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Abstract: For scheduling track maintenance, infrastructure managers perform inspections to assess
the track condition. When the irregularities are higher than the threshold limits, a track has a defect
that should be corrected to avoid future failures or traffic disruption. Scheduling maintenance
actions contribute to reliability and availability but demand the prediction of the evolution of track
degradation. In recent years, several degradation models have been defined to forecast geometrical
evolution over time and/or tonnage, mainly for heavy rail systems. Nevertheless, most of those
models have limitations when dealing with measured data collected in different time intervals as
happens in reality. To overcome this problem, a data-driven model based on the logistic binary
function is presented and validated with real inspection measurements. The results prove that the
model has a 91.1% success rate, an excellent discrimination ability, and a high sensitivity, classifying
correctly 84.1% of inspections in need of maintenance. The model also has high specificity as
it classifies 94.5% of inspections with no demand of maintenance action. The model is easy to
implement, which is also an advantage for the track asset management with guaranty of excellent
sensitivity and discrimination.

Keywords: track-degradation model; scheduling maintenance; data-driven approach; logistic binary
model; principal component analysis

1. Introduction

A reliable railway track is vital for safety, train punctuality, passenger comfort, and
cost-effectiveness of maintenance and renewal activities, and for that, railway asset man-
agement is needed. This management involves all railway systems and components and
comprises the most suitable methods, procedures, and tools to optimize costs, performance,
and risks for the rail infrastructure life cycle. In operation, railway tracks are subjected
to traffic loads that lead to railway track geometrical degradation. When the track irreg-
ularities are higher than the legal threshold limits, this means that the track presents a
defect that can cause failure or traffic disruption whose consequences can be significant,
including a high cost of railway maintenance, economic loss during operation, damage to
the railway asset or on the rail vehicle, and accidents with possible loss of human lives.
Hence, the prediction of degradation is a key phase for the definition of inspection and
maintenance plans. Track-condition monitoring is crucial to preserving the performance of
railway infrastructure assets [1]. Figure 1 shows that, when a geometrical track indicator is
reaching the legal threshold, a maintenance action needs to be performed. These actions
are performed to reduce or eliminate possible failures and to restore a failed railway part to
an operational state.

To schedule maintenance actions, the actual track condition, as well as expected evo-
lution of that condition, should be known through inspection data. However, inspection
and maintenance plans deal with various uncertainties. To overcome the randomness and
the uncertainties of the track-degradation phenomena, probabilistic models are usually
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considered. As the track condition advances over time, a stochastic methodology is often
used. Furthermore, Markov models are often adopted for the prediction of track degrada-
tion as a probabilistic method. However, although this methodology is a very common
probabilistic approach to predict the track condition, it has two main limitations: (i) the
basic assumption of the Markov process is that the probability of going from a condition
to any other condition depends only on the current state condition and not on the history
of track condition, which is as relevant in some cases as the railway track degradation; (ii)
Markov models are based on system condition defined at constant time intervals, which
is not also a realistic situation in the railway field, since track inspections are not usually
conducted at constant intervals.
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To overcome these two major limitations, in this research a new insight is put forward
in an attempt to predict the condition of a railway track from a point of view of distributed
defects for forthcoming condition-based maintenance application based on the history of
track condition defined at any time, i.e., with no constant inspection time interval.

This paper is organized as follows. Section 2 focuses on the geometrical track quality,
by presenting the track-condition assessment according to the European Standard EN
13848-5 [2] and by reviewing geometrical tack degradation models. Section 3 describes the
defined methodology for predicting the track geometrical condition. Section 4 shows an
application of the methodology to a real railway track with validation. Finally, Section 5
presents the conclusions.

2. Geometrical Track Quality
2.1. Condition Assessment

Track geometry is characterized by five geometrical parameters: longitudinal level,
alignment, gauge, cross level, and twist. Figure 2a–e show the definitions of the deviations
of those five parameters.

The assessment of geometrical track quality can be conducted by analyzing these five
geometrical indicators separately as proposed by the European Standard EN 13848-5 [2], or
by track quality indexes (TQIs) that might combine the track irregularities in two or more
dimensions. There are several TQIs used around the world and a summarized overview of
them is presented below.

