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Abstract: While digital twins (DTs) have recently gained prominence as a viable option for creating
reliable asset representations, many existing frameworks and architectures in the literature involve
the integration of different technologies and paradigms, including the Internet of Things (IoTs),
data modeling, and machine learning (ML). This complexity requires the orchestration of these
different technologies, often resulting in subsystems and composition frameworks that are difficult
to seamlessly align. In this paper, we present a scalable compositional framework designed for
the development of a DT-based production management system (PMS) with advanced production
monitoring capabilities. The conducted approach used to design the compositional framework
utilizes the Factory Design and Improvement (FDI) methodology. Furthermore, the validation of our
proposed framework is illustrated through a case study conducted in a phosphate screening station
within the context of the mining industry.

Keywords: digital twin; production management system; monitoring; industrial internet of things;
framework; machine learning; forecasting; artificial intelligence; mining industry

1. Introduction

In the last few years, the idea of a DT has been evolving as a transformative agent
in different industries. Physical objects, processes, and systems can now be virtually
represented with the help of digital twins (DTs). This virtual model enables live tracking,
exercising, and improving the functionality of system operations [1]. A DT makes use
of past usage analysis, which is an important way to attain complete knowledge about
the functionality of an IoTs device over its lifetime [2]. The application of this technology
provides an immense boost to the operation and maintenance of such systems, especially
in terms of hindering circumstances, namely mining [3]. The mining industry is renowned
for being extremely tough; it needs all equipment to be highly available and reliable
to ensure safety as well as to maximize productivity. The old ways of monitoring and
preventive maintenance may be implemented, but they provide delayed responses that
result in unexpected downtimes and reduced efficiency. But DT technology is now being
introduced, which has virtual models made for real-world monitoring and simulation
purposes. This technology has brought about a new ray of hope in terms of the productivity
and efficiency of maintenance practices, where mining companies can delimit equipment
production and decrease downtime.

In the competitive global market, deploying DT technology is pivotal for enhancing
industrial efficiency. As a key component in the Industry 4.0 roadmap, DTs bridge physical
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and virtual realms, offering dynamic models that accurately reflect real-world entities.
Within the context of the Fourth Industrial Revolution (Industry 4.0) [4], a scalable compo-
sitional DT framework emerges as a systematic solution for connecting the physical and
virtual worlds [5].

This paper is dedicated to the elaboration of a scalable compositional framework, with
a specific emphasis on the adoption of this framework in a real mining plant as a tool for
production management improvement. A systemic approach, the framework incorporates
a series of solutions intended to handle the complexity of modern industrial operations as
well as streamline these operations to achieve smooth productivity and flexibility. Among
others, this framework enables data entities to communicate with each other, thus spreading
knowledge and linking information, creating a more intelligent contextually aware DT.
Framework specifies a modular and integrated environment where users use DTs according
to their needs and develop them.

The main contributions of this paper are as follows:

• The design of an architecture for a production management system tailored to the
mining operations of the experimental pilot of our research, the experimental open-
pit mine.

• The development and implementation of a scalable compositional framework for a
DT, facilitating an efficient PMS.

This paper is organized as follows: Section 2 mainly presents the relevant background
and related works on digital twin technology, monitoring systems, and production man-
agement systems. Section 3 contains the research methods and materials, which include
a data modeling process and the FDI-based methods used to conduct the site survey at
the industrial mining site to extract the value chain of the industrial mining site, as well as
the design of the database architecture. Section 4 includes the digital twin infrastructure
modular and scalable compositional monitoring framework. Section 5 presents the experi-
mental data, the results obtained, and their analysis and interpretation. Section 6 concludes
our study by highlighting the potentialities of the presented project and provides possible
research avenues for further efforts.

2. Background and Related Works

Within this section, we intend to provide a comprehensive analysis of the key compo-
nents of Industry 4.0 and automated machine systems that are created with the most recent
technology and techniques, such as DT, monitoring systems, and PMS. These elements are
what maintain the industrial machines’ operation today, serving as the most important
constituents in developing more efficient, precise, and adaptable production technologies.
Furthermore, we will be tackling the foundational principles of these components, un-
dressing the practicality of these ideas, and critiquing the recent research, as well as the
practices in the field. By this means of disentangling and connecting these important points
of divergence, a clear and well-researched understanding of the multidimensional and
changing scenario of these issues, their relationships, and the field of science that guides
the operational decisions in modern industry is the aim.

2.1. Digital Twin
2.1.1. Definitions and Associated Attributes

Digital twins (DTs), which originated as an aerospace concept, facilitate virtual ver-
sions of objects or systems. While it was originally used for aircraft analysis, its usage has
spread to multiple areas. NASA uses a widely accepted definition that treats a simula-
tion as a digital tool based on advanced models and real-time data, which can accurately
resemble the original system. In simpler terms, DTs are akin to a pair of twins, who can
either be tangible or digital [2,5]. Crucially, DTs encompass three key elements: a physical
being, a virtual mimicry, and a network of paths for real-time synchronizing. DT can be
presented in several ways, but the simplest explanation is that it provides scalable and
secure connections between relevant data from the physical to the virtual world. Figure 1
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illustrates the differences between a digital model, a digital shadow, and a digital twin,
which are three different integration levels illustrated in the same figure. Generally, they
are all associated with data exchange among physical, digital, and whatever else (model,
shadow, twin) [6].
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The characteristics of DTs include real-time reflection; the physical and digital dimen-
sions coexist, allowing for the synchronous real-time data of the current states to be made
available in one place. A cycle of fusion and divergence between the real and virtual worlds
is enabled based on the continuous integration of current and historical data. A DT has the
potential to be self-updating, i.e., it dynamically updates its data simultaneously, allowing
the virtual part to evolve by comparison with the real part [7].

