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Abstract: On 6 April 2021, a 200 m-long under-construction prestressed concrete bridge failed in
the Chitwan District in central Nepal. Two of the four bridge spans collapsed without any notable
evidence of dynamic force application. Under-construction bridge failures are sometimes reported
and can have a significant impact on the future construction adjustments. Thus, a detailed study of
failure mechanisms will be insightful for the structural engineering community. Aiming to document
the failure modes and exemplify lessons for improvement, this paper reports the detailed component
level failure mechanisms of the bridge using visual inspection, site measurements, finite element
modeling, and some forms of non-destructive testing. The chronological failure mechanisms are
presented based on the field evidence and juxtaposed with the results of analytical modeling. The
sum of findings highlights that the dead load failure, triggered by the settlement of falseworks, is the
most critically governing factor that initiated and aggravated the damage scenario.

Keywords: prestressed concrete bridge; falsework; forensic analysis; construction failure

1. Background

Bridges are critical infrastructures and the unrestricted operability of bridges must be
assured, even after their exposure to severe dynamic forces, such as earthquakes, floods,
and tsunamis, etc. Many studies exist worldwide to assess the performance of bridges
under natural hazard events (e.g., [1–5]); however, limited works have been reported so
far regarding during-construction failures of bridges. For example, Peng et al. [4] reported
the forensic damage analysis of a collapsed ramp bridge in Hangzhou, China. Using
observations, descriptions from local witnesses, and videographic evidence combined with
numerical analyses, they concluded that the addition of a sidewalk and the replacement of a
symmetric section of the bridge girder by an asymmetric section were the main causes of the
collapse. The bridge damage was aggravated by a minor earthquake as well, which resulted
in greater lateral loading. The authors also recommended the use of pre- and post-event
evidence to dissect the overturning collapse of box-girder bridges. Similarly, Scattarreggia
et al. [6] analyzed the Caprigliola bridge collapse in Italy using field observations and the
results of applied element modeling. They shed light on the damage mechanisms, assess-
ing the most likely damage mechanism that intersected between observed and modeled
scenarios. They further recommended intermixing regular monitoring and inspection as
well as reliable structural modeling to outline the impending severities in bridge structures.
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Moreover, Clemente [7] reported on the Polcevera Viaduct collapse in Italy, highlighting
that good design is not enough to assure the functionality of bridges throughout service life.
The author highlights the importance of the monitoring and evaluation of existing bridges
so as to downscale the likelihood of severity in terms of damage/collapse. The Polcevera
Viaduct collapsed due to the lack of cable-stay support, which resulted in the fracture of the
first cable stay [7]. The collapse of the Florida International University pedestrian bridge is
extensively studied by considering forensic analysis [1,8]. Cao et al. [1] concluded that the
collapse of the Miami pedestrian bridge was attributed to an exceedance of retensioning
force over the joint resistance, leading to joint slide, and the subsequent cycles of sliding
led to the collapse.

Prestressed concrete bridges are widely studied considering various performance
objectives. For example, Meng et al. [9] studied the long-term deflection of prestressed
concrete bridges under heavy vehicle loading. Yang et al. [10] performed an experimental
investigation to identify the behavior of prestressed bridges under sustained loading
and corrosion. They concluded that corrosion is a more promising factor influencing
tensile strength. Bonopera and Chang [11] performed laboratory testing in a simply
supported prestressed concrete beam for 9.5 months to estimate the residual prestress force.
Although many researchers perform various types of analyses, attention regarding the
global performance of prestressed and other types of bridges is still very crucial. Recent
advances in terms of dynamic identification can be very crucial to understand and depict the
behavior of bridges under dynamic loading [12]. Given the severity of multiple independent
and natural hazards that directly affect the bridge structures, long-term resilience and loss
assessments are crucial for any type of highway bridge, as highlighted by Li et al. [13].
Apart from long-resilience and loss assessments, vulnerability assessments of highway
bridges under various dynamic loading are inevitably a prerequisite to assure the target
performance level, especially after a major natural hazard. Thus, several studies have
reported the vulnerabilities of highway bridges under dynamics excitations (e.g., [14–16]).
It should be reiterated that bridges are an important link for communities and their failure
needs to be considered with advanced methodologies, such as those proposed by [17–20].
Moreover, a compliance-based methodology, such as that reported by study [21], for
the estimation of the seismic collapse risk of existing buildings and bridges could also
be remarkable.