For the Federal Railroad Administration (FRA), a TQI is calculated for gauge, align-
ment, longitudinal level, and cross level [3], according to the equation below:

TQIs =

(
Ls

L0
− 1
)
× 106 (1)

where L0 is the theoretical length of the track section and Ls is the traced length of the space
curve calculated by Equation (2), with ∆x being the sample space and ∆y the difference
between two consecutive measurements.

Ls =
n

∑
i=1

√
∆2

xi + ∆2
yi (2)
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This TQI does not combine any of the track geometrical indicators, which means that
it considers a single parameter. However, some other railway administrations use TQIs
that combine two or more geometrical parameters into a single measure of ride quality.
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The J-synthetic coefficient [4] is a track quality indicator developed by the Polish
railways and it can be calculated as presented in Equation (3).

Sz + Sy + Sw + 0.5Se

3.5
(3)

where Sz, Sy, Sw, and Se are the standard deviation of the vertical irregularities, horizontal
irregularities, twist, and gauge, respectively.

Besides these TQIs, Offenbacher et al. [5] presented fourteen track indicators used
by railway infrastructure managers in different countries and applied them for a real
five-kilometer test section.

More recently, Mahsa and Mohammadzadeh [6] propose a stochastic track quality
index that considers the uncertainty regarding the quality classification. For that, the
authors consider a Bayesian framework associated with a Monte Carlo simulation which is
applied to 900 km of railway tracks.

In Europe, track quality assessment should be performed according to the European
Standard EN 13848-5 [2], which compares the deviations of longitudinal level, align-
ment, gauge, cross level, and twist with defined thresholds. The standard EN 13848-5 [2]
states that geometrical track quality assessment should be analyzed not only in terms of
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distributed irregularities, but also in terms of isolated defects being the type of defect
characterized by its wavelength, amplitude, and shape.

In Figure 3, a synthesis of the geometrical track quality assessment according to the
European Standard EN13848-5 [2] is presented.
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Figure 3. Geometrical track quality assessment.

The measured data, which consist of records of longitudinal level, alignment in both
rails, gauge, cross level, and twist, are collected by inspection vehicle. The longitudinal level
and the alignment records are filtered in two wavelength (λ) ranges: D1 with 3 ≤ λ ≤ 25 m
and D2 with 25 ≤ λ ≤ 70 m. With the filtered track profile, some quality indicators should
be calculated depending on the type of defect in analysis: distributed or isolated defect
(Figures 4 and 5). In these two Figures, NL represents the longitudinal level and x the
track position.
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The indicators for geometrical track quality assessment according to the European
standard are:

i. the standard deviation (SD) of the longitudinal level of left and right rails over track
segments of 200 m;

ii. the standard deviation (SD) of the alignment of left and right rails over track
segments of 200 m;

iii. the mean gauge over track segments of 100 m;
iv. the peak amplitude of longitudinal level defects with wavelength between 3 and

25 m (D1);
v. the peak amplitude of longitudinal level defects with wavelength between 25 and

70 m (D2);
vi. the peak amplitude of alignment defects with wavelength between 3 and 25 m (D1);
vii. the peak amplitude of alignment defects with wavelength between 25 and 70 m (D2);
viii. the peak gauge value;
ix. the peak cross level value;
x. the peak twist value.

The track indicators mentioned in i., ii., and iii. characterize the distributed irregu-
larities over a track segment of 200 m or 100 m, while the other indicators are defined to
characterize isolated (or peak) defects of the tracks such as dipped weld joint.

To say that an indicator corresponds to a defect, limits should be defined. For that
purpose, EN13848-5 [2] refers to three thresholds given as a function of speed:

(1) safety limit, given only for isolated defects, and if an irregularity exceeds this limit, it
is necessary to take immediate measures, such as lowering the maximum speed of
trains or closing the line until the defect has been corrected;

(2) intervention limit, given only for isolated defects, and if an irregularity exceeds this
limit, it is necessary to conduct corrective maintenance actions so that the safety limit
is not reached before the next inspection;

(3) alert limit, given for both distributed and isolated defects, and if an irregularity
exceeds these, regular planned maintenance operations need to be scheduled.

