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Abstract: Separating household waste into categories such as organic and recyclable is a critical
part of waste management systems to make sure that valuable materials are recycled and utilised.
This is beneficial to human health and the environment because less risky treatments are used at
landfill and/or incineration, ultimately leading to improved circular economy. Conventional waste
separation relies heavily on manual separation of objects by humans, which is inefficient, expensive,
time consuming, and prone to subjective errors caused by limited knowledge of waste classification.
However, advances in artificial intelligence research has led to the adoption of machine learning
algorithms to improve the accuracy of waste classification from images. In this paper, we used a waste
classification dataset to evaluate the performance of a bespoke five-layer convolutional neural network
when trained with two different image resolutions. The dataset is publicly available and contains
25,077 images categorised into 13,966 organic and 11,111 recyclable waste. Many researchers have
used the same dataset to evaluate their proposed methods with varying accuracy results. However,
these results are not directly comparable to our approach due to fundamental issues observed in their
method and validation approach, including the lack of transparency in the experimental setup, which
makes it impossible to replicate results. Another common issue associated with image classification
is high computational cost which often results to high development time and prediction model size.
Therefore, a lightweight model with high accuracy and a high level of methodology transparency is of
particular importance in this domain. To investigate the computational cost issue, we used two image
resolution sizes (i.e., 225 × 264 and 80 × 45) to explore the performance of our bespoke five-layer
convolutional neural network in terms of development time, model size, predictive accuracy, and
cross-entropy loss. Our intuition is that smaller image resolution will lead to a lightweight model with
relatively high and/or comparable accuracy than the model trained with higher image resolution. In
the absence of reliable baseline studies to compare our bespoke convolutional network in terms of
accuracy and loss, we trained a random guess classifier to compare our results. The results show that
small image resolution leads to a lighter model with less training time and the accuracy produced
(80.88%) is better than the 76.19% yielded by the larger model. Both the small and large models
performed better than the baseline which produced 50.05% accuracy. To encourage reproducibility of
our results, all the experimental artifacts including preprocessed dataset and source code used in our
experiments are made available in a public repository.

Keywords: image classification; waste management; image processing; deep learning; machine
learning; waste recognition; waste segregation; waste classification; recycling

1. Introduction

Solid waste management typically relies on community residents to manually sep-
arate household solid waste into two broad categories, namely organic and recyclable [1].
Organic wastes (typically derived from plants and animals) are biodegradable [2] and
have enormous economic benefits because they can be treated to produce soil additives
and methane [3,4]. Recyclable waste, on the other hand, includes reusable materials such
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as glass, metal, paper, and electronics, which can be transformed into new materials [5].
However, waste separation by residents is not rigorous due to various factors such as
low subjective consciousness, limited knowledge of waste classification, etc. [6]. As such,
further (manual) classification is usually undertaken by operators working at local waste
management depots. This is inefficient and expensive, and unsorted solid waste often ends
up in land-fill or openly dumped, thus presenting a huge burden to global public health as
a result of high infection rates to people exposed to solid waste dumping sites [7].

Recent estimates suggest that only 13.5% of global waste is recycled, while 33% is
directly dumped openly without classification [8]. Common hazards associated with
dumping unsorted waste openly include soil contamination, surface and ground water
pollution, greenhouse gas emissions, and reduced crop yield [9]. In fact, only 17.4% of
global electronic waste is collected/recycled, the cost of which is estimated to be around
57 billion United States Dollar (USD) [10]. This was corroborated by The Ellen MacArthur
Foundation [11] who argued that 32% of plastic packaging are not being collected and
estimated the economic loss to be between 80 billion USD and 120 billion USD. As global
waste growth is expected to exceed that of population growth by 2050 [8], this will not only
have serious implications on ecological balance, but will also threaten the global sustainable
development and human well-being. This calls for the development of tools that improve
the automation of waste management.

Automatic recognition and detection of waste from images has become a popular
choice to replace manual waste sorting, thanks to the rapid advances in computer vision
and artificial intelligence. Many machine learning algorithms have been proposed to
improve the accuracy of automatic waste classification [12–14]. In recent years however,
deep neural networks [15], especially convolutional neural network, (CNN), have proven
to be very effective in learning from existing data, achieving remarkable results in image
classification [14,16–18]. Thus, by taking images of solid waste as input data, CNNs can
automatically classify waste into the relevant categories.