As most of the studies reported so far consider the failure analysis of a bridge in
operation, there lies a clear gap of knowledge regarding the collapse of under-construction
bridges. Due to the lack of proper construction planning and the thorough execution of
the agreed construction sequence and system, alterations may occur beyond the design
consideration, which may lead to the collapse of a bridge. To build up the knowledge
regarding the collapse of under-construction bridges, the present study uses a forensic
analysis to assess a bridge collapse incident that occurred in April 2021 in Nepal. The aim
of this paper is to derive the causes of the collapse of the Thimura bridge using visual
observations, forensic analysis, and by analyzing a global finite element (FE) model of the
bridge. The outcomes are herein discussed to derive some lessons that could be insightful
for other regions to prevent similar collapses.

2. Thimura Prestressed Bridge Collapse

On 6 April 2021, two spans of the under construction Thimura–Devghat bridge that
connects Thimura of Chitwan District and Devghat of Tanahun District in central Nepal
collapsed. The bridge was 200 m long (excluding approach slabs) with a mixed reinforced
prestressed concrete and steel truss superstructure. The bridge was designed to be com-
posed of four spans, starting from left side (Thimura of Chitwan District); first, second, and
fourth spans were designed to be simply supported as prestressed concrete spans of 40 m
each. The third span was designed to be a simply supported steel truss of an 80 m span.
The bridge was designed in November 2015 and was customized for minor modifications
until February 2016 when the final structural design was approved. It was targeted to be in
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operation by June 2021. The bridge has abutments of 12.14 m in height on both banks, and
three piers of diameters 13.735 m, 15.535 m, and 15.535 m, respectively. The diameter of
the pier on the leftmost side is 2.8 m and the rest of the piers have the diameter of 3.4 m.
The piers were constructed in 2018. In the design, M45 concrete was used. A schematic
drawing of the bridge is presented in Figure 1.
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Figure 1. Schematic details of the bridge (generously shared by Department of Roads, Chitwan
Division, Nepal).

The first and fourth spans were structurally completed, and the second and third
spans were undern construction, when the partial collapse event occurred (Figure 2). The
two spans located towards Thimura (left bank) collapsed in the early morning (4:30 am
local time) of 6 April 2021. The collapse would have led to a loss of human life or injury
had it occurred during working hours.
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3. Overview of Bridge Construction System

The abutments were constructed with shallow foundations, while pile foundation
was provided for piers due to the soil condition. The substructures were constructed
following the standard guidelines suggested by the Government of Nepal regulations.
For the construction of the prestressed concrete span, concrete should achieve its design
strength before prestressing. Hence, concrete was cast by embedding hollow ducts so as to
insert prestressing cables, and curing was done to guarantee sufficient hardening before
prestressing. Concrete casting was done using steel formworks and steel props (falseworks)
supported over the temporary embankment that comprised of loose sand and gravel piled
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up from the same site, in order to reduce the height of the falseworks. Concreting of a
reinforced concrete (RC) span was completed in two days. On the first day, about an 80%
depth of the beam was concreted, and on the second day, the remaining portion of beam
and slab was completed. Afterwards, ponding was done over the slab for about 28 days.
The same approach was adopted for concreting in all three spans. Because of the water
volume and the high level of water in the river, it was extremely difficult to divert the
water to provide staging for the erection of the steel on the third span. Hence, an alternate
approach was used to erect the steel span. Steel towers were constructed, as shown in
Figure 3, to support multiple cables to transport the steel sections.
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4. Forensic Damage Assessment

The first and second concrete spans fell off the piers and were destroyed (Figure 4).
The first span fell off the abutment, meanwhile the slab still stood leaning on the first pier,
with a total cantilevered portion of ~1 m (Figure 4). The second span fell off both piers with
a fracture nearby the mid-span (Figure 5). Damage to individual components is presented
in the following section.

4.1. Damage to Beams

The first span fell off the first abutment that was governed by the settlement of the
foundation soil. Thereafter, the beam hit the ground causing intense damage to approx-
imately 25% of the length of the beam/slab in the first span. The remaining portion of
the span only had some cracks, without reinforcement exposure. Horizontal shear failure
of the beam concrete was observed in Span-1, as shown in Figure 6, which should have
been initiated after the impact on the ground due to the occurrence of large shear stress.
Interestingly, the shearing location exactly matched with the construction joint (interface
of first day and second day concreting), as shown in Figure 7. Distinct flexure crack and
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yielding were identified in the beams of Span-2. The prestressing cables were exposed due
to flexure cracking, and the falling of the span caused breakage. Figure 8 shows a typical
damaged section of the beam of Span-2. The end cross beams of Span-2 slid on the pier
surfaces, thus sustaining heavy damage. As the bridge span fell down, the span was not
housed within the available space between the piers. Therefore, it slid over the pier surface,
the central portion of beam being the lowest point that got fractured.