2.2. A Review of Rail Track-Degradation Models

In recent years, several degradation models have been defined in order to predict
geometrical track evolution over time and tonnage, mainly for heavy rail systems.

Several authors [7–9] provide a comprehensive review of rail-degradation predic-
tion models and classify degradation models as mechanistic models, statistic models,
mechanical–empiric models and artificial-intelligence models. Mechanistic models are
based on the knowledge and understanding of the behavior of the mechanical components.
In terms of mechanistic and mechanical–empiric models, the most-known models are the
Shenton [10,11], the Sato [12,13], and the ORE model [14]. However, these mechanical–
empiric models have some limitations: (1) the majority of them only consider vertical
degradation of the track, disregarding lateral degradation; (2) these models do not consider
the dynamic interaction between the train and the track, which contributes significantly to
track geometrical degradation, as posited by Vale and Calçada [15].

Statistical models are based on data collected from track inspections, and they can be
categorized into deterministic, probabilistic, or stochastic models. In statistical models, the
variables used as inputs are usually traffic (speed, tonnage, volume), axle loads, rail type,
and maintenance data. These models work well for large datasets, but they do not account
for degradation uncertainty. An application of a deterministic model can be found in [16]
for the optimization of preventive maintenance actions in ballasted tracks. Probabilistic,
models by dealing with large numbers of datasets, are able to achieve a more accurate
degradation evolution; however, to achieve accuracy, a large number of historical data are
needed. As far as the stochastic models are concerned, these have been defined in recent
years, but focusing exclusively on distributed track irregularities characterized by a single
condition indicator. Vale and Simões [17] defined a stochastic model based on the Dagum
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distribution to characterize the geometrical track-degradation process over time of dis-
tributed irregularities of longitudinal level. Later, Vale and Ribeiro [18] applied this model
to a condition-based maintenance model formulated as a mixed 0–1 nonlinear program.

For alignment irregularities, Kawaguchi et al. [19] proposed two degradation models.
The first is based on lateral deformation of the track to estimate the time to maintenance,
and the second model predicts track alignment irregularities for a time frame of one year
by using the exponential smoothing method.

Track quality indexes (TQIs) that combine track irregularities in two or more dimen-
sions [4] were the object of study by Lasisi and Attoh-Okine [20], who applied principal
component analysis to obtain a small set of variables that allows the prediction of defects
and reveals other features in the track geometry data in addition to the combined TQI,
although there were some correlations potentially useful for track maintenance.

More recently, Letot et al. [21] built a degradation model that uses a random coefficient
Wiener degradation-based process and considers a probabilistic model to simulate the
recovery effect after the maintenance action for defining adaptive maintenance scheduling
based on track-condition prediction.

Stochastic Markov modeling has also been used by several authors [22–24]. However,
this approach has a significant limitation when dealing with measured data collected in
different time intervals as happens in real situations. Furthermore, in Markov models,
the actual track condition is defined based only on the previous track condition and the
probability of transition between condition states, which means that the history of track
condition is disregarded.

In some cases, the deterioration phenomena depend on several causes and exhibit
different fault modes. To consider these aspects, Bian et al. [25] propose a fault-diagnosis
method based on a self-organizing feature-map network and support-vector machine,
focusing on the use of non-fault data to identify degradation states under different fault
modes. This approach considers four phases: data acquisition, feature processing, state
mining, and state identification, and it is defined for specific railway points such as turnouts.
In other research, Jia and Gardoni [26] propose a renewal-theory life-cycle analysis with
state-dependent stochastic models that describe the deterioration processes. Although
this approach has been applied and validated for a reinforced concrete bridge subject to
deterioration due to corrosion and seismic loading, it has potential for railway tracks as
these systems also have degradation depending on several interactions such as traffic,
tonnage, weather conditions, or seismic damage, and are subjected to renewal activities to
restore track performance.

