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Abstract: Mapping of meteorological conditions surrounding road infrastructures is a critical tool
to identify high-risk spots related to harsh weather. However, local or regional data are not always
available, and researchers and authorities must rely on coarser observations or predictions. Thus,
choosing a suitable method for downscaling global data to local levels becomes essential to obtain
accurate information. This work presents a deep analysis of the performance of two of these methods,
commonly used in meteorology science: Universal Kriging geostatistical interpolation and Weather
Research and Forecasting numerical weather prediction outputs. Estimations from both techniques
are compared on 11 locations in central continental Portugal during January 2019, using measured
data from a weather station network as the ground truth. Results show the different performance
characteristics of both algorithms based on the nature of the specific variable interpolated, highlighting
potential correlations to obtain the most accurate data for each case. Hence, this work provides a
solid foundation for the selection of the most appropriate tool for mapping of weather conditions at
the local level over linear transport infrastructures.

Keywords: weather data; numerical weather prediction; Global Forecast System (GFS); Kriging;
interpolation; Weather Research and Forecasting (WRF)

1. Introduction

Weather conditions are a well-known factor that affects the security and behaviour of road
infrastructures users. Between 1994 and 2012 on the United States, 16% of the annual fatalities caused
by road accidents reportedly happened during adverse meteorological conditions [1]. Heavy rain
and moderate or heavy snowfall increasingly raise driving accident risk [2,3] and injury risk due to
such accidents [2], as they both modify the paving conditions and the general visibility. Wind speed
magnitude has also been identified as a significant variable for car crash severity prediction, in addition
to rainfall intensity during the 15 minutes previous to an accident [4]. Moreover, some results from [3]
suggested that air temperature below a certain level may cause a relevant increase in car crash risk,
although it is acknowledged that the number of results are not enough to be statistically significant.
Harsh weather conditions also modulate the effects of light conditions on driving speeds [5], adding
an indirect component to its influence on accident risks. Hence, an adequate characterisation of harsh
or extreme weather conditions on the surroundings of road infrastructures is relevant to help prevent
and mitigate damages caused to both the drivers and the infrastructure itself.

The use of automatic weather measurement stations is a common option for monitoring of
local meteorological conditions. However, their installation and maintenance are costly, thus, their
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distribution may be scarce. Even more, access to real time data from those stations may be expensive,
or not possible at all. An alternative approach is to use the output estimations provided by Numerical
Weather Prediction (NWP) models. Usage of these meteorological deriving tools has widely extended
over the last decades in multiple fields, from general forecasts and warnings provided by public
services to prospecting studies on renewable energy sources [6,7].

NWP models may be divided between global-scale- and regional-scale-focused, according to the
horizontal area they are intended to model. Two examples of global NWP models with an extended
usage are the Global Forecast System (GFS) and the Integrated Forecast System (IFS). The former is
developed and maintained by the National Oceanic and Atmospheric Administration (NOAA) of the
United States, while the latter is developed and maintained by the European Centre for Medium-Range
Weather Forecasts (ECMWF) and the French national meteorological service Météo-France. GFS is
widely used, alone or coupled with other models, on a broad domain of fields. Few examples
are large-scale atmospheric-ocean phenomena [8]; solar irradiation forecasts for photovoltaic energy
production [9,10]; hydrological research [11]; climate change [12]; wind power production forecasts [13];
and, of course, meteorological analyses [14].

Global scale climate models provide a homogeneous source of meteorological data when the
studied area and/or time period is too broad to implement in situ measurement campaigns, and no
observations from automatic weather stations are available. However, the spatial resolution of such
global models may be unsatisfactory for some applications. The highest resolution currently achieved
by GFS is about 13 km, through its GFS sflux model [15]. For the IFS, the highest resolution provided
by its high-resolution forecast deterministic model is about 9 km [16].

A common approach to adapt global models to local scale is to downscale global results using
regional NWP models, also referred to as regional scale climate models [17,18]. This way, high
resolution weather fields can be solved using low resolution boundary conditions, taking into account
local scale features and details that the global NWP models cannot capture. Another option is to use
interpolation tools, of which geostatistical interpolation tools are widely used, based on a comparative
study included on [19]. Unlike NWP, which is based on solving physic equations by means of
numeric simulation, geostatistical interpolation algorithms rely on statistical modelling of the spatial
relationships between distant points.

The main scope of this work is to develop and test a methodology for selecting the most appropriate
method for downscaling of global/regional weather data to the local level. It aims at evaluating and
comparing the performance of two downscaling methods. The first one is a state-of-the-art regional
NWP model, the Weather Research and Forecasting model (WRF). The second one is Universal Kriging
(UK), a member of one of the most acknowledged geostatistical interpolation tools family (according to
comparisons included on [19]), Kriging. Local estimation outputs from both algorithms are compared
with local measurements obtained from eleven automatic weather stations located on the central
area of continental Portugal. These results are analysed to identify the performance characteristics
of both methods in order to perform a sensible selection of the appropriate tool for generating local
scale meteorological condition maps over wide areas, without relying on potentially unavailable local
measured data. The research work is developed within the frame of the GIS-based infrastructure
management system for optimised response to extreme events on terrestrial transport networks
(SAFEWAY) project [20], with one of its main scopes being the mapping of meteorological variables to
characterise the weather conditions surrounding transport infrastructures (including extreme events).

2. Materials and Methods

The general workflow of the conducted research work is reflected on the structure of this section.
First, the general structure and relevant features of the two downscaling algorithms are defined. Next,
the best available data sources are selected (input weather data for downscaling, reference weather
data for validation and auxiliary data). Afterwards, the particular operational conditions of the study
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(analysed area, temporal span and relevant variables) and the estimation datasets to be compared are
defined. Finally, error metrics used for comparing estimation performance of said datasets are chosen.