Infrastructures 2022, 7, x FOR PEER REVIEW 5 of 22 
 

 
Figure 4. Collapsed first span of the bridge. 

 
Figure 5. Destroyed second span of the bridge. The damaged props can be observed rested above 
loose sand and gravel. 

4.1. Damage to Beams 
The first span fell off the first abutment that was governed by the settlement of the 

foundation soil. Thereafter, the beam hit the ground causing intense damage to approxi-
mately 25% of the length of the beam/slab in the first span. The remaining portion of the 
span only had some cracks, without reinforcement exposure. Horizontal shear failure of 
the beam concrete was observed in Span-1, as shown in Figure 6, which should have been 
initiated after the impact on the ground due to the occurrence of large shear stress. Inter-
estingly, the shearing location exactly matched with the construction joint (interface of 
first day and second day concreting), as shown in Figure 7. Distinct flexure crack and 
yielding were identified in the beams of Span-2. The prestressing cables were exposed due 

Figure 4. Collapsed first span of the bridge.

Infrastructures 2022, 7, x FOR PEER REVIEW 5 of 22 
 

 
Figure 4. Collapsed first span of the bridge. 

 
Figure 5. Destroyed second span of the bridge. The damaged props can be observed rested above 
loose sand and gravel. 

4.1. Damage to Beams 
The first span fell off the first abutment that was governed by the settlement of the 

foundation soil. Thereafter, the beam hit the ground causing intense damage to approxi-
mately 25% of the length of the beam/slab in the first span. The remaining portion of the 
span only had some cracks, without reinforcement exposure. Horizontal shear failure of 
the beam concrete was observed in Span-1, as shown in Figure 6, which should have been 
initiated after the impact on the ground due to the occurrence of large shear stress. Inter-
estingly, the shearing location exactly matched with the construction joint (interface of 
first day and second day concreting), as shown in Figure 7. Distinct flexure crack and 
yielding were identified in the beams of Span-2. The prestressing cables were exposed due 

Figure 5. Destroyed second span of the bridge. The damaged props can be observed rested above
loose sand and gravel.



Infrastructures 2022, 7, 14 6 of 20

Infrastructures 2022, 7, x FOR PEER REVIEW 6 of 22 
 

to flexure cracking, and the falling of the span caused breakage. Figure 8 shows a typical 
damaged section of the beam of Span-2. The end cross beams of Span-2 slid on the pier 
surfaces, thus sustaining heavy damage. As the bridge span fell down, the span was not 
housed within the available space between the piers. Therefore, it slid over the pier sur-
face, the central portion of beam being the lowest point that got fractured. 

 
Figure 6. Collapsed Span-1 of the bridge. 

 
Figure 7. Horizontal shear failure at construction-joint level as the lower part of the beam that in-
cluded four prestressing ducts slid inwards. 

Figure 6. Collapsed Span-1 of the bridge.

Infrastructures 2022, 7, x FOR PEER REVIEW 6 of 22 
 

to flexure cracking, and the falling of the span caused breakage. Figure 8 shows a typical 
damaged section of the beam of Span-2. The end cross beams of Span-2 slid on the pier 
surfaces, thus sustaining heavy damage. As the bridge span fell down, the span was not 
housed within the available space between the piers. Therefore, it slid over the pier sur-
face, the central portion of beam being the lowest point that got fractured. 

 
Figure 6. Collapsed Span-1 of the bridge. 

 
Figure 7. Horizontal shear failure at construction-joint level as the lower part of the beam that in-
cluded four prestressing ducts slid inwards. 

Figure 7. Horizontal shear failure at construction-joint level as the lower part of the beam that
included four prestressing ducts slid inwards.