Degradation modeling of track geometry is important in designing an optimization-
based maintenance schedule. Vale et al. [16,18] applied, for the optimal maintenance
scheduling of a Portuguese railway track, deterministic and stochastic degradation models.
More recently, Bressi et al. [24] applied a stochastic degradation model to an optimization
procedure for an Italian railway track. Sharma et al. [27] developed a data-driven, condition-
based policy for the inspection and maintenance of track geometry by using TQIs. Gerum
et al. [28] present an approach for defect prediction in railways when faulty data are present
or detailed data are not available, and integrate that prediction with the scheduling of rail
inspections and maintenances.

Another type of degradation modeling is artificial intelligence models: artificial neural
networks (ANNs) and neuro-fuzzy, which are machine learning models [29], are not
described because they are out of scope of this research.

3. Methodology for Predicting Track Geometrical Condition

In this section, a data-driven approach is used to predict railway track condition
based on the history of track condition and on inspection measurements obtained in non-
constant time intervals. This is an innovated probabilistic methodology aiming to model
track degradation by considering the particular aspects of track inspections as realistically
as possible.
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The data-driven methodology is presented in Figure 6 and comprises two phases.
The goal of the training phase is to create an accurate model that correctly represents the
evolution of the track degradation. For this phase, we need to collect data. Prior to the
prediction, the data-driven model needs to be trained on historical data to capture the
statistical relationships between independent variables (input) and the dependent variables
(output). During the prediction phase, the railway track condition is predicted for the next
inspection time(s) based on a set of historical data.
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To forecast railway track condition, represented by C, the logistic function was chosen.
Logistic binary regression expresses the probability of occurrence of a defined track quality
condition by taking values 0 (good track) or 1 (track with defect). This probabilistic model
also performs better than the linear regression, which is not appropriate for modeling
variables that are not normally distributed. Considering the logistic binary regression, the
probability distribution of a particular condition can be calculated by the logit function
expressed by Equation (4).

P(C) =
eα+β1X1+...+βnXn

1 + eα+β1X1+...+βnXn
(4)

where P(C) is the probability of occurrence of condition C, α is an intercept-related function
constant, βi are slope-related function constants, and Xi (i = 1, . . . , n) are the independent
variables of the function.

In the present study, binary logistic models were used to predict condition (dependent
variable) because, for deciding if a maintenance action is needed or not, it is sufficient to
know whether a track segment condition is below a defined limit (C = 0) or not (C = 1).
The potential independent variables (predictors) considered in the model are the standard
deviation of the longitudinal level of the right and left rail (respectively, SDLLR and SDLLL)
at each inspection time, the standard deviation of the alignment of the right and left rail at
each inspection time (respectively, SDAR and SDAL), the time interval, in days, between the
inspection time and the previous time inspection (NDAYS), and the sequential number of
track segments for modeling (TSEG). These predictors were selected based on the European
standard EN 13848-5 [2].

Prior to the logistic regression modeling, the assumptions were validated by perform-
ing the diagnosis of collinearity between independent variables. This diagnosis includes
analysis of the linear correlation (r) and the calculus of the variance inflation factors (VIF).
VIF values higher than 10 indicate that the variables are highly correlated [30]. The statisti-
cal significance of the correlation between the dependent and the independent variables
was tested by using a significance level of 5%. The resulting p-values (>5%) indicate that
the correlation have no statistical significance and because of that the independent variable
was removed. To solve the problem of collinearity between the predictive variables without
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removing some of them of the model, principal component analysis (PCA) was applied.
This analysis was used to reduce the dataset and to define the representative variables
to model. This exploratory data technique enables not only elimination of the existing
collinearity between the key variables, but also representation of the left and right measures,
for the longitudinal level and the alignment, by a single variable.

To evaluate the quality of the fitted models, the r2 coefficients of Cox & Snell and
Nagelkerke were used, as well as the sensitivity and specificity. The binary logistic re-
gression was performed by using IBM SPSS statistics software, version 25. With the SPSS
statistical software, it is also possible to compare the observed values with the predicted
values by fitted models. The resulting comparisons give the total percentage of prediction
success of the model. The modeling is performed with data inspections of the N−2 instant
times and the validation of the obtained model are made using the last two data inspections.

This methodology is easy to apply and enables a simple model that characterizes
the quality or degradation of the tracks in future moments with high confidence. The
application of principal component analysis makes it possible to overcome the obstacle of
collinearity between key parameters in the characterization of the track condition without
eliminating the variability inherent to each one of these parameters.