2.1. Downscaling Algorithms

The first chosen downscaling algorithm, belonging to the geostatistical interpolation tools field, is
one member of the Kriging interpolation family. In particular, the Universal Kriging method is chosen,
as it is a tool with which the authors have an extensive experience embodied on different published
research works [21–23]. The Kriging term designates a set of geostatistical interpolation tools, of which
Universal Kriging is one particular version. Given an unknown variable, all Kriging methods focus on
estimating its local value at a given location (estimation point), based on local measurements on its
surroundings (observation points). Relations between locations are based on the distance between each
pair of points. Hence, Kriging interpolation is based on the assumption of autocorrelation between
different measurements of the estimated variable. Said variable is usually a continuous field, although
some variants make use of categorical fields. Kriging methods take their collective name from the
geology and mining works of Krige [24], developed and formalised by Matheron [25]. Since then,
Kriging has been adopted and widely used in other fields, such as radioactivity monitoring [26],
building energy performance analysis [27] or meteorological data generation [28].

Depending on the assumptions about the statistical properties of the interpolated variable, (namely
its general trend) different versions of Kriging are available. A more detailed explanation about said
versions can be found in [19]. On this study, the chosen Kriging variant is Universal Kriging, using four
predictors to estimate general trend: latitude, longitude, elevation taken from the mean sea level and
horizontal distance taken from the nearest sea-land interface. Specialised R packages are used to build
the implemented UK interpolation algorithm, including the definition of estimation and observation
sets of points with defined predictors, the downloading of input weather data, the proper interpolation
and the generation of output files.

The Weather Research and Forecasting model is one mesoscale NWP model widely used in
conjunction with GFS, with a few examples being [9,10,12,13]. The Advanced Research WRF (ARW) [29]
core version of WRF is maintained by the National Centre for Atmospheric Research (NCAR), and is
mainly used for research studies. The other available core is the WRF Non hydrostatic Mesoscale
Model (NMM), maintained by the National Centres for Environmental Prediction (NCEP). Some of the
main differences between the ARW and NMM cores are their vertical levels systems, time integration
methods, grid point conventions and conserved variables. In this study, version 4.1.1 of the ARW core
is used. Hereinafter, the ARW core will be referred to as simply WRF, as the NMM core will no longer
be mentioned.

A general outline of the WRF algorithm workflow can be seen in Figure 1. It can be divided
in three main systems: the input data pre-processing modules (collectively referred to as the WRF
Pre-processing System or WPS), the solver modules (the actual WRF model) and the post-processing
and visualisation modules, along with other components not used on this study. More details about
the WPS and WRF operation and underlying principles can be found on [30].

Default physic options for the 4.1 version are used on this study [30]. A hybrid vertical coordinate
system is used: the bottom vertical layers follow the surface terrain, evolving into layers entirely
defined by isobaric values for the top part of the atmosphere. WRF output files are processed using
custom Python and NCAR Command Language scripts. Point measurements are extracted from the
gridded result files at specific locations, retrieving meteorological values from the nearest grid point.
Other python scripts are used to define WPS and WRF systems launch configuration, download input
weather data, manage the general algorithm workflow and store intermediate outputs and log files.
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2.2. Data Sources

Among the different input data required for both UK and WRF algorithms, the most relevant are
observations of weather variables on a sufficient amount of points, which can be either real on-site
measurements or reliable estimations obtained with other methods. For UK interpolations of a given
variable, only two-dimensional (2D) inputs over a latitude-longitude defined grid are required for
each interpolated moment, with the same elevation over the local ground surface. For WRF, however,
a plethora of different weather variables are to be provided at a three-dimensional (3D) regular grid to
properly model the regional atmospheric dynamics. These weather inputs provide the boundary and
initial conditions for the atmospheric simulation. As any interpolation method has an intrinsic amount
of error, a reference dataset of reliable measurements at a representative set of the estimated points is
also required in order to measure the accuracy of the interpolated results.

2.2.1. Input Weather Data

The main weather data used in this study are two of the NOAA weather forecast products.
Specifically, outputs from the Global Forecast System products GFS 0.5◦ (spatial horizontal resolution
of 0.5◦) and GFS sflux (horizontal resolution of ~13 km) are used as meteorological inputs for WRF and
for UK algorithms, respectively.

The NOAA is one of the operational units belonging to the United States Department of Commerce.
It is a scientific entity mandated to provide information and promote research focused on oceanic
and atmospheric conditions. The NOAA’s Global Forecast System NWP model is developed and
maintained by members of the NCEP. Various GFS products are available with alternative horizontal
grid resolutions (among other differences). All GFS models have four daily executions at 00:00, 06:00,
12:00 and 18:00 UTC time, generating outputs up to 384 hours. Forecast output files have a temporal
resolution of one hour for GFS 0.25 and sflux products for the first 120 hours, increasing to 3-hourly
outputs beyond forecast hour 120 and up to forecast hour 384. For the GFS 0.5 and 1.0 products, the
temporal resolution is three hours for all the forecast range. NOAA maintains a network of data servers
inside the framework of the National Operational Model Archive and Distribution System (NOMADS)
project. There, access is provided to both a long-term archive (file persistence lifespan of roughly two
years) of some model outputs, and a short-term real time server (file persistence of 10 days) where
all currently operated model outputs are published. For the long-term archive, only files containing
results at every other three hours are available. More information about GFS products is available
at [15,31].

For the current study, GFS 0.5◦ three-hour resolution outputs are retrieved from the long-term
archive, and GFS sflux hourly results are downloaded from the short-term archive. Only the shortest
possible term forecast files are considered for each cycle (e.g., the +03 forecast of the 06 execution cycle
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is used, instead of the +09 forecast of the 00 cycle). Both GFS 0.5◦ and sflux data are fed into the WRF
and UK algorithms without any modifications to the values contained within the downloaded files.
The only pre-processing of GFS sflux data is the extraction of relevant weather variables values for the
points located inside the study area, as the UK algorithm is not capable of directly reading full GFS
output files. For the GFS 0.5◦ files, they are directly ingested by the WPS module, without any external
pre-processing. A detailed explanation about the WPS internal pre-processing operations can be found
on [30].