4.2. Damage to Slab

Span-1 and Span-2 separated from the piers/abutment and fell down. The slab was
completely fractured together with the beam in both spans. In Span-1, there was some
overlap of the slab (Figure 9) after fracture. The Span-1 deck was used to hold the temporary
suspension cables from Span-3 for its erection. The deck was slightly shifted towards Span-
3 and fell off from the Abutment-1 side only, while the Pier-1 side stayed above the pier.
Apart from the complete fracture of the slab in Span-2 (Figure 9), there were several notable
cracks on various parts of the slab (Figure 10), most likely due to the impact after falling.
Importantly, several flexural cracks were observed on the slab on both sides of the slab
separation in Span-2. While many bars of slab were found to be broken due to necking,
many others were found at its end, indicating that the fractured section was the lap zone
for quite a lot of bars (Figures 11 and 12).
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4.3. Damage to Bearings

Bearing damage was attributed mostly to the horizontal movement of girders. A
pot bearing system was used in the bridge, as shown in Figure 13. Bearing damage was
observed in Abutment-1, Pier-1, and Pier-2, as shown in Figure 14, Figure 15, Figure 16,
and Figure 17, respectively.
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4.4. Damage to Pier

Some portions of piers were damaged due to the sliding of the deck of Span-2
(Figure 18) during falling. Similarly, the pier cap of Pier-1 (RC bearing pad) was slightly
damaged by the collapsed slab of Span-1 (Figure 19). Pier-1 was pushed due to the collapse
of the Span-1 and Span-2 in opposite directions, as shown in Figure 20. Meanwhile, Pier-2
was solely pushed by the collapsed slab portion of Span-2. A horizontal crack, as shown in
Figure 21, was observed in Pier-1 at a 2.5 m height from the ground level. It is due to the
subsequent interaction between Span-1 and the collapsed slab of Span-2.
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4.5. Damage to Formwork and Falsework

All the falseworks (props) under Span-2 were collapsed. The props were buckled
outwards across the span (Figure 22), with inclination mostly towards the left bank (Chit-
wan side). Most of the steel formworks were intact, even after the collapse of the beam
(Figure 23). However, near the fracture zone of the deck, the formworks were distorted due
to bearing failure at bolted locations.
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4.6. Other Damages

Some other damage mechanisms were observed at the ends of the fourth span above
Abutment-2 (Figure 24). The edge around the prestressing cable anchorage was found to
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be cracked (Figure 25). The pier caps were also damaged in Pier-2 and Pier-3 due to the
exertion of tensile force by the steel towers. Furthermore, the RC pedestal over the pier
cap of Pier-3 was heavily damaged, as shown in Figure 26. Similarly, damage to the RC
pedestal over the pier cap of Pier-2 is shown in Figure 27.
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Figure 27. Damage to the RCC pedestal over pier-cap of Pier-2; steel tower was erected over it as a
temporary structure for prestressing.

5. The Failure Sequence

The failure mechanism is identified based on the nature of observed damage, geometry,
member orientation, and the type of damage. The properties and mechanisms represented
herein reflect the characteristics of the concreting after 38 days of casting. The failure
mechanism is chronologically presented as follows:

a. There was a gradual settlement of falsework supporting the steel league of Span-
2 on the downstream side (Figure 28). The settlement was caused by a gradual
displacement of loose sand that was piled up to downscale the height of the falsework.
The main hypothesis was that the collapse occurred as the rate of settlement had
increased once curing was stopped five days prior to the collapse. This may be due to
the fact that the water content was lost from the loose soil. In addition, small triggers,
such as the vibration from the generator operating beside the embankment used by
the steel erection team, as well as human movements, may have caused a significant
displacement of loose sand;
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b. The settlement of the falsework induced a high bending moment on the to-be-
prestressed concrete deck of Span-2. It was even greater towards the downstream
side where the settlement was also larger;

c. After about 250 mm of settlement (measured in situ during reconnaissance), the
longitudinal rebars of the downstream-side beam fractured, and progressively, there
was high bending on slab rebars, causing several flexural cracks near the beam-
fracture location;

d. There was a second settlement of 300 mm that caused an instability of the edge
props and the redistribution of force to the falsework and the deck at the upstream
side. Consequently, the upstream props buckled, causing the flexure failure of the
upstream-side beam together with a sudden weakening of the whole section, and
ultimately the collapse of the whole deck;