4. Application
4.1. Data

The geometrical track-condition parameters (longitudinal level and alignment) are
measured by an inspection vehicle that periodically checks the quality of the railway
tracks. In a first phase, these measurements are raw data associated to the track position
through GPS. As there is always a small error in GPS coordination of different inspections,
when combining raw data from different campaigns a synchronization of the records is
needed. As track curvature does not change over time it is used as the base to perform the
synchronization of records. In Figure 7a, the curvature profiles of a railway track in several
campaigns are shown before synchronization. As it can be seen, there are some offsets
between the records that should not exist, since the track curvature is always the same
for a given track. Therefore, considering that the track curvature does not change with
time, data synchronization can be completed by applying the cross-correlation function to
the curvature of each campaign measurement. Figure 7b shows the track curvature after
performing synchronization, and now all the records are superposed.
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After identifying the offset of each inspection campaign in relation to a base campaign,
the identified value can be applied to all of the other condition indicators (longitudinal
level, alignment, etc.) of that specific inspection in order to obtain the synchronized
measurements of all the geometrical indicators. In Figure 8, the synchronization phase for a
track segment of 9 km is presented for the longitudinal level of the right rail of the railway
track in study, as an example.

1 
 

 
 

 

 

(a) (b) 
 
 
 
 
 

Figure 8. Synchronization of Longitudinal Level—right rail: (a) before and (b) after.

Although the track condition is only fully characterized by five indicators (longitu-
dinal level, alignment, twist, gauge, and cross level), in this study, only the distributed
irregularities in terms of longitudinal level and the alignment are considered because these
are the two condition indicators whose degradation is more relevant for scheduling mainte-
nance [13]. As presented in Figure 3, the distributed irregularities in terms of longitudinal
level and alignment are characterized by the standard deviation of these two geometrical
indicators over 200 m of track length. In this model application, a 51.4 km railway track
subjected to 14 inspections actions with different time intervals is under analysis. Thus, a
total number of 514 track segments (right and left rails) per inspection are under analysis.
The dataset is unbalanced, as the interval between inspections (NDAYS) varies between 69
and 743 days, and the average time is approximately 183 days. For this reason, NDAYS is
one of the variables considered in the study.

First, a descriptive statistical analysis of the standard deviations of the longitudinal
level and the alignment of right and left rails was performed, including the computation of
the main statistical measures (Table 1). The distributions of these variables, considered as
potential predictors in logistic regression models, are illustrated by boxplots and histograms
presented in Figure 9. In general, there are no substantial differences between the left
and right rails. The distributions of these variables are moderately homogeneous as the
coefficients of variation vary between 39% and 48%. However, the results reveal a positive
asymmetry due to the existence of several higher outliers. SDLL takes values between 0.181
and 3.278 with a mean value equal to 0.763 on the left rail and 0.777 on the right rail. SDA
takes values between 0.142 and 2.904 with a mean value equal to 0.632 on the left rail and
0.599 on the right rail.

For the geometrical track quality condition of the distributed irregularities charac-
terized by the standard deviation of the longitudinal level (SDLL) and alignment (SDA)
over 200 m segments, two conditions are defined as indicated in Table 2. These values are
established according to [2].



Infrastructures 2022, 7, 34 10 of 15

Table 1. Descriptive statistical measures of the standard deviations of the longitudinal level and the
alignment of right and left rails.

Statistical Measures SDLLL SDLLR SDAL SDAR

Mean (mm) 0.763 0.777 0.632 0.599
Median (mm) 0.687 0.699 0.575 0.544
Standard Deviation (mm) 0.370 0.372 0.261 0.238
Coefficient of Variation 48% 48% 41% 39%
Skewness coefficient 1.320 1.071 1.581 1.819
Minimum (mm) 0.211 0.181 0.142 0.157
Maximum (mm) 3.278 2.465 2.904 2.846
Range (mm) 3.068 2.284 2.763 2.689
Inter-Quartile Range (mm) 0.445 0.471 0.310 0.264
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Table 2. Definition of geometrical track quality condition (C).