By depicting the feature essential properties of DT for its incorporation, we have
created a MoSCoW diagram, as represented in Figure 2, laden with their significance
and impact. In the “Must-have” category, we have essential components like “Data
Flow/Updates”, which is the most livewire that keeps the DT algorithm in real-time
modes, thereby giving it its relevance and accuracy. “Real-time Synchronous” operation, in
turn, updates the DT with the immediate data and changing of conditions of the physical
counterpart in a real-time manner [8], ensuring the quick response requirements. “Con-
nectivity” is fundamental giving the possibility of working and exchanging ideas in a
seamless setting with the sundry systems and “Simulatability” is thus used to simulate the
behavior of the physical asset with the desired level of accuracy. The “Active Interaction
Applicability” is a crucial contributor for the “Should Have” category, which enhances
adaptability, “Data Fusion” increases the level of insights, and “Interpretability” helps
with the generation of data which are actionable. In the “Could Have” realm, aspects like
“Self-improvement”, “autonomous” decision-making, and envisioning consequent roles
for “Artificial Intelligence” provide some more capabilities, though they are not mandatory.
Notably, otherwise, there is nothing described in the “Do not have” category, which means
that the DT should accomplish this objective in order to obtain the best result in different
industrial situations.
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2.1.2. Current State of Digital Twin Research

In the current state of DT research, worldwide efforts thrive, with numerous frame-
works and architectures emerging. In the manufacturing context, the DT serves as a
virtual representation mirroring the real-time operation of the physical manufacturing as-
set, encompassing machines, production lines, the shop floor, products, and workers. This
digital counterpart empowers real-time monitoring and the prediction of future behavior,
performance, and maintenance needs [1,5].

Notably, three primary application scenarios for DT exist: supervisory, involving real-
time status provision for decision-making; interactive, where DT autonomously adjusts
parameters upon disruptions; and predictive, where DT forecasts the asset’s future state for
a corrective action [9].

Within manufacturing, the DT rejuvenates multiple tasks:

• Equipment health management: DT enhances system and worker reliability, availabil-
ity, and safety through seamless monitoring and informed maintenance decisions [10].
For example, it estimates the remaining useful life (RUL) of equipment components,
enabling intelligent design and timely monitoring for predictive maintenance [11].

• Production control and optimization: Dynamic manufacturing environments require
continuous monitoring and optimization [12,13]. DTs use real-time data to optimize
throughput by adjusting controllable parameters [14]. They also react in real time to
disturbances on the shop floor [15].

• Production scheduling: Traditional static production scheduling methods struggle
with process uncertainty. DTs dynamically elaborate or verify schedules during
disruptions. They even communicate with robots for optimal task scheduling.

The DT for manufacturing usually consists of a physical element, a virtual element,
and a real-time information exchange between them, assisted by the IoTs, data collection
and storage tools, big data analytics, and ML [15]. Making the privacy and security of
data a top priority still stays. DT research has experienced rapid progress, especially in
manufacturing, but defining the research areas remains a question because there is no
unified definition [16]. To promote a base of knowledge shared among members and
address implementation problems, further study is still required even though progress
has been made in the realms of equipment health management, production control, opti-
mization [17], and scheduling [18–20]. Nevertheless, there is still a noticeable gap, which is
mostly defined by the lack of hands-on examples of real-live implementation. Although
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the technology is mostly theoretical, it has not been implemented in a clear manner, and its
practical cases are limited [5,16].

These areas of research acknowledge the application of advanced analytics to dis-
rupt conventional data analysis [21], such as equipment maintenance, simulations for the
greater in-depth examination of processes and factories, and the utilization of emerging
technologies like virtual and augmented reality for data accessibility improvement [22].

Although progress has been achieved, there are still gaps in research, e.g., the lack
of practical implementation cases and suitable solutions for small- and medium-sized
businesses. The adaptability and effectiveness of DT frameworks across different industries
and scenarios also requires further study [23,24]. In the following sections, we examine
the establishment of a DT-oriented integrated monitoring system that can enhance the
effectiveness of a smaller enterprise to be in charge of its operation.

2.2. Monitoring System

In the realm of industry and manufacturing, monitoring systems have emerged as
pivotal drivers of efficiency, safety, and productivity [25]. These systems, founded on the
real-time tracking and analysis of processes, equipment, and operations, provide invaluable
insights for decision-makers. Their multifaceted benefits encompass heightened operational
control, predictive maintenance, quality assurance, and resource optimization, finding
applications across diverse industrial domains [3]. However, challenges persist, including
the integration of disparate data sources, ensuring data security, and scalability concerns.

It is the synergy between monitoring systems and technology of data that makes
the position of research notable, creating a paradigm shift for the industry. The fusion
of Electrical and Computer Engineering (ECE) and AI not only brings better control and
predictive capabilities but also the capacity to simulate and optimize processes in a risk-
free digital environment which is needed to conduct tests on “what if” scenarios [26]. It
amplifies the perks of the monitoring systems and provides a great impact on industry
applications, from observing mechanical processes on the factory floors to monitoring big
industrial activities [24].

Nevertheless, the translation of the already-developed integrated systems from theory
to practice appears to be a problem. Despite significant development, there is a lack of
practical real-time prototypes existing currently that combine the specific systems and
prove their applicability in different industries [24,25]. This offers a challenging demand for
the development of practical, flexible, and cost-effective solutions that can effectively work
in different industrial situations to be considered in future research [27]. In addition, we
should take into account the security problem of the data, complexity of integration, and
scalability problem [28] in order to provide the smooth implementation of the integrated
monitoring systems empowered by DT technology [22,29].

