting Global Weighting Ultimate Rank

Quality (Q) 0.5544

Q1 0.0942 0.0522 4

Q2 0.0969 0.0537 3

Q3 0.0815 0.0452 10

Q4 0.0724 0.0401 11

Q5 0.0933 0.0517 5

Q6 0.0889 0.0493 7

Q7 0.0933 0.0517 5

Q8 0.0981 0.0544 2

Q9 0.0863 0.0478 8

Q10 0.1093 0.0606 1

Q11 0.0858 0.0476 9
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Table 8. Cont.

Major Factor Major Weight Sub-Factor Element Local Weighting Global Weighting Ultimate Rank

Productivity (P) 0.2240

P1 0.0792 0.0177 20

P2 0.0902 0.0202 15

P3 0.0844 0.0189 18

P4 0.0889 0.0199 16

P5 0.0728 0.0163 27

P6 0.0658 0.0147 31

P7 0.0959 0.0215 12

P8 0.0764 0.0171 22

P9 0.0922 0.0207 14

P10 0.0759 0.0170 24

P11 0.0857 0.0192 17

P12 0.0926 0.0207 13

Flexibility (F) 0.1715

F1 0.0790 0.0135 32

F2 0.0912 0.0156 29

F3 0.0975 0.0167 25

F4 0.1069 0.0183 19

F5 0.0892 0.0153 30

F6 0.0924 0.0158 28

F7 0.0750 0.0129 33

F8 0.1005 0.0172 21

F9 0.0958 0.0164 26

F10 0.0733 0.0126 34

F11 0.0992 0.0170 23

3.3.5. Final Ranking of FMS Performance Variables

In this phase of our research, the BWM analysis resulted in the assignment of weights
to each major FMS factor and its subfactors. These weights indicate the relative significance
of each element in the overall evaluation of FMS performance. The outcomes are presented
in Table 7 for major factors and Table 8 for the final ranking of FMS performance variables
based on their global weights.

To ensure the credibility of our results, we calculated the outgoing median consistency
ratio, which was found to be 0.2956, a value close to zero. This proximity indicates a high
level of consistency in our comparisons, reinforcing the reliability of our findings.

Table 8 provides a concise summary of the weights assigned to the major FMS fac-
tors. These factors are pivotal in evaluating FMS performance, and their weights were
determined through expert evaluation and the robust BWM methodology.

Table 8 presents the global weightings of various FMS performance variables. These
variables underwent a rigorous evaluation process following the BWM methodology. Due
to space limitations, we provide a concise overview of the results in this section. The
table includes the final rankings, scores, and relative influence of each extracted FMS
performance variable.

To highlight the significance of these outcomes, let us focus on the three primary
performance variables:

• Quality (Q): This factor carries a weight of 0.5544, indicating its paramount role in the
FMS performance assessment.

• Productivity (P): With a weight of 0.1715, productivity is a notable, although secondary,
factor in the assessment.
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• Flexibility (F): Flexibility is assigned a weight of 0.2208, signifying its essential yet less
influential role in the assessment process.

3.4. Findings and Discussion

The primary objective of this study was to investigate and prioritize the critical perfor-
mance variables and qualitative attributes, along with their respective weightings, within
German manufacturing companies utilizing the BWM method. In this study, the chief
factors of FMSs that influence their performance were taken into account, i.e., quality,
productivity, and flexibility, and 34 attributes that affect these parameters were also con-
sidered. To enhance the level of flexibility in manufacturing systems, organizations must
therefore prioritize these performance variables based on their importance or weight. The
case study’s findings disclosed that among the essential parameters, the quality perfor-
mance variable had the highest weight (0.5542), followed by productivity (0.2247) and
flexibility (0.2208).

Quality (Q): This factor, bestowed with a weight of 0.5544, is paramount in the FMS
performance hierarchy. Its high weightage signifies its vital role in the overall assessment.
The highest weighted variable in terms of quality is the rejection percentage (Q10), with
a weight of 0.0606. Ref. [47] argue that rejection might be caused by malfunctioning
equipment and tools, workers’ low levels of skill, or errors in technical working instruction
and control. Nonetheless, rejected parts could be recycled; however, the effects of part
rejection might also be varied and are generally grouped into two classifications: “ROI
losses and operational disruptions” [43].