e. During the collapse process of Span-2, Pier-1 was pushed towards Abutment-1. Pier-
2 was pushed towards the Pier-3 side, causing a rapid increase of tensile force in the
cables anchored to the Span-1 deck that were used to support the steel span during
the erection process. This force caused the horizontal sliding of Span-1 towards
Pier-1, causing both the failure of the bearings and the detachment of Abutment-1.
The sliding left several bearing marks on the soffit of the beam. It started because
the tension on the cable increased and caused the failure of the hinge bearing over
Abutment-1. Then, due to the residual tension in the cable, and due to the lack of
proper anchorage, sliding continued;

f. Hinging over Pier-1, the Abutment-1 side of the deck fell off with a rotational motion
and subsequently hit the ground with a large impact force;

g. The failure of Span-2 was initiated first, but the falling was relatively gradual, as
depicted by the friction and scouring impressions on both piers. After the Span-2
collapse was initiated, the displacement (and subsequent collapse) of Span-1 was
triggered. Moreover, Span-1 fell rapidly. Some cables stretched, and concrete scouring
noises were heard by the laborers stationed at the construction site;

h. During the collapse of Span-1, the tensions developed against the pull by Span-1
caused significant damage to RC pedestals over the pier caps of Pier-1 and Pier-2
that were used to support temporary steel towers.
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6. Numerical Simulations

In order to capture the mechanisms developed in Span-2, a three-dimensional (3D)
numerical model (Figure 29) of the bridge was created in SAP-2000 v.23 [22]. The bridge
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was modeled with linear elastic materials using HYSD-Fe500 rebars and M45 concrete. In
total, 535 nodes, 191 shell elements, and 272 frames were created during finite element
analysis. The deck was considered as a unique section with homogeneous properties, with
a cross-sectional area of 10.78 m2, transversal inertia of 5.38 m4, and vertical inertia of
75.9 m4. The bridge was restrained with hinges in order to ensure the equilibrium of the
entire system under the vertical and horizontal loads. Under the entire bridge span, vertical
elements of 2” diameter and a steel section of a partial length of 500 mm at a longitudinal
spacing of 300 mm were deployed to simulate the temporary supports as observed in the
field. The hinges were embedded in the elements in order to introduce more degrees of
freedom in the model, which improve convergence when multiple hinges fail at the same
time. In addition, stiffness-proportional damping was considered in the analyses (dead,
modal, and linear elastic). In particular, the mass and self-weight loads were applied on
the shell elements as uniformly distributed load intensities over the plane of the element.
The magnitude of the self-weight is equal to the weight density multiplied by the shell
thickness. Different ground displacements were provided in the falsework joints, ranging
from 10 mm to 300 mm, and tensile stress was checked for corresponding displacement
values. Initially, the props were carrying the dead load properly, with approximately
59 KN/m of reaction under each of the two main beams. As the settlement gradually
increased, the reaction of the props towards the ends decreased, while the reaction on
props towards the center increased. At 10.75 mm central deflection of the beam, due to the
settlement of prop support, 3.4 MPa of tensile stress is induced at the bottom of the beam.
The bearing prop reaction near the center is increased to 117 KN/m. At 20.6 mm central
deflection of the beam due to the settlement of prop support, 7.53 MPa of tensile stress is
induced at the bottom of the beam. However, if the beam is not cracked, the prop reaction
near the center again decreases to 94 KN/m. Further settlement analysis reveals that there
would be a maximum of 29.46 mm deflection of the beam with a maximum tensile stress
of 11.49 MPa at the bottom of the beam. However, this stage was never achieved due to
the early tensile rupture of the beam. The flexural crack must have initiated at about 15 to
20 mm of central deflection, after which the moment of resistance of the section dropped
to near zero and the collapse of the span occurred. It is observed that Span-2 would fail
in tension even at 50 mm prop displacement, which is fairly lower than the displacement
observed in the field (250 mm). Figures 30 and 31, respectively, represent the distributions
of tensile stresses for 50 mm and 10 mm settlement scenarios. The tensile capacity for M45
grade concrete is expected to be much lower than the tensile stresses that can occur in the
failure regions. The finite element models effectively captured the main failure locations
observed in the field, as shown in Figures 30 and 31.
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7. Discussion

Catastrophic failures are commonly rooted for several reasons, especially in structural
engineering, and cannot be explained by a unique factor. Considering uncertainties in the
various stages of planning, design, and implementation, different levels of safety factors
are incorporated into the design. Some degree of weakness in different stages normally
does not result in major failures. However, sometimes, the weakness occurs in such a
critical combination that their effects are integrated, and catastrophic failure of the structure
becomes inevitable.