2.3. Production Management System

PMSs have become recognized as a much more significant element in the industry
and manufacturing sector of today. They carry out an essential function in performing
the somewhat complicated tasks of production [4]. These elements are the main things to
rely on for planning, scheduling, and sending out production signals. They ensure that
resources are used effectively and nothing less than maximum productivity [27]. What is
their behavioral formula is the data-driven approach, automation, and an analysis of the
results. They support improvements in production that become more effective, speedy, and
successful in today’s turbulent markets. The main advantages of these systems are natural
resource efficiency, cost savings, product excellence, and timely deliveries. Therefore, they
are critical for modern manufacturing [7].

Nevertheless, the inclusion of such systems in the current networked world also
poses serious challenges in regard to system integration, cybersecurity, and adaptation to
different production zones [29]. A vital research viewpoint is the successive gaps between
theoretical development and the actual realization of the scaled ‘Pseudo-mobile work



Designs 2024, 8, 40 6 of 26

lifestyle’ [30]. Nevertheless, significant advances have been made, yet the scarcity of
complete real-life simulated cases of perfect integration of those transition tools, on the
industrial level, remains.

The research gap reveals a very strong need: the development of solutions that are
practical, flexible, and affordable and can be adjusted to comply with the specified require-
ments of any industry. In the quest to bridge this gap and fully harvest the capabilities of
PMSs in manufacturing, there is a new and astonishing way to achieve this through the
application of the DT concept.

DT framework implementation into PMSs is a turning point in which they can meet up.
The integration of PMS dynamic capabilities and the real-time tracking, data integration,
and analytics of DTs render a new horizon. DTs, which are known for their features such as
real-time reflection, interaction, convergence, and self-evolution, can equip the PMSs with
exceptional levels of accuracy and adaptability of operation [31].

Imagine a manufacturing environment where the DT of a production asset, be it a
machine, production line, or even an entire factory, mirrors its real-world counterpart. This
digital replica operates in tandem, offering real-time insights and predictions regarding
the physical asset’s behavior, state, performance, and maintenance needs [31,32]. It enables
not only enhanced operational control but also predictive maintenance strategies, quality
assurance, and optimization in a risk-free digital environment ideal for testing “what
if” scenarios.

DTs could be the key to revolutionize PMS production control and optimization.
The dynamic rapid changes and uncertainties in manufacturing environments require
continuous monitoring. Since DTs are available, the PMS receives an inclusive perspective
of the manufacturing asset in real-time when utilizing data [33]. This facilitates rapid and
accurate corrections for overall throughput maximization [22].

Moreover, production scheduling, which has always had a hard time coping with the
dynamic nature of production as a whole, might finally receive a boost from DTs. In reality,
when disturbances happen on the shop floor, DTs responsible for the dynamic modeling
and verification of schedules can do so efficiently and ensure resource allocation as well as
prevent cascading effects due to unexpected events.

Meanwhile, it is undeniable that we also have several challenges to overcome. Data
integration complications and the security and reliability of the integrated systems are the
major challenges faced in the infusion of integrated systems into the healthcare industry [34].
To effectively make full use of the benefits of PMSs which have been delimited by DTs,
more study and innovations are required [7]. This includes creating scalable, affordable,
and flexible technical solutions that can take into consideration these challenges and also
provide solutions based on the individual needs of industries [35]. This pillar of innovation
challenges is calling us as we move to a future where the interfacing of PMSs and DTs
transforms the manufacturing processes to unprecedented levels of efficiency, adaptability,
and improvement [36].

3. Materials and Methods

The following section forms the cornerstone of our efforts to enhance mining op-
erations. Here, we describe the following research methodology, as well as discuss the
subsequent methods involved in developing the proposed digital twin-based production
management system designed for the real-time monitoring and optimization of key perfor-
mance indicators (KPIs). Data modeling is our starting point, and we use the modeling and
improvement principles of a factory. Beginning with a comprehensive survey of the mine
value chain, data points are collected, and a system architecture database is explored. To
complete the picture, we introduce you to the ARIMA (Autoregressive Integrated Moving
Average)-based production forecasting model, which is the key component in the con-
text of our novel approach. The combination of these methods and materials forms the
basis for an improved system adapted to increase the efficiency and accuracy of mining
decision-making.
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3.1. Research Methodology

The research methodology used in this study aims to develop a monitoring system
based on a digital twin architecture for production management. This methodology—
Figure 3—comprises eight sequential steps, each of which contribute to a comprehensive
understanding and refinement of the proposed system. First, an exploratory literature
review of the mapping type is carried out to gather evidence and identify existing knowl-
edge gaps. This mapping review aims to provide a comprehensive overview or ‘map’ of
the existing literature on a particular topic. This conducted literature review summarizes
key characteristics, trends, and themes across a broad range of the literature. It helps to
understand the scope of research on a topic and serves as a basis for further investigation
or synthesis. Focus groups are then formed with heterogeneous stakeholders from various
levels of the open-pit mine workforce, including managers, engineers, and technicians
representing diverse disciplines within the craft body responsible for handling the mining
operations. These focus groups are convened to discuss and evaluate the findings from the
literature review. The adoption of a systems design approach based on the Factory Design
and Improvement (FDI) technique is then validated. A survey of the mine value chain is
then initiated to gather essential data for further analysis. Based on this baseline data, a
system data model is constructed to provide a structured representation of the production
environment. The subsequent development of a digital twin-based system framework
integrates advanced technologies to enhance production monitoring capabilities. Following
this framework’s development, the case study of the proposed system is defined, with the
screening station identified as an experimental pilot for evaluation purposes. Finally, the
experiments and system integration are carried out by validating the proposed system with
a real-time data flow and integrating it with the SCADA system data.
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3.2. Data Model
3.2.1. Factory Design and Improvement-Based Data Model