Various standard CNN architectures have been recently proposed to perform image
classification tasks with high accuracy, such as VGGNet [19], AlexNet [20], ResNet [21], and
DenseNet [22]. However, efficiency in terms of model size and development time is a major
challenge posed by these standard models. This is because they are often pre-trained for
more than one purpose. For example, VGGNet is trained for 1000 different categories and
consists of 16 convolutional layers with 138 million parameters. This is generally appealing,
but inefficient in cases where fewer layers are required to perform a specific task. A user
without advanced knowledge to modify the architecture would normally have to train the
whole model, resulting to large model sizes with high and unnecessary computational cost.
Even when the architecture is modified (e.g., layer reduction/freezing), the resulting model
is unlikely to be small, as evidenced by Hang et al. [23] who evaluated the efficiency of nine
standard CNN architectures with layer reduction to suit their leaf disease classification
task. The model sizes ranged from 45.1 MB to 558.4 MB. Therefore, building and training
CNN from scratch is desirable due to the flexibility it offers to implement an architecture
that fits specific task requirements without excessive use of system resources.

Another major challenge in CNN research is data paucity, because a large amount
of data are required for CNN training. Although experimental data are becoming easier
to access from public repositories, there is still a shortage of waste image datasets for
model training. Among the publicly available waste classification datasets is Sekar’s [24]
available on Kaggle (www.kaggle.com accessed on 1 January 2022) public data repository
which consists of 25,077 images of organic (13,966) and recyclable (11,111) waste materials.
However, this training dataset is rather modest and unable to capture the characteristics
of all solid waste categories accurately. There is still a lack of large-scale databases for
waste classification on the scale of ImageNet (www.image-net.org/ accessed on 1 January
2022) which consists of 14,197,122 images organised into 21,841 categories. Also, CNN
typically have large number of parameters, so the training process takes considerable time
and resources; ultimately leading to large model sizes and computational time.

www.kaggle.com
www.image-net.org/
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In this paper, we present a bespoke CNN architecture developed for waste image
classification consisting of five convolutional 2D layers of various neuron sizes; followed
by a number of fully connected layers. Experiments was based on Sekar’s [24] waste
classification dataset available on Kaggle. To overcome the drawback of insufficient data,
augmentation methods [25] were applied to increase the amount of data available for
training, validation, and testing. To investigate the possibility of training an efficient light-
weight model with high performance and less computational demand; we trained the
bespoke CNN architecture described in Section 3.3 with two different image resolutions
(80× 45 and 225× 264) of the augmented version of Sekar’s [24] waste classification dataset
and compared performance in terms of accuracy, development time, and model size. As
background, the image resolution of the original dataset is predominantly 225 × 264 pixels,
so we considered downsizing the resolutions to 80 × 45 pixels to demonstrate how the
bespoke CNN architecture can be used for different target applications. For example, web
applications using high-resolution camera with no memory size constraints will likely
benefit from the model with larger image pixels, while an embedded application using a
low-cost device with a low-resolution camera and/or reduced memory size would benefit
from the smaller model.

We initially considered performance comparison between our bespoke CNN archi-
tecture and other published studies that evaluated their approach with the same waste
classification dataset [26–28]. However, fundamental flaws observed in the methods and
validation approach used in these studies raised some questions about the reliability of their
results. Unfortunately, information gaps in their experimental setup means that we could
not self-reproduce their methods without a source code being provided. Other relevant stud-
ies either experimented with a fraction of the dataset (approximately 20% or less) [29–31],
or merged with other similar datasets to increase the training data [32,33]. Thus, in the
absence of a ‘reliable’ and/or ‘reproducible’ baseline approach, we trained a random guess
classifier which forms the baseline against which the performance of our approach was
compared. Performance evaluation was based on accuracy and cross-entropy loss metrics.
The accuracy metric calculates how often predictions equals class labels [34,35], while cross-
entropy loss evaluates the divergence of predicted probability from actual class labels [36].
To encourage transparency and allow the reproducibility of our experiments, details regard-
ing where to find data and code supporting the results reported in this paper are available
at [37] (Data and code are available at: www.data.mendeley.com/datasets/n3gtgm9jxj/2
accessed on 1 January 2022), including the dataset generated during the study after ini-
tial cleanup, a Jupyter notebook (.ipynb) file useful to apply data augmentation on the
dataset, and a Jupyter notebook (.ipynb) file to replicate the data split and experimental
method/setup.