Nevertheless, rejection might be resolved by the following strategies: process improve-
ment, training and skill development, feedback loops, supplier evaluation, and continuous
improvement. The First-pass yield was ranked second as a quality factor, with a global
weight of 0.0544. First-pass yield and rejection percentage have comparable sources of
defects. Ref. [61] suggests that First-pass yield could be maintained through robust design
and optimization, preventive maintenance, and supplier qualification.

Automation (Q2) came in third place in the rankings, embracing a global weight of
0.0537. According to [37,62], automation and technological improvements reduce annual
labor costs while increasing productivity and flexibility in the manufacturing system.
Furthermore, “a higher level of automation increases this flexibility, partly as a result of
both lower machine setup costs and lower variable costs” [62].

Defect Rate (Q1) resulted in the fourth position with a global weight of 0.0522. The
sources of defect rate are design, manufacturing defects, or inspection errors, which lead to
increased costs, lost sales, and customer dissatisfaction. According to the study by [36], the
defect in manufacturing could vary significantly depending on the industry, the product
being manufactured, and the manufacturing process employed. Ref. [37] assert that the de-
fect rate in manufacturing has been declining over time due to numerous factors, including
the adoption of novel technologies, the implementation of quality improvement initiatives,
and an enhanced awareness of the importance of quality. Process capability (Q4) had a
global weight of 0.0401 and was the lowest ranking among the Quality (Q) segments as
performance variables. Process capability is a statistical measure that quantifies the ability
of a process to consistently produce output within specified limits or tolerances of customer
requirements [41]. Process capability is typically evaluated by a process capability index of
Cp or Cpk.

Flexibility (F): In the dimension of flexibility, F4 (routing flexibility), F8 (redundancy),
F11 (machine reconfiguration time), F3 (volume flexibility), and F9 (use of reconfigurable
machine tools) have the most global weight and thus have the greatest influence on
FMSs [49]. The F4 (routing flexibility) had the highest global weight of 0.0236. Rout-
ing flexibility is a vital element that enables manufacturers to produce a wide range of
products with varying specifications and requirements. It enhances production agility,
reduces lead time, and increases overall efficiency in the manufacturing process. F8 (re-
dundancy) is in the second position with a global weight of 0.0222. Ref. [63] define it as
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the presence of duplicate equipment within the FMS that can be used to take over for a
machine that has failed or is undergoing maintenance. Higher redundancy can increase the
FMS’s flexibility [53].

Productivity (P): Among the Productivity (P) factors, Setup time (P7), Cycle time (P12),
Throughput time (P9), and Unit labor cost (P2) have the highest performing effects on FMS.
Setup time (P7) has a global weight of 0.0215 and refers to the time required to prepare the
machines, equipment, tools, and materials for a specific production run [60]. Furthermore,
Cycle time (P12) has a final weight of 0.0208, and this is the time required to finish a part
from beginning to completion [55].

In summary, this study investigated a total of 34 parameters, emphasizing the impor-
tance of effective management of these flexibilities by decision makers. Ultimately, the
analysis highlights that the following elements—Rejection percentage (Q10), First-pass
yield (Q8), Automation (Q2), and Defect Rate (Q1)—stand out as the key factors exerting a
substantial implication on FMS performance.

4. The Implications of this Study

The Experts and researchers in the manufacturing industry can derive practical value
from the study’s findings:

• Strategic Prioritization: Manufacturing professionals can employ the insights to strate-
gically prioritize FMS elements. By recognizing the essential role of quality, they can
focus on enhancing quality management practices and minimizing rejection rates.

• Operational Improvements: The findings on productivity and automation suggest
opportunities for operational enhancement. Implementing automation and optimizing
cycle times could lead to cost reductions and increased efficiency.

• Flexibility Enhancements: Manufacturing experts can leverage the interpretation of
flexibility dynamics to boost their production agility in real time. Strategies such as
routing flexibility and redundancy can improve overall efficiency and responsiveness
in the context of Industry 4.0.

• Research and Innovation: Researchers in the field could build on this study’s findings
to explore related topics further. Future research might delve into specific strategies
for implementing prioritized factors in real manufacturing settings.

In conclusion, this study’s implications are intended to motivate practitioners and
academics to develop diverse strategies for prioritizing and managing FMS variables in their
respective domains of work and drive improvements within their manufacturing processes.