To achieve the aim of flexible integration and interoperability of our designed system,
it is relevant to develop a data model assisting the connecting heterogeneity of the DT’s
components and the bidirectional data flows to ensure that there is a link with the physical
part of the whole cyber–physical system (CPS). In this paper, our data model relies on the
FDI Activity Model. Developed by the National Institute of Standards and Technology
(NIST), the FDI serves as a foundation framework for our study, as unveiled in the presented
diagram in Figure 4. The FDI formalizes essential [30] activities, functions of enterprise
software, and crucial information for operational design and management tasks in the
context of smart manufacturing systems [37]. It aligns with the standard work processes
commonly observed in global manufacturing enterprises, encompassing aspects such as
factory operations, manufacturing lines, processes, and equipment operations [30].
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At its heart, the ICOM (input, control, output, mechanism) parameters, foundational
to the smart manufacturing system (SMS), dictate its operational dynamics. Each compo-
nent of the ICOM paradigm plays a distinct yet interlinked role in making decisions and
performing actions regarding information [34].

3.2.2. Mine Value Chain Parameters Survey

By leveraging the FDI model, we gain a comprehensive overview of the operational
processes within the open-pit mine’s value chain [26], encompassing factory operations,
manufacturing lines, processes, and equipment. This model empowers us to analyze
performance measures, organizational structures, tools, systems, and associated data
comprehensively. The FDI model divides the design process into four distinct phases,
including development and design requirements, basic design tasks, detailed design tasks,
and testing [30,34]. This structured breakdown of design activities has been demonstrated
to expedite factory development projects significantly. By following this approach, we
conduct a systematic inventory and mapping process to comprehensively document and
analyze the facets within the mine value chain according to the ICOM (input, control,
output, mechanism) parameters [30] listed in Table 1.
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Table 1. FDI-based mine value chain parameters survey.

ICOM Factors Description

Input Information Product Information, Market Information, Resource Information,
Production Schedule, Labor Information, Equipment Information,

Output Key performance indicators (KPIs) Cycle Time, Lead Time, Production Output, Work-In-Process (WIP),
Return-On-Capital-Employed (ROCE),

Control

Work process Product Lifecycle Management (PLM),

Methodology Operational Excellence (OpEx), PDCA

People Process Operators, Process Designer, Process Engineers, Process Managers

Technology Statistical method, stochastic method, simulation, co-simulation

Mechanism Tools/system functions PLM, Computer-Integrated Manufacturing (CIM) pyramid, SCADA, OEE

Though the focus of the production value chain survey includes three main stations,
namely destoning, screening, and train loading, respectively, the input, control, output,
and mechanism parameters within the FDI methodology offer a systematic approach to
organizing and managing the operating processes logically. In the input stage, informa-
tion is the paramount element, addressing the critical elements. This refers to Product
Information giving out specifications of the products being manufactured, Market Infor-
mation presenting insights into the target market for demand, competition, and trends,
Resource Information furnishing the demand for tangible and intangible resources, Produc-
tion Schedule detailing the sequencing and timing of tasks, Labor Information providing
workforce details, and Equipment Information indicating the machinery and tools utilized
in manufacturing. The output factor, key performance indicators (KPIs), serves as a guide
for systems performance metrics such as Cycle Time, Lead Time, Production Output, Work
in Process (WIP), and Return on Capital Employed (ROCE). Control mechanisms determine
factors like Work Process, which focuses on Product Lifecycle Management (PLM) for sys-
tematic product supervision, methodology that highlights Operational Excellence (OpEx),
PDCA, which stands for constant improvement, People, involving key personnel roles,
and Technology, which emphasizes statistical methods, simulations, and co-simulations for
precision. The Mechanism factor involves Equipment and System functionalities such as
PLM, CIM, SCADA systems, and ERP, which drive process effectiveness and efficiency [38].
In general, the ICOM structure enables companies to have a roadmap in comprehending,
evaluating, and refining complex operational processes that then emphasize the impor-
tance of accurate data inputs, performance metrics, control mechanisms, and the use of the
latest technological tools in ensuring that operations efficiency and output optimization
are achieved.

3.2.3. FDI Data Model Enabling Production Management System

The elucidated data model shown in Figure 5, is vividly evident in the intricate de-
tailing of the overall mine’s value chain. Central to this model is the ‘Factory.Description’
element, anchoring the entire design by synchronizing the attributes and functionalities of
the factory with the 3PR (Product, Process, Plant, Resources) approach, a holistic paradigm
focusing on Product, Process, Plant, and Resources. The ‘Product’ domain, with its at-
tributes like weight, destination, quality, and profile, underscores the end goals and the
quality benchmarks set by the production system. ‘Resources’, a pivotal segment, elucidates
the tangible and intangible assets, accentuating the operational efficiencies, equipment
reliability, and the strategic deployment of labor. The ‘Process’ section, intertwined with
operations such as destoning, screening, and train loading, exemplifies the step-by-step
manufacturing mechanics, ensuring that no detail is overlooked. On the other hand, the
‘Plant’ category offers a panoramic view of the facility’s infrastructure, capturing aspects
from layout designs to safety standards. With the inclusion of the 3PR approach, the
model transcends traditional factory designs, harmonizing product quality, efficient re-
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source allocation, streamlined processes, and optimal plant utilization. In essence, this data
model, inspired by NIST’s FDI methodology and enriched by the 3PR approach, presents a
visionary overview for a future-ready, operational holistic customized database of our PMS.
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3.3. Autoregressive Integrated Moving Average Model
3.3.1. Theoretical Background

The Autoregressive Integrated Moving Average (ARIMA) model stands as a robust
statistical tool for the analysis and forecasting of time series data [39]. This model adeptly
addresses various structures inherent in time series data, offering a straightforward yet
powerful approach for making accurate forecasts [40].