This paper makes the following contributions:

1. The provision of a reconstructed and represented version of an existing dataset for
solid waste classification [24] (including source code) such that it can be used by other
researchers to reproduce the experiments, improve results, and compare performance;

2. The proposal of a bespoke, lightweight CNN framework based on image size re-
duction for waste classification, with low time and computation requirements and
relatively high accuracy performance.

2. Background and Related Research

Deep neural networks, especially CNN, have provided state-of-the-art solutions for
many tasks including image classification [16,17], object detection [38], and semantic seg-
mentation [39]. As a result of CNN’s efficacy, numerous network architectures have been
proposed and applied to real-world examples such as waste classification from images. For
example, Xie et al. [40] trained a CNN model based on the aggregated Residual Transfor-
mations Network (ResNeXt) to classify image waste. The model was evaluated using their
own VN-trash dataset of 5904 images belonging to three different waste classes—organic,
inorganic, and medical; and the TrashNet dataset [41], which has 2527 images categorised

www.data.mendeley.com/datasets/n3gtgm9jxj/2
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into six waste classes—glass, paper, cardboard, plastic, metal, and trash. Their model produced
98% and 94% accuracy on these datasets, respectively. Srinilta and Kanharattanachai [42]
collected 9200 images of four waste categories, namely recyclable, compostable, hazardous,
and other. This was used to train four known CNN architectures including VGGNet [19],
ResNet-50 [21], MobileNet-v2 [43], and DenseNet-121 [22] to facilitate waste classification;
their best accuracy was 94.86%. Dewulf [44] evaluated the performance of four standard
CNN architectures—AlexNet [20], VGGNet [19], GooLeNet [45], and InceptionNet [46]—
on two datasets, containing 372 and 72 images, respectively. VGGNet and Inception-v3
produced the best accuracy with 91.40% and 93.06%, respectively. Gupta et al. [29] and
Masand et al. [30] used the TrashNet dataset [41] to evaluate a variety of CNN architec-
tures such as ResNet, ResNext, EfficientNet, VGGNet, AlexNet, and InceptionNet. Gupta
et al. [29] achieved maximum accuracy between 96.23–98.15% with Inception-v3, while
Masand et al. [30] achieved 98% with EfficientNet-B3.

Other researchers who evaluated a variety of standard CNN architectures include
Wang et al. [47], who achieved 86.19% accuracy with a fine-tuned VGGNet-19 tested on a
self-composed waste data of 69,737 images. Castellano et al. [48] evaluated VGGNet-16
with waste data of 2527 images and achieved 85% accuracy. Radhika [49] found Mo-
bileNetV2 [50] more accurate than ResNet, VGGNet, and InceptionNet with an accuracy
of 98%. The evaluation dataset was not specified. However, Rahman et al. [51] achieved
the best accuracy of 95% with ResNet-34, evaluated with a dataset consisting of 2527 im-
ages. Buelaevanzalina [52] achieved 83% accuracy with VGGNet-16; while Kusrini [53]
achieved an f-score between 69–82% with YOLOv4 CNN evaluated on a multi-class dataset
containing 3870 images of classes glass, metal, paper, and plastic.

Some researchers have developed bespoke CNN models for waste classification.
Among them, Junjie et al. [54] implemented a hybrid CNN–ELM model and evaluated its
performance with two public datasets (including TrashNet). The model was compared to a
wide variety of standard CNN models and VGGNet-19 produced the best accuracy between
91% and 93% accuracy. The proposed CNN-ELM model only achieved 90% accuracy, but
was 720 s faster. Alonso et al. [55] evaluated an unspecified CNN architecture with 3600 self-
obtained waste images consisting of four class labels—paper, plastic, organic, and glass—and
achieved f-score for each class between 59% and 75%. Mollá [32] generated ∼12K waste
images from a combination of various sources and achieved between 65–85% accuracy with
an unspecified CNN architecture. Other researchers that evaluated bespoke/unspecified
CNN includes Liang [18] with 95% accuracy.