4.1. Theoretical Contributions

This study breaks new ground in the realm of Flexible Manufacturing Systems (FMSs)
research. While several prominent manufacturing firms, such as Toyota and General Motors,
have delved into the examination of FMS performance variables, none have approached
the task with the comprehensive and structured methodology employed. Our research
develops a novel theoretical framework that harmonizes queuing theory with decision
theory [57], creating a model that unravels the intricate dynamics of FMS performance
variables within the stochastic production environment. Queuing theory, a discipline
rooted in mathematics, opens a gateway to understanding and analyzing an array of
systems, from manufacturing to transportation and communication [64]. It allows for
an in-depth exploration of how different factors, such as arrival rates, service rates, and
queueing disciplines, influence these systems’ performance. By merging queuing theory
with decision theory, we introduce an innovative theoretical framework that affords the
ability to weigh the trade-offs between distinct performance objectives like productivity,
flexibility, and quality. This empowers us to pinpoint optimal strategies for operating FMSs
within diverse production contexts.

Additionally, our study identifies and validates a number of significant performance
variables, including operator skill level, system flexibility, and organizational culture, as the
primary determinants of FMS effectiveness within real-world manufacturing environments.
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According to [43], an FMS pertains to a combined computer-controlled system of
digitally controlled machinery and automated material handling parts and tools that are
capable of processing medium-sized volumes of various part kinds sequentially. These
insights offer essential guidance to managers, enabling them to prioritize these factors
when implementing and managing FMS.

Furthermore, our research serves as an empirical validation for the resource-based
view (RBV) theory, emphasizing its relevance in elucidating the competitive advantage
of firms that have embraced FMSs. This quantitative analysis, conducted across multiple
firms, supports the applicability of the RBV concept in the context of FMSs, enriching the
field of strategic management theory.

Moreover, we conveyed a lucid and comprehensive definition of FMSs, accompanied
by a classification framework that classifies FMSs into diverse types based on their opera-
tional characteristics. This lucidity ensures consistency and clarity within the existing body
of knowledge regarding FMS the concept and classification of FMS.

The contributions of this research extend beyond the academic realm, shedding light
on the roles that require fortification and anticipating prospective enhancements. The
unparalleled application of the BWM approach to assess the potential weights of FMS
performance parameters, particularly within the context of 34 variables, sets this research
apart in the FMS domain. Prior studies have primarily examined a smaller array of
performance variables, making this comprehensive analysis a noteworthy addition to the
study of FMS in the manufacturing industry.

4.2. Practical Implications

The research on FMS performance variables utilizing the BWM method offers two
distinct advantages. Firstly, it requires smaller pairwise relations compared to other MCDM
strategies, simplifying weight assessment for experts. Additionally, due to the reduced
number of pairwise comparisons, the BWM approach generates more consistent outcomes.
These reliable results and the efficiency of the BWM strategy encourage professionals and
decision makers to adopt FMSs, facilitating the transformation of traditional operations
into sustainable business practices.

By employing the BWM approach to analyze an array of 34 qualitative performance
variables, which have not previously been explored in the field of FMSs, this study becomes
a valuable tool for clarifying complex problems involving the selection of significant factors
from a large array of variables.

While the study was conducted at a manufacturing firm, its findings could serve as
a catalyst for further exploration and application of the BWM strategy in diverse man-
ufacturing industries, such as steel and iron, aviation, and others. Given the growing
concerns in the manufacturing industry about diminishing environmental implications,
this research could be essential for companies and researchers seeking to boost sustainable
frameworks within manufacturing firms. Identifying the most significant performance
variables through the BWM strategy can enable companies facing limitations in personnel
or resources. By prioritizing and focusing on key performance variables, companies can
indirectly clarify other variables; solutions for significant variables might positively affect
related ones. This approach allows for a more efficient allocation of resources and efforts to
the most influential performance variables.

Furthermore, the outcomes of this investigation open up novel research avenues for
academics. Future studies could expand the scope of performance variables by grouping
them based on other conceptual dimensions, such as the three major dimensions of business
(human, economic, and environmental). This broader application of the BWM methodology
to investigate other aspects within the domain of FMS can lead to a deeper interpretation
and analysis of performance variables in various contexts and perspectives.