The acronym ARIMA breaks down as follows:
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AR (Autoregression): Emphasizing the dependent relationship between an observa-
tion and its lagged counterparts.

The Autoregressive (AR) model, which is among the earliest models employed in time
series analysis, is a linear model. This model utilizes a combination of past values within a
time window, to which an error is added, as illustrated by Equation (1):

X(t) =
i=p

∑
i=0

aix(t − 1) + e(t) (1)

where X(t) is the value of the series at time t, p is the order of the model, ai denotes the
autoregressive parameters, and e(t) represents white noise, denoting the autoregressive
model of order p as AR(p).

I (Integrated): Introducing differencing to achieve a stationary time series, mitigating
trends and seasonality.

MA (Moving Average): Focusing on the relationship between an observation and the
residual error from a moving average model based on lagged observations.

The moving average model, also known as ‘Moving Average (MA)’, is another linear
model used for time series forecasting. Unlike the autoregressive model, it is based on
the white noise of the series. This model is defined by Equation (2) and is referred to as a
moving average of order q, denoted as MA(q):

X(t) =
i=p

∑
i=0

aiet−i + et (2)

where ai represents the moving average parameters, and en denotes the white noise of
the series.

Each component is explicitly defined in the ARIMA model, denoted as ARIMA (p, d,
q), where the parameters take integer values to specify the model type. The parameters are
elucidated as follows:

p (Lag Order): Signifying the number of lag observations incorporated in the model.
d (Degree of Differencing): Representing the number of times raw observations

undergo differencing to achieve stationarity.
q (Order of Moving Average): Indicating the size of the moving average window

used in the model.
The ARIMA model is a combination of the two preceding linear models: AR and MA.

It also includes an integration term (I) to account for the non-stationarity of time series. The
equation for an ARIMA model is represented (3):

∆dXt =
p

∑
i=1

aiXt−i +
q

∑
i=1

βεt−i + εt (3)

In constructing the linear regression model, the specified terms are integrated, and the
data undergo differencing to attain stationarity, eliminating trends and seasonal structures
that may negatively impact the model. It is noteworthy that any of these parameters can be
set to 0, allowing the ARIMA model to emulate simpler models like ARMA, AR, I, or MA.

The adoption of an ARIMA model for time series analysis assumes that the under-
lying process generating the observations follows an ARIMA process. This assumption
underscores the importance of validating the model’s assumptions against both the raw
observations and the residual errors of the forecasts [40,41].

To implement the ARIMA model in Python, the next step involves loading a simple
univariate time series, initiating the practical application of the theoretical foundations
discussed above.

The next diagram of Figure 6 illustrates the implementation workflow [42].
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3.3.2. Model Performance Metrics

We use different performance metrics to check how well our ML model performs on
new, unseen data by comparing their predictions to the actual outcomes in a test dataset.
We evaluate the suggested models using three key metrics [43]: mean absolute error (MAE),
root mean squared error (RMSE), and mean absolute percentage error (MAPE). The specific
formulas for these metrics are given by Equations (4)–(6).

• Mean Absolute Error

The mean absolute error (MAE) is a measure utilized to evaluate the discrepancies
between paired observations that pertain to the same event. The computation of MAE
involves the multiplication of the subsequent formula as depicted in Equation (4):

MAE =
1
n

n

∑
i=1

∣∣y − y′
∣∣ (4)

The mean absolute error is calculated on the same scale as the data. However, since
this accuracy metric is dependent on the scale, it is not suitable for comparing series with
different scales. In the realm of time series analysis, the mean absolute error is commonly
employed to gauge the forecast error.

• Root Mean Squared Error

The root mean square error (RMSE) is a common way to measure how much the
predicted values from a model differ from the actual observed values. It is important to
note that RMSE depends on the scale of the data, making it more suitable for evaluating
forecasting errors within a specific dataset rather than comparing different datasets.

The equation for the RMSE is represented (5):

RMSE =

√
1
n

n

∑
i=1

(y − y′)² (5)

• Mean Absolute Percentage Error
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The mean absolute percentage error (MAPE) is a metric used to assess the accuracy
of a forecasting model by measuring the percentage difference between predicted and
observed values, providing a relative measure of prediction accuracy.

The equation for the MAPE is represented (6):

MAPE =
1
n

n

∑
i=1

∣∣∣∣y − y′

y

∣∣∣∣ × 100 (6)

4. Scalable Compositional Digital Twin-Based Production Management System for
Real-Time Monitoring and KPI Optimization in Mining Operations

The proposed Scalable DT-based PMS for real-time monitoring and KPI optimization
in mining operations (Figure 7) introduces a groundbreaking approach to enhancing the
efficiency and effectiveness of mining operations [44]. By seamlessly integrating edge
computing, cloud computing, and artificial intelligence, the framework effectively gathers,
analyzes, and visualizes data from various sources to create a comprehensive digital
representation of the mining process. This virtual mirror, known as the DT, serves as a
powerful tool for real-time monitoring, predictive production, and optimization of key
performance indicators (KPIs).

The system efficiently manages the high volume of data generated by mining equip-
ment through edge computing. The programmable logic controllers Schneider Modicon
340 and local control panels also known as human machine interface Schneider Magelis are
commonly positioned at the mining site to collect raw data from sensors, data loggers, and
smart meters. These data are then transmitted to the multi-controller server OPC Factory
Server (OFS) via Modbus TCP protocol between dispersed edge control devices (data logger,
smart meters, relays, etc.).

Once collected, the data are logged onto the multi-controller Server Data Object File
System (OFS). The SCADA system then utilizes these data for monitoring and SCADA
functionalities, e.g., real-time visualization and monitoring [44]. Subsequently, the data are
stored in the backbone of our system, the PostgreSQL-pgAdmin database, which serves as
a centralized repository for both historical and current data. This centralized repository
facilitates efficient data retrieval and analysis for various purposes.