A problem commonly associated with CNN research is the shortage of training data,
therefore many researchers have merged various open source datasets in their study. For
example, Majchrowska et al. [56] merged 10 different datasets and achieved 75% accuracy
with EfficientDet-D2. Sivakumar et al. [57] used a combination of four datasets (including
TrashNet) to achieve up to 98% accuracy with a bespoke eight-layer CNN architecture.
Faria et al. [33] created new ‘OrgalidWaste’ dataset containing around 5600 images with
four classes—organic, glass, metal, and plastic. Of the five CNN architectures evaluated,
VGGNet produced the best results with an accuracy of 88.42%.

Mulim et al. [27], Toğaçar et al. [26], and Mallikarjuna et al. [28] are the only studies
found to have evaluated their methods on Sekar’s [24] waste classification dataset used in
our experiments. Toğaçar et al. [26] achieved a best accuracy of 99.95%. with an autoencoder
network that simultaneously transformed the data from the image space to the feature
space and used a CNN model to extract features. Support Vector Machine (SVM) was used
as classifier in all experiments. Mallikarjuna et al. [28] achieved 90% with a four-layer CNN
after transforming the data with the ImageDataGenerator class, provided by the Keras deep
learning neural network library [34,58]. Mulim et al. [27] performed similar transformation
on the same dataset and used it to train a ‘modified’ version of EfficientNet-B0 CNN
model [59]. Their best accuracy is 96%.

Despite these achievements, there are several problems with existing CNN research
and experimental practices. First, the variations in data size (some of which are extremely
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modest for training a CNN), data preprocessing technique and validation approach (in-
cluding training, validation, and testing split) varies between research studies undertaken
with the same dataset. Second and most importantly, there are often information gaps
in the methodology and experimental setup which mean that the experiments cannot be
reproduced without a source code being provided. Specifically, there are fundamental
flaws and methodology intransparency within the three studies [26–28] that evaluated
their CNN architectures on Sekar’s [24] waste classification dataset; none of them actually
provided a source code to reproduce their experiments.

For example, Toğaçar et al. [26] used Irving’s AutoEncoder [60] to reconstruct the
original dataset, but failed to supply all the necessary parameters to replicate the data
preprocessing steps. Then, the original and reconstructed dataset was combined to train
three CNN architectures—AlexNet, GoogLeNet, and ResNet-50—with a transfer learning
approach [61] to extract features. The features were subsequently reduced with Ridge
Regression (RR) feature selection method [62] and used as input for training several SVM
classifiers. Although the theoretical underpinning of RR and the CNN architectures were
explained, the specific parameters used to implement them in the study were not specified.
Other transparency issues that make the experiments irreproducible include lack of specific
parameters for training the SVM classifiers as well as the data pre-processing steps applied
to the experimental data. Specifically, the study reduced the original waste classification
dataset [24] from 25,077 to 22,222 to balance the classes (i.e., 11,111 images per class). The
selection was achieved by random sampling from the original dataset, but without the
actual pre-processed data the experimental results are impossible to replicate because
different subsets of the data will likely lead to different results. In addition, the accuracy of
96% reported in the paper is arguably incorrect due to fundamental flaws in the validation
approach used in the study. For example, the authors reported that an 80:20 training and
test split was applied to the experimental data during feature extraction experiments, but
it is not clear how and what subset of the data was used for model validation during
training. It seems that the test dataset was used during training for validation/parameter
tuning, as well as testing after model training. Additionally, the reported ‘final’ accuracy of
96% was based on k-fold cross validation (k = 10) applied to SVM classifier (perhaps with
the same test dataset used for feature extraction experiments). This validation method is
more appropriate during training for parameter tuning and testing, and should ‘ideally’ be
conducted on a different dataset unseen by the classifier during training.

A similar error was observed with Mulim et al. [27] who also used transfer learning
approach to extract features from the same dataset before training a ‘modified’ EfficientNet-
B0 CNN architecture [59] to generate a best accuracy of 96%. Firstly, the modifications made
to EfficientNet-B0 were not explicitly stated to aid reproducibility of results. Additionally,
the study made the same fundamental error of not using a separate validation dataset
during training. Although an 80:20 training and test split was reported, it seems that the
validation/parameter tuning performed during training was based on the test dataset,
which makes the results unreliable.