2.2.2. Reference Weather Data

The reference institution for weather science in Portugal is the Instituto Português do Mar e da
Atmosfera (IPMA), a public entity commissioned with promoting and coordinating scientific research
and technologic development on both sea and atmosphere. Among other attributions, the IPMA holds
the national authority role for the meteorological domain in Portugal.

IPMA maintains a network of 135 automatic weather stations over the continental and insular
Portuguese territory, which yields an approximate density of one station per 667 square kilometres.
For the central area of Portugal where this study is focused, 37 units are scattered along the districts of
Coímbra, Castelo Branco, Leiria, Portalegre, Santarém and Lisboa. Almost all of them hold dry bulb
air temperature, air relative humidity, global solar radiation, accumulated rainfall and mean wind
sensors, with fewer measuring atmospheric pressure.

IPMA provides free access to the current weather conditions (only a few variables) over all the
Portuguese territory on its web site. Historical data must be specifically requested, normally with a fee
that depends on the amount of requested information. However, a sample dataset containing hourly
measurements from 11 stations during a complete month is provided free of charge by IPMA, in the
framework of the SAFEWAY project where this study is included.

Attempting to evaluate grid-output estimation algorithms using empirical measurements (such as
weather stations) introduces a new issue: measurement points are prevalently scattered in an irregular
pattern, with a lower point density on remote, unpopulated areas. Estimation algorithms such as
WRF require defining a regular output grid, whose nodes coordinates may not match the irregular
measurement locations. Trying to ensure this matching would usually require the estimation grid to
have a spatial resolution close to the resolution used to define the measurement points coordinates,
which is not feasible on most cases. To tackle this issue, most studies opt to fit point measurements into
a regular, compatible grid using interpolation methods, such as Kriging [17,18,32]. Another option is to
interpolate the estimation grid points to the measurement locations. The former approach introduces
an artificial error level on the measurement reference dataset, while the latter increases the uncertainty
of the estimation dataset. In this study, the latter option was chosen for WRF results, interpolating
its estimations from WRF grid points to IPMA stations locations using a simple Nearest Neighbour
method (i.e., assigning the value of the closest estimation grid point). A brief presentation of the
distance errors between the IPMA measurement points and their nearest WRF estimation points is
presented in the Section 2.4.

2.2.3. Auxiliary Data

Although weather observations are capital inputs for both downscaling algorithms, more data
is required. For the UK algorithm, both latitude and longitude estimators are always known for
well-defined observation and estimation points. Elevation from sea level and distance to nearest coast
line, however, are not necessarily available when choosing estimation locations or when retrieving
local weather measurements. These two required variables must be obtained from a digital elevation
model and a geographic geometry model with enough spatial resolution, as they limit the resolution of
the interpolation results. Here, altitude is measured using a public European elevation model provided
by the European Environment Agency under the framework of the Copernicus programme [33],
which has a 25 m resolution and a vertical accuracy of ±7 m RMSE (Root Mean Square Error). Coast
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distance is measured using a public European coastline dataset provided by the European Environment
Agency [34], showing separation of land and sea at a 1:100,000 scale. Frontiers of inland water bodies
that are not connected to sea are not included on this dataset.

For the WRF algorithm, static geographic data must be interpolated to the different model grids
by the geogrid tool. These static data include soil categories, land use categories, terrain height, annual
mean deep soil temperature, monthly vegetation fraction, monthly albedo, maximum snow albedo
and slope categories [30]. For this study, the high resolution mandatory geographical data package
provided in [35] is used. This is the standard geographical dataset used on operational WRF runs.

2.3. Study Operational Conditions

After selecting the downscaling algorithms and the input weather and auxiliary data sources,
the specific conditions of the comparison test between UK and WRF must be defined. These are
conditioned by the framework of this study, the SAFEWAY research project. Meteorological activities
on said project are focused on the central Portugal region during years 2019-2021. This determines the
relevant weather variables to be analysed, and restricts the geographic area and temporal interval of
the study.

2.3.1. Studied Locations

Eleven locations across the Portuguese districts of Coimbra and Santarém were selected to perform
the comparison between UK and WRF weather estimations. These locations correspond to the sites of
the eleven IPMA automatic weather stations available on those districts, which were used to provide
the reference weather data. Coordinates and relevant information about the chosen locations are
shown in Table 1.

Table 1. Studied locations.

Name Station Code Longitude Latitude Elevation [m] Coast Distance [km]

Coimbra Aeródromo 01200548 −8.4685 40.1576 170.08 33.67
Pampilhosa da
Serra/Fajão 01210686 −7.9270 40.1456 834.67 79.86

Lousã/Aeródromo 01210697 −8.2442 40.1439 195.26 52.79
Dunas de Mira 01210704 −8.7617 40.4460 9.47 3.79
Coimbra/Bencanta 01210707 −8.4552 40.2135 26.09 35.54
Fogueira da Foz/Vila
Verde 01210713 −8.8059 40.1398 2.50 4.86

Tomar/Aeródromo 01210724 −8.3740 39.5921 74.91 59.70
Rio Maior 01210729 −8.9236 39.3139 53.25 24.58
Santarém/Fonte Boa 01210734 −8.7367 39.2013 70.93 35.92
Coruche 01210744 −8.5133 38.9415 17.79 39.48
Alvega 01210812 −8.0270 39.4611 50.35 91.36