To prepare the data for further analysis, the framework lies on the bloc named Data
Preprocessing, which performs multiple Python libraries, such as Numpy, Pandas, Seaborn,
and Matplot. This involves cleaning and formatting the data, removing outliers, missing
values and inconsistencies, and ensuring data compatibility with the DT and predictive
models. Furthermore, the preprocessed data come to the prediction stage, within the
milestone component that revolves around leveraging advanced ML functionalities, par-
ticularly those embedded in the Auto Regression Integrated Moving Average (ARIMA)
algorithm, where this block delves into the intricate mechanisms of the ML model that relies
on ARIMA, utilizing historical data collected from diverse mining fields. This integration
embodies a forward-looking approach that aligns with the industry’s drive toward efficient
production prediction. The advantages of the ARIMA model are presented in Section 3.3.
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5. Experiment and Results
5.1. Data Description

The dataset under consideration originates from real-time measurements collected at
the phosphate screening station over the course of 20 months, starting from 1 January 2021
to 31 August 2022. Specifically, the data pertain to the tonnage of phosphate that has been
screened and is in a wet state upon exiting the screening station. The information is sourced
directly from the mining site, with measurements taken daily and in real-time.

The flow of the operational process of the screen station is inextricably connected to the
data collection process. A built-in weighing scale, consisting of the conveyor belt system,
registers the tonnage of the phosphate that goes through the screen. These measurements
are taken in intervals to specifically correspond with the end of each working shift. This
total will provide an overall daily metric that is produced by the summation of the tonnage
from all three shifts.

Figure 8 shows that the dataset includes the daily tonnage of wet phosphate as it
is screened and monitored over 20 months. The temporal format of the dataset corre-
sponds with the changes and operations cycles, providing a useful tool for analyzing and
forecasting the trends of phosphorite production.
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5.2. ARIMA Model Training
5.2.1. Time Series Stationarity

During this stage, a thorough analysis of the time series behavior is conducted to
extract essential information for the model’s creation. According to the model training
workflow depicted in Figure 6, the process initiates with visualizing the series, followed by
an examination of its stationarity and the identification of the parameters [41].

After that, we visualized the time series plot (Figure 8), where we employed the
augmented Dickey–Fuller (ADF) test. The result in Table 2 reveals an ADF metric that
dictates the stationarity of the series with an important low p-value of 0; all the other ADF
metrics are shown in Table 2.
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Table 2. Augmented Dickey–Fuller (ADF) test metrics.

ADF-Statistic −19.273189906

p-value 0.0

Critical values
1% 5% 10%

−3.4415777 −2.8664932 −2.569407

5.2.2. ARIMA Parameters’ Identification

In the subsequent phase, our attention turns to the crucial task of identifying the
parameters p, d, and q for the ARIMA model. To achieve this, our initial step involves
plotting the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF).
As depicted in Figure 9, a visual analysis of these plots guides us in estimating the values
for p and q. Specifically, the ACF aids in estimating the Moving Average (q) part, while the
PACF assists in estimating the Autoregressive (p) part.
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Upon careful examination of Figure 9, a potential ARIMA candidate emerges as (1,0,1).
This determination is rooted in the PACF plot, where the upper confidence interval is
crossed at the first lag (p = 1), and the ACF plot similarly exhibits a crossing at the first lag
(q = 1). With our time series confirmed as stationary (d = 0), this configuration presents
itself as promising. In light of the stationarity, we initially set d = 0. Subsequent exploration
involves testing alternative integer values in proximity to zero, encompassing 1 and 2, to
identify the optimal differencing parameter.

Following this, we find that the ARIMA model (1,2,1) provides the most suitable
results through the comparison of different combinations, (1,0,1), (1,1,1), and (1,2,1), which
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have the lowest errors. This procedure once more emphasizes the role of parametric
studies, which in turn stresses the importance of choosing the right model in improving
the model’s performance.

While the visual analysis carries some subjectivity and more than one ARIMA paramet-
ric combination may be plausible, further diagnostic tools are used to improve our choice
of the forecast model. That is when the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) become important instruments to use. These criteria help in
the quantitative assessment of various parameter settings, and this aids in optimization.

• Akaike Information Criterion (AIC)

The AIC assesses both the appropriateness of a model to the data and its overall
complexity. Typically, the selected model is the one with the lowest AIC value, indicating a
balance between model fit and complexity.

AIC = −log L + 2k (7)

where L is the likelihood function, and k is the number of model parameters.

• Bayesian Information Criterion (BIC) (8)

BIC = −log L + KlnT (8)

where L is the likelihood function, k is the number of parameters, and T is the number of
observations. The AIC and BIC scores, as defined above, are minimized. The model and
parameters p, d, and q chosen are those that minimize these criteria.

In order to calculate the AIC and BIC metrics, we follow the algorithm that is presented
below—Algorithm 1. We first set the range of possible values for p, d, and q, these being
integers, as the starting point. The subsequent algorithm applies an iterative search over
all possible combinations contained within the predefined range. For each running of the
algorithm, the AIC and BIC criterion values are calculated, and the one with the lowest
score is selected. This detailed strategy ensures the quality of the parameter combinations
optimization and fitting, and finally the identification of the ideal combination that satisfies
both the AIC and BIC criteria.