Mallikarjuna et al. [28] achieved 90% accuracy with (what looked like) Sekar’s waste
classification dataset [24] by training a four-layer CNN architecture after performing image
augmentation. However, there are huge inconsistencies, i.e., lack of transparency as well
as numerous fundamental errors in the method and experimental setup. For example,
conflicting information about the original data size makes the experiment impossible
to replicate such as ‘. . . 20,000 images in data set which consists of 502 Organics and
1502 recycle. . . ’. In another areas of the paper, the authors reported the data as consisting
of ‘. . . 22,564 images in all belonging to two classes namely, ‘Organic’ and ‘Recyclable’ with
2513 images each’. An 80:20 training and data split was specified, but there is no indication
of a validation set. In addition, the parameters used in the four-layer CNN architecture
were not specified, thus making the experiment irreproducible.

In view of the methodology transparency issues surrounding existing studies that
utilised Sekar’s waste classification dataset [24], the research reported in this paper is timely
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to provide detailed information about the experimental data and experimental set up in a
way that encourages methodology transparency and allows for reproducibility of results.
This practice will facilitate cross comparison of methods, ultimately leading to a clear
pathway to identify and improve on the state-of-the-art.

3. Materials and Methods

This section presents the experimental method and materials, including details of the
experimental dataset, the data preprocessing steps undertaken to setup the experiments,
and the method adopted to address the study aims.

3.1. Dataset

Experiments presented in this paper were conducted with Sekar’s [24] waste clas-
sification dataset available on Kaggle public data repository. The dataset consists of
25,077 images of organic (13,966) and recyclable (11,111) objects. The acquired images
are coloured .jpg files of randomly portrait and landscape orientation with resolution
ranging from 191 pixels (minimum) to 264 pixels (maximum). A total of 24,705 images have
RGB colour mode (i.e., uses 3 channels to represent Red-Green-Blue with a palette of (28)3

colours); while 372 images have P mode (i.e., uses one channel with a palette of colours
from 0 to 255) [63]. The latter were removed from the dataset to avoid colour-banding
issues (i.e., inaccurate colour presentation) commonly associated with P mode images when
they are resized [64]. Thus, only 24,705 images were retained for experiments presented in
this paper.

To enhance the size and quality of the dataset, we applied data augmentation which
includes a suite of techniques for increasing the amount of data by adding slightly modified
copies of the original data. This is a common practice used in classification tasks to reduce
over-fitting when training a machine learning or deep neural network model(s) [25]. The
experimental data characteristics are presented in Table 1, and the augmentation procedure
(including rational) for obtaining augmented images is detailed in Section 3.2.

Table 1. Characteristics of the original and augmented experimental data.

Class Name Class ID Original Image Augmented Image

Organic 1 13,880 194,320
Recyclable 0 10,825 151,550
Total 24,705 345,870

3.2. Image Data Augmentation

Image augmentation is a useful technique used to increase the diversity of the training
dataset such that realistic but random copies of the original image can be generated through
simple transformations such as geometric and colour space changes, image cropping, noise
injection, and random erasing. By expanding limited datasets, this procedure takes advan-
tage of the capabilities of big data and is known to improve model performance [25]. The
augmentation presented in this paper is based on the ImageDataGenerator class provided by
the Keras deep learning neural network library [34,58]. Specifically, we used the ImageData-
Generator class to perform 13 transformations on the images (i.e., image rotation and height
and width shift); 6 geometric transformations (i.e., horizontal and vertical flip), 5 colour
transformations (i.e., contrast, brightness, hue, saturation, and gamma); and 2 additional
image manipulations (zoom and blur). The geometric transformations allows for images
to be captured in different angles. The colour transformations were deemed necessary to
simulate different exposition and luminosity conditions. For the colour transformations,
we used only those that do not change the image too much. Default configurations of
the ImageDataGenerator class were used for all the transformations, including: 40◦ image
rotation range angle; horizontal and vertical flip allowed; 0.2 width shift range; 0.2 shear
range; 0.2 zoom range; 0.2 height shift range (with fill in nearest mode); blur filter enabled;
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[1.1, 1.5] brightness range; 0.1 hue; 0.5 contrast; 3 saturation; and 2 gamma. These default
values can be modified in the image augmentation Python code released with this paper.
Some examples of the augmented images are shown in Figure 1, where the top left im-
age represents the original and the rest are augmented images labelled according to the
transformation applied.