2.3.2. Temporal Span

Reference weather dataset provided by IPMA ranges from 1 January 2019, 00:00 to 31 January 2019,
23:00, with a resolution of one hour. The local GFS sflux results database fully covers this time span
with hourly entries. For the GFS 0.5◦ files, the 18 cycle execution for 29 January 2019 is missing from
the online NOMADS archive, as are all subsequent executions until the cycle 18 of 2 February 2019.
This gap could be filled using longer-term forecast files from the last available execution. However,
this would reduce the quality coherence between the sflux and 0.5◦ results. Instead, the last three days
of January were removed from the analysed temporal range. Thus, the current study used hourly
results from 1 January 2019, 00:00 to 28 January 2019, 23:00, both included. All hours mentioned thus
far and henceforward are UTC.
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2.3.3. Weather Variables

Relevant weather variables for this study are selected based on three criteria: (i) the significance to
fully characterise local atmospheric conditions; (ii) previous work from the authors regarding Kriging
performance with meteorological data [21–23]; and (iii) the availability on the reference data acquired
from the selected IPMA stations. According to the first two criteria, variables containing temperature,
humidity, pressure, solar radiation, wind and rainfall information were selected. According to the
last criterion, the analysis of pressure related variables is omitted due to such variables not being
included on the provided reference datasets. Rainfall, although being a relevant weather variable
as identified during the literature review, has to be discarded for this study. This is due to the small
percentage of valid and not zero rainfall data available from the IPMA reference dataset: between the
hours with no valid measurements, and the ones where the stations registered no rainy conditions,
only a 11.9% of the total hours of the study span could be used to validate rainfall estimations. Wind
direction is also discarded for a similar reason, having only a 24.9% of non-error measurement hours
on the reference dataset. Wind speed, another relevant weather variable according to the literature
review, was provided separately from wind direction on the reference dataset, and has a much higher
percentage of valid measurements (77.7% of the total hours), thus, it was considered for this study.

The chosen variables are: air temperature, air relative humidity, global solar radiation and wind
speed. With this set of variables, the study comprised a well-acknowledged relevant weather factor
(wind speed) [4], a possibly relevant condition (air temperature) [3] and two not previously considered
conditions (air humidity and solar radiation), which have nonetheless potential to alter road conditions.
Temperature, humidity and wind speed variables are hourly mean averages, built from sub-hourly
measurements or estimations. The solar radiation variable is an hourly total, integrated by sum of
sub-hourly measurements or estimations. In addition to these hourly variables, more metrics based on
daily aggregations of hourly values were also considered for the comparisons. Maximum, minimum
and mean daily values were computed for temperature, humidity and wind speed. For global solar
radiation, the minimum value is trivial. For this sole variable, the total daily amount of recorded
radiation (a sum of hourly values) was used, in addition to the maximum daily value.

For the solar radiation variables, a filter was applied when computing errors between estimated
and measured values in order to only consider hourly data between 07:00 and 19:00 (both included).
Thus, the night radiation values are excluded from the calculations, since they ought to be zero for
all estimated and measured datasets. The 07:00 and 19:00 limits are chosen after analysing the IPMA
radiation measurements, to ensure that the compared hours comprise both dawn and dusk hours for
all stations and days.

2.4. Compared Datasets

Four different datasets of estimation results were generated for comparing the performance
between the UK and WRF algorithms, based on the achieved horizontal resolution. Three different
datasets are built for the latter, all using GFS 0.5◦ files as weather data inputs. Only one dataset was
built for the former, with the GFS sflux local database stored variables used as inputs.

For Kriging interpolation, it makes no sense to state an output spatial resolution, since UK results
are not inherently limited to a specific discrete grid. Auxiliary data inputs, however, do have a spatial
horizontal resolution of 25 m. Although it does not directly translate into an output resolution, said
input resolution does have an influence on output errors.

For the WRF algorithm, a horizontal resolution must be defined for each of the nested interpolation
meshes. In this study, a three nested meshes structure is defined for an adequate transition between the
roughly 56 (north-south) – 39 (east-west) km resolution of the GFS 0.5◦ grid and the innermost output
mesh. For each of these meshes, three different resolution options were tested, keeping a constant
resolution ratio of 3 for each subsequent nesting (4 for the third set). A two-way nesting approach was
used, thus, each nested mesh overwrites results of its parent mesh on the overlapped area. Meshes
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coordinates and resolutions are shown in Table 2, while UK estimation point locations (including
related IPMA station codes) and WRF interpolation meshes can be seen in Figure 2.

Table 2. WRF meshes coordinates and horizontal resolution.

Mesh Min-Max Latitudes Min-Max Longitudes
Horizontal Resolution [km]

WRF-1.5 WRF-1 WRF-0.75

D0 35.000000 45.000000 15.000000 −4.000000 13.5 9 12
D1 37.500000 42.500000 −12.000000 −6.000000 4.5 3 3
D2 38.603340 40.625430 −9.386102 −7.270932 1.5 1 0.75
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(b) WRF nested domains.

Once both WRF estimation grids and IPMA reference points were well defined, distances between
each measurement location and its nearest WRF estimation grid point were computed. These distances
provide an indirect form of evaluating the error introduced when translating the reference locations
to the estimation grid, as a direct estimation of said error was not possible due to not having local
data measured on the exact grid points. Distances for the three different WRF meshes sets can be seen
in Table 3. The maximum possible difference between estimation and measurement points would
correspond to half of the diagonal size of a rectangle defined by the surrounding estimation grid points.
Mean distances for the 11 locations were between 50.3% and 61.9% of this theoretical maximum.

Table 3. Distance between reference measurement points and nearest WRF estimation point.

Station Code
Distance to Nearest WRF Point [m]

WRF-1.5 WRF-1 WRF-0.75

1200548 871 317 348
1210686 395 179 241
1210697 767 651 473
1210704 335 82 370
1210707 739 189 263
1210713 472 637 158
1210724 552 507 227
1210729 992 342 455
1210734 643 332 224
1210744 694 638 458
1210812 225 35 396
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2.5. Error Comparison Metrics
Estimated datasets quality is tested using different error metrics to evaluate deviations from

the reference IPMA stations measurements. Based on previous studies carried out by some of the
authors [21–23], three error metrics are chosen: the mean bias error (MBE), mean absolute error (MAE)
and root mean square error (RMSE), whose definitions are shown in Table 4.