Condition SDLL (mm) SDA (mm)

0 <1.2 <0.8
1 >1.2 >0.8

4.2. Selection of Independent Variables

As previously mentioned, in the first phase of the modeling all independent variables
have been considered as potential predictors of the logistic model, because all of them
have a significant correlation with the dependent variable, that is, the geometrical track
quality condition, C. This characteristic is shown by the correlation coefficients indicated in
Table 3: all p-values are lower than 0.1% indicating statistical significance; the correlation
coefficients are not null. There are strong correlations between the track condition (C)
and SDLL and SDA, both higher than 0.5. From Table 3, the track condition has a greater
relation to the track quality indicators of both rails than to the position of the track segment
and the time interval between inspections. As expected, the track quality indicators highly
depend on each other.

By taking into account the signal, it is still possible to check that the correlation is
positive with SDLL and SDA, but negative with TSEG and NDAYS. Performing diagnosis of
collinearity between independent variables, there is a strong correlation (matrix correlations
in Table 3) between the variables related to longitudinal level and to the alignment, which
is reinforced by higher VIF values (Table 3) than ideal (∼=1).
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Table 3. Correlation coefficients and results of VIF and tolerance evaluation of the predictors.

Correlation

Variables C SDLLR SDLLR SDAL SDAR VIF Tolerance

TSEG −0.142 −0.102 −0.117 −0.295 −0.307 1.096 0.912
NDAYS −0.111 0.02 0.017 −0.119 −0.095 1.014 0.986
SDLLL 0.529 0.889 0.464 0.556 4.548 0.22
SDLLR 0.526 0.468 0.546 4.383 0.228
SDAL 0.682 0.769 2.158 0.463
SDAR 0.612 2.42 0.413

Given the importance of the SDLL and SDA variables to characterizing the geometrical
track quality condition and the strong dependence between them, the next step of the mod-
eling procedures was to perform a principal component analysis (PCA) with orthogonal
(varimax) rotation of these four variables in order to make them independent variables. The
application of the PCA technique resulted in two principal components, according to the
eigenvalue criterion (greater than 1). A Kaiser–Meyer–Olkin measure verified the sample
adequacy for analysis (KMO = 0.658). The Bartlett’s sphericity test (chi-square = 7877.204,
p-value < 0.001) also indicated that the correlations between the items were sufficient for
analysis. These two principal components explained 90.04% of the total variance in the
dataset. The high percentage of total explained variance and the values of Cronbach’s
Alpha being higher than 0.7 validated the obtained results (Table 4).

Table 4. PCA results.

Dimension Eigenvalue Variance Accounted For Cronbach Alpha

1 1.878 46.945% 0.761
2 1.724 43.093% 0.735
Total 90.038% 1

The application of the principal component analysis resulted in two components. One,
named LL, represented mostly the longitudinal level of both right and left rails (SDLLL
and SDLR) because the weights of SDLLL (0.565) and SDLR (0.590) are very high in this
component. The other component, named AL, corresponded to the alignment of the two
rails (SDAL and SDAR). Even though the LL and AL components account for a high
proportion of variance (90.038%), after the PCA analysis they were non-correlated variables,
which allowed us to use them in the logistic regression to predict the track quality. As a
result, these two principal components are represented as shown in Equations (5) and (6).

LL = 0.565 SDLL*L + 0.590 SDL*R − 0.222 SDA*L − 0.108 SDA*R (5)

AL = −0.144 SDLL*L − 0.180 SDL*R + 0.652 SDA*L + 0.560 SDA*R (6)

(*) standardized variables.

4.3. Construction of the Predictive Model

Following the methodology described in Section 3, a logistic equation was found to
predict the geometrical track condition. The four variables resulting from the previous step,
TSEG, NDAYS, LL, and AL, were considered predictors in the logistic regression modeling,
and all of them satisfied the collinearity criterion, as VIF was near to 1 (Table 5).