Figure 1. Sample of augmentation for class ‘organic’ including the original and augmented images.

3.3. Method

We performed image classification tasks on the experimental data with the aim of
finding the class (i.e., organic or recyclable) to which a new ‘unseen’ observation belongs.
As noted in Section 2, standard machine learning methods such as SVM, decision trees,
K-Nearest Neighbour (k-NN), etc. have been applied to classify images with varying
levels of success. However, more recent methods such as deep neural network, especially
CNN, have proven more successful for image classification [12,14]. In particular, CNN
architectures such as VGGNet [19], AlexNet [20], ResNet [21], and DenseNet [22] have
proven successful for image classification with high accuracy. However, models trained
with these standard architectures take a large amount of system resources because they
are often pre-trained for more than one purpose, which makes them inefficient in terms
of model size and development time when dealing with specific requirements such as the
waste image classification task presented in this paper. Thus, we developed a bespoke
5-layer CNN architecture presented in Figure 2.

To investigate the possibility of training an efficient light-weight model with per-
formance and less computational/resource demand, the CNN architecture was trained
with two different pixel sizes—80 × 45 and 225 × 264 pixels—of the augmented version
of Sekar’s [24] waste classification dataset described in Section 3.2. As background, the
predominant image resolution size in the original dataset is 225 × 264, hence the selection.
However, the smaller resolution size of 80× 45 pixels was chosen arbitrarily. We considered
downsizing the original images for the following reasons:

1. To show how image resizing can be used to address the requirements of different
applications, namely: a light-weight application for low-cost device with limited
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memory capacity and low-resolution camera and a robust application using high-
resolution camera without memory restriction.

2. To investigate the variation in performance between the two models. The idea is
to determine if smaller image resolution can achieve a relatively high performance,
thus avoiding unnecessary waste of system resources in terms of model size and
computational time.

Figure 2. Bespoke 5-Layer Convolutional Neural Network Architecture.

We also trained a random guess classifier which forms the baseline against which the
performance of our bespoke CNN models was compared. This was deemed necessary due
to the absence of ‘reliable’ and ‘reproducible’ existing work to perform a direct comparison.
All experiments were conducted in 50 epochs to obtain the best parameter sets. Performance
evaluation was based on accuracy and cross-entropy loss observed during model training,
validation, and testing.
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In classification tasks, accuracy metric calculates how often predictions equals class
labels [34,35]. Its value can be represented mathematically as Equation (1):

A =
tp + tn

tp + fp + tn + fn
(1)

where tp is the number of positive instances predicted correctly; tn is the number of negative
instances predicted correctly; fp is the number of positive instances predicted incorrectly;
and fn is the number of negative instances predicted incorrectly.

Cross-entropy loss is a common loss function used to optimise and evaluate classifica-
tion models because its value reveals the magnitude of predicted probability divergence
from the actual class labels. This value is pegged on the understanding of Softmax activa-
tion function that is usually placed at the end of CNN architectures to convert output logits
(i.e., unnormalised predictions) into classification probabilities. For binary classification
tasks, cross-entropy loss is defined mathematically as Equation (2):

L =
2

∑
i=1

ti log(pi) = − [t log(p) + (1 − t) log(1 − p)] (2)

where ti is the truth value taking a value 0 or 1 and pi is the Softmax probability for the
ith class.

3.4. Experimental Setup

The bespoke CNN architecture is presented in Figure 2, comprising a series of convo-
lutions, plus activation and pooling operations, followed by a number of fully connected
layers. Specifically, the CNN consists of 5 convolutional 2D layers of various neuron sizes,
each with a ReLu activation function and 2D max pooling of 2× 2 window size. The output
of the convolution plus pooling operations is flattened and fed into 2 dense (fully connected)
layers, with ReLu and softmax activation function, respectively. A dropout layer of value
0.5 is inserted between the dense layers to classify the given input training images into
2 full level classes. Dropout is by far the most popular regularisation technique for deep
neural networks [65] and is known to add a fairly substantial gain to the model accuracy.
It also prevents over-fitting, because a neuron is temporarily ‘dropped’ or disabled with
probability p at each iteration during training. This means that all the inputs and outputs
to this neuron will be disabled at the current iteration and resampled with probability
p at every training step. In other words, a dropped out neuron at one iteration can be
active at the next one. The hyperparameter p, commonly called dropout-rate, is typically
defined as a number between 0.0 (no outputs from the layer) and 1.0 (no dropout). Dropout
values between between 0.5 and 0.8 are recommended for a hidden layer [66] so we used
0.5 for our CNN architecture. This corresponds to 50% of the neurons being dropped out
during training.