Table 4. Error metrics.

MBE 1 MAE 1 RMSE 1

n∑
i=1

Xi−Yi
N

n∑
i=1

|Xi−Yi |
N

√
n∑

i=1

(Xi−Yi)
2

N

1 Xi: estimations Yi: reference measurements N: sample size.

3. Results and Discussion

Differences between the reference IPMA dataset and the Kriging and WRF datasets are analysed
by means of the three aforementioned error metrics, and results are presented using two different
methods: first, the spatial variability between estimations performance on the 11 selected locations
is explored using box-and-whisker plots; second, the evolution of the error performance during the
study temporal span is studied using line plots. In addition, an analysis of the IPMA measured data is
also included before the main results to check the general weather conditions.

3.1. Reference Ranges
A first look at the daily maximum, mean and minimum values of the IPMA dataset for each

variable is provided in Figure 3, in order to identify the general weather conditions. This helps
providing reference ranges of values, so differences between different error metrics can be properly
evaluated. For global solar radiation, the minimum value is replaced with the total daily amount of
radiation obtained.
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Weather daily values show that the first 13 days are slightly colder, sunnier and with lower winds
and more stable conditions than the rest of the study time span. Weather conditions fluctuations are
high but not extreme, with a maximum difference between higher and lower temperatures of 16 ◦C
for a given day between all locations. Mean temperature, humidity and wind speed values present a
moderately cold, humid time period with weak winds. These values will be useful in the evaluation of
metric error magnitudes on the following sections.

3.2. Spatial Dispersion Analysis

Box-and-whisker plots represent the mean estimation results variability for the eleven tested
locations for each UK or WRF dataset. Median or 50th percentile (horizontal line inside boxes), 25th
and 75th percentiles (bottom and top box closures) and differences between those two percentiles
(inter-quartile range) are analysed and compared. All three 25th, 50th and 75th percentiles may be
referred to as the main percentiles hereinafter. On the following figures, whiskers comprise values
outside of the inter-quartile range but within 1.5 times such range. Outliers falling outside of whiskers
are marked as black rhombuses.

MBE, MAE and RMSE results are plotted for each hourly variable and its related daily aggregations.
As shown in Figure 4, all datasets tend to overestimate the temperature in all of its forms, although
MBE values are much closer to zero for the daily maximum aggregation. The UK interpolation 25th
percentile value is the lowest in all but the maximum temperature cases. Median, 75th percentile and
inter-quartile range values are the highest for the UK dataset in the four temperature aggregations.
Differences are less prominent between WRF datasets than between them and the UK results. WRF-1
has a slightly better performance than WRF-1.5 and WRF-0.75 regarding inter-quartile and 75th
percentile values, while having higher 25th percentiles and similar medians.
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Relative performances are similar for MAE and RMSE metrics. UK dataset now has higher main
percentiles and median values, but its inter-quartile ranges are smaller than the ones of the other
datasets. As for the WRF outputs, WRF-1 has again a smaller inter-quartile range but a slightly larger
distance between top and bottom whiskers, while median values are similar in the three datasets.
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While hourly and daily mean temperatures behave very similarly, maximum and minimum
temperatures have large discrepancies in performance: main percentiles and median values are between
two and five times higher for the minimum temperatures, while inter-quartile ranges differences can
reach up to 26 times for the case of WRF-1.5. Maximum and minimum daily temperatures taken from
Figure 3 help to evaluate the magnitude of the obtained errors: having a RMSE of ~1 ◦C (median
values for the four estimation datasets) for the highest daily temperatures in the range of 20 ◦C is less
significant than the RMSE of 3–5 ◦C for lowest daily temperatures, close to 0 ◦C for most of the days.
Comparing maximum and minimum temperatures metrics, the hours with colder temperatures seem
to produce the largest errors.

Overall, WRF datasets perform better than the UK one for the temperature variables, although
differences vary between metrics and aggregations. Based on median, main percentiles and inter-quartile
range values, the best temperature estimations are provided by WRF-1, with WRF-1.5 and WRF-0.75
being technically tied on the second position, close to first.

MBE results from Figure 5 reveal the global tendency of all estimation datasets to underestimate
relative humidity. As with temperature, differences between humidity WRF-1 and WRF-0.75 datasets
are smaller than when comparing them against the UK results. However, the WRF-1.5 results
performance is now more separated from the other WRF datasets, especially for inter-quartile ranges
and 75th percentiles. Medians are similar for the three WRF outputs, and also for UK for the daily
minimum values.Infrastructures 2020, 5, 15 12 of 22 
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Performance patterns are again similar between MAE and RMSE, also showing the same trend
as MBE: UK performing notably worse than WRF-1.5, WRF-0.75 and WRF-1 (ranked in that same
decreasing order of performance) for hourly values and the two first daily aggregations, while differences
are much less obvious for daily minimum humidity values. While all WRF datasets have similar values
for medians and 75th percentiles, the 25th percentile values are higher for the medium resolution one,
meaning less estimation values have a lower error for this dataset.

Although differences between maximum and minimum humidity errors do exist, they are not
as significant as for temperature. The largest variations appear between daily mean and minimum
metrics for the WRF-0.75 dataset. Taking into account the mean humidity measured values of 70–90%
for most days from Figure 3, the median RMSE values of about 15% obtained are relatively high.
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RMSE errors are similar between maximum and minimum daily values for all the WRF datasets (about
12.5%), but the latter are more relevant when compared to the measured high and low humidity values
(40–70% for most days for the minimums, 80–100% for all days for the maximums).