The probability of occurrence of an event, namely, a track condition that requires
maintenance, results from the logistic parameters presented in Table 6. In the model,
the estimates α and β coefficients and the respective statistical significance are given by
null p-values, which confirm that all of the coefficients are statistically significant, i.e., are
significantly nonzero. After selecting the covariates, the fit of the model was tested and
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the Hosmer–Lemeshow test was applied. The r2 values according to Cox & Snell and
Nagelkerke, as well as the percentage of the global success of the predictive model, are
also presented in Table 6. The absolute value of β is a good indicator of the relevance
of the parameter, highlighting that LL and AL are predictors with great impact on the
track condition. All potential independent variables were considered in the logistic model.
The statistical significance of the β coefficients given by the p-values implied inclusion in
the model (Table 6). As indicated in bold values in Table 6, the probability of a railway
track segment needing a maintenance action (C = 1) increases exponentially by 18.030
and 85.325 times with one unit of LL and AL, respectively. Considering the Hosmer–
Lemeshow test, whose results are Qui2(8) = 6.110 and p = 0.635, and having in mind the
usual significance levels, the fitting does not reject the adequacy hypothesis from model
to data. The coefficients for the evaluation indicate that the predictive model has good r2

values (Table 6), meaning that the fitting with the logistic function is achieved.

Table 5. VIF and tolerance evaluation of the predictors.

Variables VIF Tolerance

TSEG 1.097 0.912
NDAYS 1.014 0.986
LL 1.006 0.994
AL 1.105 0.905

Table 6. Results of the logistic regression model.

Variable β p-Value Exp(β) CI 95% Cox & Snell
r2

Nagelkerke
r2

Constant −2.126 0.000 0.119

0.575 0.803
TSEG 0.007 0.000 1.007 1.005–1.009
NDAYS −0.001 0.001 0.999 0.998–0.999
LL 2.892 0.000 18.030 13.961–23.286
AL 4.446 0.000 85.325 58.394–124.679

To validate the model, the discriminatory power, sensitivity, specificity, and success
rate are checked. The predictive model has a 91.1% success rate. Furthermore, the adjusted
model has high sensitivity, i.e., correctly classifies 84.1% of inspections with C = 1, and
a high specificity, i.e., correctly classifies 94.5% of inspections with C = 0. Moreover, the
model has excellent discrimination ability as the area under the ROC curve is equal to 0.97
with p-value < 0.001.

4.4. Validation

To evaluate the performance, external validation of the model was performed. The
logistic regression model was applied to predict the track condition at two inspection times
(13th and 14th instant), corresponding to intervals of 203 and 395 (203 + 192) days, and the
predicted results were validated with the real measurements. In Figure 10, a comparison
between the predicted results (C_pred) and the observed measurements (C_obs) is shown
for a track segment of 9 km, which corresponds to 45 track segments of 200 m. From this
figure, at the 13th and 14th inspection instants, the track condition is correctly predicted in
37 out of 45 track segments, which is a good result.

Moreover, in these two inspection times, the value of the area under the ROC curve
(0.907) and its confidence interval (0.879; 0.935) show that the model has excellent discrim-
inatory power. The sensitivity, specificity, and success rate of the predicting model are
73.5%, 90.9%, and 85.3%, respectively. Given the hit rate, we can conclude that the model
performs well in forecasting the geometrical track condition.
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5. Conclusions

For scheduling maintenance activities of railway lines, the evolution of track degrada-
tion needs to be suitably predicted. Although several methodologies exist, the most accurate
methodologies are complex to use and most of them do not consider the non-constant
time interval of track inspections or the history of past track condition. To overcome these
major limitations, a simple probabilistic model—a binary logistic function—was used to
predict the geometrical track condition (dependent variable). The predictors (independent
variables) are the standard deviation of the longitudinal level of the right and the left rail at
each inspection time, the standard deviation of the alignment of the right and the left rail at
each inspection time, the time interval between the inspection actions, and the sequential
number of track segments for modeling. Given the strong dependence between the stan-
dard deviations of longitudinal level and alignment, a principal component analysis (PCA)
was performed as a first phase of the modeling procedure. The quality of the fitting model
was evaluated through r2 coefficients of Cox & Snell and Nagelkerke, and validated with
real measurements. The results prove that the model has a 91.1% success rate, an excellent
discrimination ability, high sensitivity, classifying correctly 84.1% of inspections with need
of maintenance, and high specificity, as it correctly classifies 94.5% of inspections with no
demand of maintenance action.
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