Algorithm 1: AIC and BIC Calculation Algorithm

1 → Load the dataset
2 → Define a range for p, d and q values

p = range (0, 3)
d = range (0, 3)
q = range (0, 3)

3 → Initialize minimum AIC and minimum BIC as infinity
4 → Initialize best parameters as (0, 0, 0)
5 → for every combination of p, d, and q values Do:

Fit the ARIMA model with the current combination
Calculate AIC for the model
Calculate BIC for the model
if current AIC value is lower then
Update the minimum AIC for best parameters.

end if
if current BIC value is lower then
Update the minimum BIC for best parameters.

end if
end for

6 → Print the best parameters identified based on both AIC and BIC

The computation performed with the Python code that encloses the supplied
Algorithm 1 returns the optimal parameters based on the Akaike Information Criterion
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(AIC) are (1,2,2), with a criterion value of 11,436.483. Further, for BIC (Bayesian Infor-
mation Criterion), the optimal parameters are (1,1,1), with the associated criterion value
being 11,451.199.

During the choosing of our parameters, we put our visual assortment, derived from
visual analysis, to severe checkup. This entails evaluating both theoretically proposed com-
binations as well as the ones found through visual observation. The integrated approach
combines both theoretical and empirical aspects to generate a robust and comprehensive
model development protocol.

The Table 3 presents an overall comparison of a plethora of options that our ARIMA
model has to offer. The framework of our comparative analysis presents both empirical and
theoretical considerations. Specifically, the table encompasses three distinct approaches: the
first is the visual analysis, the second is via AIC, and the third is the BIC. The comparison
is organized based on four critical criteria: mean absolute error (MAE), mean absolute
percentage error (MAPE), root mean squared error (RMSE), and criterion value that comes
from the combination of them. On the other hand, the table also indicates that the smallest
MAPE, 0.35, is for the first combination, (1,2,1). It must be pointed out that the values of
MAE and RMSE are virtually the same for the first and the third combination, suggesting
that an ideal lower value is achieved. Thus, we select configuring our model with the
parameter swap combinations (1,2,1) which appear to be the best as they result in the most
effective ML-based model.

Table 3. Comparative analysis of (p, d, q) optimal combinations.

Analysis Based on Visual
Observations

Akaike Information
Criterion (AIC)

Bayesian Information
Criterion (BIC)

(p, d, q) (1, 2, 1) (1, 2, 2) (1, 1, 1)

Related criterion value - 11,436.483 11,451.199

Mean absolute error (MAE) 3553.32 3628.66 3547.81

Mean absolute percentage error (MAPE) 0.35 0.59 0.60

Root mean squared error (RMSE) 4386.69 4386.69 4383.29

5.2.3. Dataset Splitting

To build our predictive model, we need to split our dataset into two main parts:
the training set, which is 80% of the dataset and is used for teaching the model, and the
test set, which is 20% of the dataset and is held back to evaluate the model. To create a
high-performance model, we specify six different splits from our dataset. This will ensure
complete training and foolproof testing of the model, thus giving a good insight into how
it works in different scenarios. These six splits -shown in Table 4- constitute what we know
as a time series cross-validator, which is a model that increases effectiveness by combining
different training and test datasets into consideration. This reveals that the analysis of the
model will be comprehensive and insightful.

Table 4. Dataset splits forming the training and testing sets.

Percentage of Dataset
in Use per Each Split Iteration (Split #)

Time Series Cross-Validator Combination

Training Set
(# of Used Raw)

Testing Set
(# of Used Raw)

29.18% 1st 88 83
43.34% 2nd 171 83
57.51% 3rd 254 83
71.67% 4th 337 83
85.84% 5th 420 83
100% 6th 503 83
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5.3. Model Evaluation
5.3.1. Performance Metrics for ARIMA Model Predictions

To examine the efficiency of the ARIMA model, we utilize a set of performance metrics
for a comparison of how good or relevant our predictions are. Through this method of
evaluating the model, the predictions from the model are compared to the actual results
from the test dataset, thus providing a comparative analysis that is used in determining
real-world performance. These three basic metrics are the ones that matter the most—MAE,
RMSE, and MAPE.

As depicted in Table 3, our ARIMA model’s performance is summarized with key
metrics: MAE (3553.32), MAPE (0.35), and RMSE (4386.69). These results remain promising
and intriguing when compared to the statistical metrics of our dataset, specifically the
maximum, minimum, mean, and standard deviation values (Table 5).

Table 5. Dataset statistical values.

Maximum Value Minimum Value Mean Value Standard Deviation Value

22,092 220 11,178.58362 4314.32453

For a clearer understanding of the model’s performance, we provide a graphical
representation (Figure 10) that compares the predicted values from the ARIMA model with
the actual values in the test dataset. This visual depiction not only evaluates accuracy but
also offers insights into the model’s ability to capture trends and patterns in the time series.
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5.3.2. Inference and Model Validation with External Time Series

As we go into the stage of monitoring how our ARIMA model works and if it can be
processed better, we reach the point of introducing a time series that comes from an external
source and that is not limited to the time parameter of our original dataset. The following
critical procedure involves using a dataset with a three-month time series, from 1 January to
31 March 2023. Also, the other data anchor emerges from the same screening station as the
initial wet phosphate samples. We will test the model, therefore, by carrying out inference



Designs 2024, 8, 40 20 of 26

passing, a rigorous evaluation of its accuracy in a separate time frame. This attempt seeks to
make an overall evaluation, identifying its potential to adjust to the changing environments
and the ability to predict under temporal conditions.