UK dataset estimations show the worse general performance when all aggregations and metrics
are taken into account. WRF-0.75 is arguably better than WRF-1 for daily minimum errors, while it is
worse for daily minimums, yielding a comparable performance for hourly and daily maximums and
mean values. As with temperature, there is no clear best dataset for the humidity variables. However,
both WRF-1.5 and WRF-0.75 have arguably better performance than the medium resolution dataset.

Unlike temperature and humidity variables, Figure 6 shows a marked distinction between UK
and WRF performance regarding solar radiation bias errors. While all three WRF datasets have a clear
tendency to overestimate hourly and daily radiation, UK estimations show negative MBE median
values, although they are closer to zero than the WRF datasets. WRF-1 has better 25th percentile
value for daily highest radiation results and worse for hourly and daily totals. Differences are smaller
between WRF-1.5 and WRF-0.75, with WRF-1 having a slightly worse performance.Infrastructures 2020, 5, 15 13 of 22 
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For MAE and RMSE, hourly radiation performance variations WERE smaller than the ones
showed for MBE, with the best performance median-wise being achieved by WRF-1 for MAE, and by
UK for RMSE. Variations WERE larger for the daily maximum radiation results, where UK had the
lowest median and 25th percentile but the highest inter-quartile range values. WRF-0.75 had the best
performance for the three WRF datasets in all error results. For the daily total radiation, variations
between datasets were lower, closer to the ones achieved for hourly radiation.

The daily sum of solar radiation is not directly comparable to the other two radiation variables.
Comparing hourly and daily maximum results, the latter variable had a worse overall performance,
especially for the UK dataset inter-quartile ranges, which doubled their values. Variability between
datasets also increased when comparing those two variables. Nevertheless, even the worst median
error value (daily maximum radiation of ~0.095 kW/m2 RMSE for WRF-1) was only 20% of the daily
maximum measured radiation, ~0.5 kW/m2 for most days as taken from Figure 3. For the daily total
radiation, reference values were 2–3 kW/m2 for most of the month, with the lowest achieved value
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being 0.6 kW/m2. Compared to these values, the median errors of less than 0.5 kW/m2 for all metrics
were also less significant.

Results for solar radiation variables showed many differences when compared to temperature
and relative humidity, and this was also true when choosing the best and worst overall performance
datasets. In this case, the UK estimations outperformed the results from the three WRF datasets, while
WRF-0.75 showed better results than its coarser counterparts.

Wind speed estimations shown in Figure 7 followed the same pattern as with temperature
and humidity in regard to MBE results: the four compared datasets shared the common trait of
overestimating both hourly wind speed results and its daily aggregations. The lesser bias was achieved
by UK median results for the four wind speed variables, although its 75th percentile value was higher
than the WRF datasets for the daily minimum results. Differences between UK and WRF datasets
were much less pronounced for that same aggregation variable. Median and inter-quartile range MBE
values were similar between WRF datasets.Infrastructures 2020, 5, 15 14 of 22 
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MAE and RMSE results show the same general pattern as MBE, with UK performing notably
better in all but daily minimums. Median values were again similar for all WRF datasets. The most
remarkable difference with bias errors was that UK inter-quartile ranges were more similar to the WRF
ones in both hourly and daily mean and minimum results.

Variability between different wind speed aggregations was not salient. The largest differences
were between daily maximums and the rest of speed variables, but they were not as notable as with
minimum temperatures or maximum solar radiation. All datasets performances were more similar
for hourly and daily mean speeds, and also for the other two variables for the UK dataset. Reference
measured values of 3–6, 1–4 and 0.5–1.5 m/s for maximum, mean and minimum speeds can be assumed
for the most days (taken from Figure 3), despite the large variability for the second half of the month.
Taking this into account, it can be stated that UK has a worse performance with weak winds, as the
achieved median minimum speed values around ~1 m/s RMSE are more relevant than the ~1.2 m/s
RMSE maximum speed values when compared to their respective reference values. The same cannot
be as clearly stated for WRF datasets, as their median maximum wind values are larger (about 2.5 m/s
RMSE) and hence more significant.
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Overall, UK wind speed estimations achieved the best scores for the analysed results, surpassing
its WRF counterparts performance for all wind metrics on hourly and daily maximum and mean
values. Although it had the worst performance for daily minimum wind speed, its performance in that
variable was close to the WRF datasets. No WRF dataset performed substantially better than others in
all wind variables.

3.3. Temporal Evolution Analysis

MAE and RMSE results for each day are represented using line plots for daily maximum and
minimum daily values of each variable (maximum and total values for solar radiation). Plotted errors
are the averaged values of the 11 locations. This allows to study error performance evolution over
the study temporal span. As plots for both metrics show the same general trends, only the former
are presented.

Temperature errors daily evolution shown in Figure 8 reflect that minimum temperature MAE
results have higher oscillations than the maximum ones. While the latter is almost flat for most days,
the former has variations up to 4 ◦C within a few days. This is a notable fluctuation, compared to the
reference minimum 0–5 ◦C measured for most days.
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When comparing with reference values from Figure 3, a remarkable feature appears: for the
second half of the analysed period, local maximums in MAE minimum temperatures matched local
minimums in reference to low temperatures. This pattern was not present for the first 14 days, when
reference minimum temperatures were consistently low but MAE values had significant fluctuations.
However, it is true that for those days of consistently low temperatures, MAE errors were mostly high
(in fact, this is the time period with highest errors). This seems to reinforce the idea that both UK and
WRF datasets have problems estimating colder temperatures.

Overall, WRF datasets have consistently ~1 ◦C less error than UK for most days on minimum
values, with almost negligible differences between WRF datasets. For daily maximum temperatures,
UK performed much alike the other datasets, with differences lower than 0.2 ◦C, except for the last day
with data. These are the same general patterns already commented on in Figure 4.