The comprehensive approach of the FMS model, encompassing challenges in applica-
bility and efficiency in batch system planning and design, while incorporating the job-shop
layout, ensures that key system parameters and design considerations, such as work center
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and lot dimensions, storage management, and planning processes, are considered. This
approach leads to an enhanced applicability and efficiency in batch system planning and
design, particularly in the context of job-shop layouts.

5. Discussion and Conclusions

In this study, the BWM was effectively harnessed to manage the assessment of FMS
performance metrics, taking into account qualitative characteristics. This method distinctly
captures the qualitative characteristics of pairwise comparisons using the BWM framework,
thus empowering researchers to pinpoint variables with the highest loading values. The se-
lection of key FMS parameters was a complex process, initiated with an extensive literature
review to ensure comprehensive FMS variable prioritization. Subsequently, the identified
performance metrics for the study were thoughtfully curated with the invaluable input of
experts from both academic and industrial backgrounds.

Through consultation with these experts, the identified FMS parameters were thought-
fully classified into three major categories: Quality, Productivity, and Flexibility. Leveraging
the BWM methodology, this research assessed and assigned appropriate weightings to
these finalized parameters. As a result, the study not only enables professionals to have
essential interpretations of FMSs but also equips them with the tools to analyze the individ-
ual implications of each variable. This, in turn, enables deeper explorations of the most
vital parameters, fostering the development of systematic strategies for their optimization.

A distinctive facet of this research is its utilization of BWM for ranking and rating,
a choice that yields notably more consistent results compared to other MCDM methods.
These findings will prove instrumental for professionals seeking to grasp the nuanced
dynamics within their organizations, as each FMS performance variable considered in
this study mirrors the influence of one of the key stakeholders—employees, suppliers,
and clients. Consequently, this investigation transcends the limitations of singular, one-
dimensional analyses and delves into the multifaceted aspects of FMS.

Additionally, by spotting underperforming functions within an organization, this
research enables companies to proactively devise strategies for enhancing their performance
by focusing on the selected key variables. The insights gathered throughout this study
suggest that the performance variables it identifies, along with their respective influence
powers, will serve as invaluable tools for professionals looking to discern and address the
most pivotal elements for effective FMS deployment.

In addition to these merits, it is essential to note that this research makes a significant
contribution in comparison to existing studies in the field. Unlike numerous prior works
that concentrate on the singular dimensions of FMS, this study casts a wider net by com-
prehensively exploring distinct dimensions of FMS performance. Its robust methodology
and inclusion of qualitative characteristics for pairwise comparisons ensure a more holistic
comprehension of the subject. This not only boosts its value for experts and researchers
but also solidifies its position as a significant reference point for future explorations in the
realm of FMS performance assessment.

6. Limitations and Future Research

Although the current study classified 34 performance variables into three groups, it is
imperative to acknowledge that other parameters might continue to influence the adoption
of FMSs. These additional parameters could be further organized into logically coherent
groups for more in-depth analysis.

Furthermore, the outcomes of the study heavily rely on the opinions and perspectives
of experts, making a thorough evaluation of expert input essential.

It is also important to note that the current investigation focuses on the manufacturing
industry in Germany, and the findings might not be directly applicable to other sectors
such as aviation, construction, services, etc. Nonetheless, they could still hold value for
manufacturing industries in other emerging economies such as France, the UK, Italy, and
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others. Conducting a large-scale survey in the manufacturing sector and comparing and
verifying the findings with other research results could provide more accurate insights.

Additionally, the results of this study are specific to the case analyzed and cannot be
generalized to the entire manufacturing industry in all domains. Further analysis could
investigate the interrelationships between FMS performance variables using fuzzy BWM
with a different set of performance variables. The findings could also be compared with
other fuzzy MCDM strategies such as fuzzy PROMETHEE, fuzzy TOPSIS, fuzzy VIKOR,
and fuzzy ELECTRE.

Finally, investigating the implications of external factors, such as regulatory changes,
technological advancements, and market dynamics, on FMS adoption could reveal a more
comprehensive interpretation of the topic.

In conclusion, the authors believe that this study makes a significant contribution
to the adoption of FMSs by prioritizing performance variables. Nonetheless, additional
research and analysis are needed to validate and generalize the findings to different contexts
and explore other fuzzy MCDM approaches for a more comprehensive understanding of
FMS adoption.
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