Based on Figure 11, it can be seen that our ARIMA model very well encompasses
the temporal patterns and well captures the trends within the time series data for the
verification part. The alignment of model performance and reliability herein points to
the efficiency and trustworthiness of our built ARIMA-based model. Additionally, our
building ARIMA model has a satisfactory performance in the evaluation metrics, with
MAE, RMSE, and MAPE values of 4185.95, 5092.9, and 0,25. These parameters overall
provide evidence of the model’s performance in terms of precision and closeness of the
forecasts to the observed values.
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5.4. Proposed Production Management System-Based Digital Twin Implementation
5.4.1. Implementation Setup

We begin our dedicated deployment procedure by gathering time series data from
our primary database. Through a real-time link, the SCADA monitoring system updates
these data on a minute basis. By filling in the missing values and combining the daily
volume of screened phosphates from three work shifts, we systematically preprocess these
data. Secondly, we use an ML-based model to perform the prediction. An important
cornerstone of our system is Flask [45], a flexible web framework which is a very important
element in supporting the hosting of our PMS application. Acting as a bridge, Flask pro-
vides advanced functionalities for processing HTTP (hypertext transfer protocol) requests,
routes, and views. It enables users to access our application through a web browser with
ease [46]. Moreover, Flask interfaces effortlessly with our graphical interfaces, which are
based on Streamlit. This comprehensive deployment ensures visualization and interactivity
within our DT application. Thereafter, we link the developed interfaces of our PMS into
the SCADA supervision main views displayed in the control room associated with the
screening station, as illustrated in Figure 12. This combined configuration will develop a
next-generation monitoring system that enables SCADA functionalities, such as ensuring
the availability and continuous supervision of performance and quality, known as Overall
Equipment Effectiveness (OEE). Additionally, it provides an outlook of the expected pro-
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duction, including the tonnage of screened phosphate output from our screening station.
Furthermore, it empowers operators to reconcile estimated/expected production with
realized performance.
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5.4.2. Production Management System Digital Dashboard

Our PMS has an integrated digital dashboard, which is the most crucial element
contacting the system framework-based DT. Its main emphasis lies in the control of the
monitoring activities of the screening station. The digital dashboard contains a suite
of functionality such as real-time monitoring [47,48], Overall Equipment Effectiveness
(OEE) [49], and graphical analytics that depict the historical trends and patterns of the
screening station. The entire package of these features allows for a complete picture of the
station functioning, as well as more effective decision-making. Moreover, a forecasting
function, for the screening of wet phosphate production, is incorporated to increase its
capabilities. The new system will be based on an ML model that uses its history data from
the station [50]. The forecasting function gives a chance to view the estimated output and
device operation effectiveness and hence enable our production management [47,48,51].

Figure 13 shows various operational aspects of the proposed system. Figure 13a
presents the homepage, revealing the useful aspects of production in real-time. The visual
elements include the graphics representing the tonnage of the product and the phosphates
produced from each hopper of the screening station. Secondly, the pie chart section exhibits
the uptime hours and downtime hours as a dedicated segment, presenting a comprehensive
categorization of the anomalies (mechanical issues, electrical issues). This figure allows
one to have a complete illustration of the screening station’s performance level. As seen
in Figure 13b, the milestone in our prototype PMS comes with a forecasting function that
offers us a real-time monitoring capability. This is a function that reconciles the values in
production. This is achieved by comparing the estimated and realized values. In essence,
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it enables the supervision of operators in the decision-making process by means of a gap
and difference measurement. The integrity of this function is vital for the performance
of operators to monitor and react accordingly to the various production scenarios, thus
allowing for more informed and strategic solutions.
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6. Conclusions and Outlook

DT technology is emerging as an invaluable tool used for gaining a comprehensive
understanding of and proactively anticipating potential scenarios that physical assets may
encounter. Despite numerous platforms outlined in the literature for DT development, the
emphasis has primarily been on specific vertical contexts, such as multi-layered structures
and architectures [52,53]. A significant evolution is imperative to achieve efficient and
compositional DTs. Addressing the current needs in this domain, there is a demand for
preferably open scalable platforms for the development and composition of DTs. This
paper contributes to the existing literature by introducing a compositional DT framework
designed to replicate the actual tonnage produced by the phosphate screening station.
This framework enhances real-time monitoring capabilities through a systematic PMS,
facilitating the forecasting of production. The proposed system provides some valuable
information and suggestions for the operators; thus, the operators can operate the system
smoothly and manage the production at screening stations well. The DT provides a digital
dashboard designed to enable operators to have a complete status of machines, production
time, Overall Equipment Effectiveness (OEE), and order scheduling. We propose an
integrable framework for composing DT suits for different situations. DT is self-contained
and works with AI-based models, particularly through ARIMA in ML. Streamlit makes
this possible for DT through analytics and trends tracking. It is interactive and visualizes
the IoTs monitoring data in a real-time manner, which are simple and complex. Besides
this, the forecasting tool offers information that supports decision-making and helps in the
process of reconciling actual and forecasted values of the stations.

To show the platform’s usefulness, we designed a case for the production line pro-
cess in the mining industry. This stage is aimed at screening phosphate and monitor-
ing/predicting its tonnage at the station’s output. DT shows the status of the station to the
end user in a direct way by using the SCADA composite in the framework. Further, they
are offered manufacturing KPIs which are easy to view on the related digital dashboard
interface of our DT.

In our future growth plans for our proposed composition framework, we aim to
expand its scope to include the entire mine value chain, including destoning and train
loading stations, within the production management system (PMS). This expansion will
enable a comprehensive approach to mine operations’ management. We are also com-
mitted to enhancing the capabilities of the ML-based framework by increasing the role
of ML algorithms in the integration processes. This evolution will go beyond predictive
maintenance and shift scheduling optimization, enriching the functionality of the system.
Our overall goal is to establish a robust and fully functional PMS that comprehensively
addresses all essential parameters related to production efficiency. By achieving this goal,
we aim to create a robust structure that optimizes operations throughout the mine value
chain. To ensure a clear and comprehensive understanding of our objectives, strategies, and
expected benefits, we recognize the need to improve the description of the content. We are
committed to refining our documentation to provide stakeholders with a more transparent
insight into the intended outcomes and benefits of implementing these new capabilities.
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