Figure 9 shows MAE results for daily maximum and minimum relative humidity. Mean daily
maximums were higher for the first half of the month, with oscillations of a greater magnitude (up to
12% humidity variation between two consecutive days). For daily minimums, the trend was almost the
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opposite, with lower, more regular error values during the first 13 days (except for January 2nd, when
all four datasets achieve the greatest error values). The greatest variation between two consecutive
days was achieved for the first two days, where WRF datasets had a fluctuation of almost 20% of
relative humidity).Infrastructures 2020, 5, 15 16 of 22 
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A clear pattern relating local maximums on error and reference values evolution figures cannot
be found here, unlike temperature. Peak error values achieved on January 2nd (all datasets), 16th
(UK only) and 23th (WRF only) do match with local maximums on minimum relative humidity
reference values, but this is not the case for the rest of spikes. No pattern can be found for daily
maximum humidity.

The UK dataset performed much worse than WRF for daily maximum humidity results, while
being much closer for daily minimums. As for temperature, differences between WRF datasets were
almost negligible for most days, for both maximum and minimum daily results. The UK dataset had
daily maximum errors near 10% greater for the first half of the month, and less than 4% for the second
half. For daily minimum relative humidity, those differences were less than 5% for all but four days.
This reinforces the results already commented in Figure 5.

Both daily maximum and daily total solar radiation error temporal development shown in
Figure 10 follow the same general pattern. After two wide oscillations during the first week, another
seven days of regular, low errors follow. The second half of the analysed month features the larger
fluctuations for all datasets. WRF-1.5 achieves the global largest oscillation between January 19th and
20th with 0.14 kW/m2 for daily maximum radiation. For daily totals, all three WRF datasets achieve a
~0.6 kW/m2 difference between January 26th and 27th.

For all significantly reductions in daily total radiation reference values (already shown in Figure 3),
a notable increase in WRF MAE errors arose. The same pattern was followed by UK estimations,
except for January 17th, where its mean error fell rather than growing. Daily maximum radiation
oscillations also occurred on the same days as daily totals (less marked due to the different natures of
both variables), and were also translated into oscillations on the MAE results. However, the magnitude
of the oscillation on the reference values does not seem to directly reflect on the magnitude of the MAE
result oscillation. This can be clearly appreciated when comparing daily total oscillations on the first
days with the ones occurring during the second half of the month.
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Figure 10. Daily solar radiation MAE evolution.

Divergences between datasets were steep during days with strong oscillations, and less significant
during periods with more regular error results. None of them showed a consistent good performance
during all those swings. Radiation estimations from the three WRF datasets had more deviations than
those of temperature and humidity during the strong oscillations in the second half of the month. For
daily maximum radiation, differences between estimations ranged from ~0.01 kW/m2 during the days
surrounding January 11th to almost 0.1 kW/m2 on January 28th. Equivalent dissimilarities could be
found during some days for daily total radiation. Overall, UK can be chosen as the better estimator of
daily maximum solar radiation, while its first ranking for daily total radiation is more debatable. This
is not unlike the MAE results already shown in Figure 6.

Variability between days was high for all datasets on both daily maximum and minimum wind
speeds, according to Figure 11. For the former, inter-daily oscillations can be up to 2 m/s between two
consecutive days, and ~1 m/s for the latter. When compared to the reference values of 3–5 m/s (daily
maximums) and 0.5–1.5 m/s (daily minimums), error fluctuations on both variables were significant.Infrastructures 2020, 5, 15 18 of 22 
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For daily minimum wind speed, error oscillations between January 19th and January 28th seemed
to follow the same pattern as reference minimum values fluctuations. However, the relatively plain
reference values for the first 18 days do not account for the variability in error results, similar in
magnitude to the latter days. For daily maximum speeds, strong oscillations were present during
all month on both reference values and error results. They seem to follow the same general pattern,
increasing and decreasing errors when reference values did so. However, there was no proportionality
between errors and measured values fluctuations, as the larger swings during late January and smaller
variations during early January for the latter seem to cause error oscillations of a similar magnitude.
It should be noted that UK errors magnitudes were more alike than for WRF when comparing daily
maximum and minimum MAE results. As reference values for minimum wind speeds were notably
lower than the maximum speed ones, it can be concluded that UK estimations were worse for winds of
low speed.

UK estimations have the best performance on daily maximum wind speed results for all days,
except for three dates when it is tied with WRF. UK errors were between 0.2 and 1 m/s lower than
the WRF ones for most days, while differences between WRF datasets were only larger than 0.4 m/s
for 6 days. For the daily minimum speeds, UK errors are significantly higher for five days (around
0.75 m/s), and similar for the rest of the month. Greatest variation between WRF estimations for the
same day is only of 0.4 m/s. These behaviours are congruent with the results already shown in Figure 7.

3.4. Further Considerations

In this closing subsection, two notes regarding limitations of this study and computational
performance of the used algorithms are included, which are not directly related to the results already
presented and would cause the following conclusions section to grow exceedingly. However, the authors
consider that both items provide relevant information that may help determining relevant future
research directions.

As already stated, this study is limited by its spatial and temporal boundaries: only a mid-winter
month of reference data is available for eleven locations of similar geographical characteristics (low or
mid-low altitudes, relatively close to open ocean, all of them detached not more than 170 km). A further
study should check the existence of systematic estimation biases, discard hidden local weather features
and verify the general performance of the different downscaling methods. For this, a wider study area
with more different geographical features should be analysed. Additionally, a larger temporal span
with more variability on general weather conditions should be chosen. Both the spatial and temporal
boundaries of such analysis would be limited by the availability of sufficient weather data measured
from weather stations, which also constrains the applicability of this research study. However, results
and conclusions exposed here do apply to the studied general weather conditions, namely, moderately
cold, humid winter days with weak winds.