For the failure of the Thimura bridge, there could have been several factors that
aggravated the effects, simultaneously leading to the collapse of Span-1 and Span-2. The
embankment established to support the falseworks (props) consisted of local riverbank
material. The riverbank material was poorly graded cohesionless sand with little gravel.
Precisely, the sand consists of a common typology of riverbank material that is commonly
found in Nepal, with a varied granulometric distribution of grains from fine silts to gravel.
When not supported from the sides, such dry materials reflect very poor bearing capacity,
especially near the edge of embankments. Thus, the falsework would easily settle down
due to the displacement of loose sand. For loose and dry embankment materials used at
the site to support the falsework, vibrations may induce significant reductions of the shear
resistance, causing the sliding of material, especially where loosely piled up materials exist,
as in the case of Thimura bridge site. The continuous use of the generator for site works
could have contributed in the gradual weakening of the embankment, which gradually
settled under the load of the deck right below the formwork. The earthquake-induced
vibration that occurred a few days earlier could have also aggravated the settlement.

It is customary in Nepal to prepare the scaffolding (temporary structures/props
supporting the concrete formwork) by filling the embankment up to a certain height and
raising steel scaffolding above it. The steel scaffolding was between 10 and 13 m in height
between the bridge deck soffit and the top of embankment. The props were placed at
0.6 m center to center under the girder to 1 m center to center under the slab. Vertical
props were tied at 1.5 m center to center using horizontal props. Most importantly, the
top width of the soil embankment was not much wider than the bridge deck width, and
thus, it did not guarantee a proper placement of the steel-league support. The erection
of the steel span was performed with steel towers and cables, which were anchored to
the bridge deck, for which the deck was not designed. Furthermore, there was neither
any documented design for the tower nor any tension measuring device for the anchor
cables from the steel towers. The falseworks for the concrete span were provided over
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the soil embankment without proper confinement, which is not a recommended practice.
Furthermore, no surface stabilization, such as plain cement concreting (PCC), was found
over the surface, except a very thin layer of cement grout at some locations that caused
moisture variation and marred the stability of the embankment material. No longitudinal
stoppers were observed in the design that would resist the excessive displacement of the
bridge deck under unforeseen loads. Furthermore, no design was found for the temporary
suspension cable and its anchorage, indicating that proper design was not carried out. The
designed reinforcement on the beam was found to be too low to contribute any significant
strength to the girder. If there would have been some more reinforcement to resist some
portions of the load through reinforced concrete beam action, the failure could have been
less severe. For the erection method used—using steel towers and cables to temporarily
hang the steel sections of steel span—the continuous movement of the live load and wind
caused a continuous vibration on the partially connected steel deck, causing cyclic loads on
the cables. The cables then induced cyclic loading to the deck, especially in Span-1. This
eventually caused the weakening of the hinge bearing over Abutment-1, resulting in the
sliding of Span-1. The concrete compressive strength test results were reported to be within
the permissible ranges. However, a rebound hammer test on the concrete showed results
lower than the expected values. This could have also aggravated the damage scenario,
even at less settlement or unfavorable conditions.

8. Conclusions

Currently, prestressed bridges are common because of the reduced construction time;
however, there are a number of cases in which prestressed bridges have collapsed during
construction. Using a forensic approach, we present a case study of an under-construction
bridge collapse in this paper. We performed field investigation, in situ testing, and finite
element analysis to determine the causes and consequences of the bridge collapse. Al-
though rapid construction is possible in the case of prestressed construction, the effective
placement of falseworks is necessary to prevent under-construction collapse mechanisms.
Furthermore, falseworks should be designed to account for the possible settlements due
to static loads from the superstructure, as well as to counteract the possible embankment
settlement. The erection towers can be also problematic if the mechanisms they possess
are not accounted for while prestressing. As observed in situ and as confirmed by the
finite element analysis, the collapse of the falseworks caused the collapse of two spans
of the Thimura bridge. The prestressing arrangement was responsible for the collapse of
Span-1, which would have been preventable if cables were arranged properly. The findings
presented in this paper will be insightful to prevent future incidents, as bridge collapse is
usually governed by more than one factor, and those considered as marginal factors can
also lead to grave consequences. The failure mechanisms documented in this study can
also provide insights for future designs and constructions. Future studies can conduct more
detailed and destructive field tests so as to collect realistic modeling parameters from the
field and replicate the same in finite element models. Such results will be more insightful
to explain complex failure mechanisms.
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