The present study was focused on evaluating the performance of two different downscaling
tools, based on comparisons against measured local data and computation of error metrics. Hence,
the selection of the best tool was based exclusively on those error metrics. However, when working
with this kind of tools, the computational time needed for generating estimation outputs is a key factor
on the production stage. The UK interpolation algorithm used here takes a given amount of measured
or estimated weather data, and generates a single local estimation. It is time-independent, which
means only global or regional weather data for a given temporal instant is required for obtaining
a local estimation at that given instant. It is also output-independent, which means an estimation
at a chosen location is generated each time, without requiring the computation of estimations on
the surrounding area. The WRF tool, however, generates a grid of points where local estimations
are computed. It is time-dependent, as interpolated outputs for a given instant are developed as an
evolution of outputs for a previous instant. Unlike UK, it is output-dependent. This means it is not
reasonable (although possible) to use this algorithm to generate estimations over a single local point,
as a minimum estimation grid area is required to generate meaningful outputs.
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The used Kriging algorithm, in its current form, is more than one order of magnitude faster than
its WRF counterpart when estimating a single local datum at a single temporal instant. When working
with a large enough area, the WRF algorithm beats UK in regard to time performance. The selection of
the most adequate tool is thus dependent on the specific study area. Moreover, no strong optimisations
are introduced on the implementation of neither the Kriging nor the WRF algorithms used. All these
considerations are left out of the scope of this study, as they do not affect the error-wise quality of the
obtained estimations, and they would require a totally different set of analysis not related with the
ones chosen here. However, further optimisation research on both algorithms regarding computational
performance is being considered, thus, their applicability to production level projects can be enhanced.

4. Conclusions

This study presents an evaluation of the estimation performance for two global-to-local weather
data downscaling algorithms based on the Weather Research and Forecasting Model and Universal
Kriging, two of the leading exponents of their respective fields (Numerical Weather Prediction models
and geostatistical interpolation tools, respectively). Four weather variables were estimated using three
different WRF grid configurations and one UK setting. UK and WRF tools were fed with similar global
scale input weather data, based on the Global Forecast System model outputs. However, the GFS sflux
model used for Kriging interpolations had a denser grid of calculated points than the GFS 0.5 model
compatible with WRF. Results were compared against local measurements from 11 weather stations
located on the central area of continental Portugal during the first month of 2019. Spatial and temporal
distribution of three different error metrics were analysed.

As already stated in the results section, the rather short experimental campaign of reference
measurements caused almost all analysed hours to have similar weather conditions, limiting the
generalisation of extracted conclusions. This issue was further fostered by the small variability on
geographic and orographic characteristics of the measurement locations. A future research work using
data from different time periods would help in reassuring or modulating said conclusions.

Results show that the WRF datasets overestimated temperature, solar radiation and wind speed
values, and underestimated relative humidity. UK estimations were positively biased for temperature
and wind speed, while being negative biased for relative humidity and solar radiation. Considering
this, algorithms could be adjusted to compensate a potentially systematic bias. Of the analysed
weather variables, air temperature and relative humidity had a clear, physical inverse relation: relative
humidity values will decrease for an increase in temperatures, provided that atmospheric pressure
and water vapour species concentration are maintained. As all estimated datasets presented a clear
overestimation of temperature values, an underestimation of the relative humidity results is to be
expected. Of course, this behaviour could be influenced by non-adequate estimations of atmospheric
pressure or water species concentration, not analysed in this study.

UK had the best performance estimating solar radiation and wind speed, and the worst for
temperature and relative humidity. Amongst the WRF datasets, the 0.75 km spaced grid managed
to achieve the best performance for solar radiation; however, for temperature, humidity and wind
speed results, the differences were less remarkable. Overall, it was not possible to choose a WRF mesh
resolution setting that consistently provided the best results for all four analysed variables, although
differences were almost negligible in all but solar radiation.

Both the UK and the three WRF datasets produced worse estimations for minimum daily
temperatures, and seemed to have a more irregular, overall worse performance with lower temperatures.
All datasets achieved a lower accuracy on solar radiation estimations during overcast, less sunny days.
For the UK dataset only, weak winds seem to be relatively worse estimated than strong ones. These
patterns could be related to the relative clustering of the test locations: local geographical features
could be causing deviations in local weather, which the global GFS models (which fed both UK and
WRF tools) might not be able to capture. If this was the case, a finer tuning of the parameters of the
algorithms would be required.
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This study shows that access to local measured data is not an imperative requirement for
generating local weather estimations, having (at least) two different valid options regarding the
downscaling algorithms. A valid methodology for this global-to-local weather data downscaling was
tested, with satisfactory results. It also highlights the different performances of weather downscaling
tools depending on the nature of the interpolated variable. Overall, this study presents an initial
step towards the selection of appropriate global/regional-to-local downscaling tools for mapping of
weather conditions.
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Abbreviations

The following abbreviations were used in this manuscript.

ARW Advanced Research WRF
ECMWF European Centre for Medium-Range Weather Forecasts
GFS Global Forecast System
IFS Integrated Forecast System
IPMA Portuguese Meteorological Agency (Instituto Português do Mar e da Atmosfera)
MAE Mean Absolute Error
MBE Mean Bias Error
NCAR National Centre for Atmospheric Research
NCEP National Centres for Environmental Prediction
NMM Non hydrostatic Mesoscale Model
NOAA National Oceanic and Atmospheric Administration

NOMADS
National Oceanic and Atmospheric Administration Operational Model Archive
and Distribution System

NWP Numerical Weather Prediction
RMSE Root Mean Square Error
UK Universal Kriging
WPS WRF Pre-processing System
WRF Weather Research and Forecasting
WRF-1.5 WRF dataset using a 1.5 km spaced innermost mesh
WRF-1 WRF dataset using a 1 km spaced innermost mesh
WRF-0.75 WRF dataset using a 0.75 km spaced innermost mesh
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