The initial input size shown in Figure 2 refers to the maximum input resolution (i.e.,
225 × 264) for the augmented dataset used to train the larger model. The same architecture,
with smaller image resolution (i.e., 80 × 45), was used for training the smaller model. The
number of epochs used to train the network is 50 for all experiments (including the baseline).
The training, validation, and testing experiments were performed on the augmented dataset
split into 60% training, 15% validation, and 25% testing as shown in Table 2.

Table 2. Augmented dataset split for training, validation and testing the CNN.

Class Name Training Validation Testing

Organic 116,592 29,148 48,580
Recyclable 90,930 22,732 37,888
Total 207,522 51,880 86,468
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Deep neural networks are trained based on the stochastic gradient descent optimisa-
tion algorithm, so error for the current state of the network is repeatedly estimated as part
of the optimisation algorithm. This means that an error function (known as loss function)
must be defined for estimating the loss of the model at each training iteration so that the
weights can be updated to reduce the loss on the next evaluation. More importantly, the
chosen loss function must be appropriate for the modelling task, in our case classification,
and the output layer configuration must match the chosen loss function [67].

For the bespoke CNN architecture implemented in this paper, we used Keras built-in
methods [35] for evaluation including accuracy and loss function. Specifically, we used
the cross-entropy loss which is the default loss function for classification problems. In
Keras, this is specified by compiling the trained model with categorical cross-entropy.
Cross-entropy calculates a score that summarises the average difference between the actual
and predicted probability distributions for all classes in the problem. The score is then
minimised, and a perfect cross-entropy value is 0. For model optimisation, we used the
Adadelta algorithm with a learning rate of 1.0 to match the exact form in Zeiler’s original
paper [68]. We specified accuracy and loss as the performance metrics.

The baseline model used for comparison was implemented by simply replacing the
Softmax output probabilities from the CNNs with randomly generated floating point values
between 0 and 1. This was repeated 50 times for each experiment to mimic the number of
epochs used in the CNN experiments. We did not report development time and model size
for the baseline model because it is impractical and unnecessary.

4. Results

In this section, we present the results obtained from the baseline model as well as the
bespoke CNN architecture trained with small (80 × 45) and large (225 × 264) image resolu-
tions. Aggregate measures derived from compiling the models were used for evaluation
such as training, validation, and testing accuracy and loss. For simplicity, the performance
of the three models are reported together in Table 3. However, the visualisation of the results
is represented separately for each model. Figure 3 shows the training/validation accuracy
and loss in function of 50 epochs for the smaller model (trained with 80 × 45 image resolu-
tion), while Figures 4 and 5 show that of the larger model (trained with 225 × 264 image
resolution) and baseline model, respectively.

Table 3. Model size, development time, and performance of both models.

Input Resolution
(pixel) Epochs Dev. Time

(hour)
Model Size

(MB)

Loss Accuracy

Training Validation Testing Training Validation Testing

225 × 264 50 65.46 † 2.35 † 0.2954 0.7083 0.5692 0.8956 0.7921 0.7619
80 × 45 50 6.40 † 1.08 † 0.1073 2.1885 5.4401 0.9628 0.7921 0.8088
Baseline 50 - - 0.5758 0.5768 0.5767 0.5005 0.5005 0.5005

† System specification used for experiment:- PROCESSOR: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz; GPU:
NVIDIA GeForce RTX 2070 with Max-Q Design 16GB; RAM: 16GB.

As shown in Table 3, the small CNN model with 80 × 45 image resolution is relatively
lighter than the large model by 1.27MB. The training time is also better with the small
model (6.40 h), compared to the large model which took 65.46 h to train. This is particularly
important when considering the type of application to deploy the model. For example,
the small model would be suitable for embedded applications on low-cost devices with a
low-resolution camera and/or limited memory size. On the other hand, the large model
is memory demanding and would suit applications with high-resolution camera and no
memory size constraints. Computational cost calculation for the baseline model is impracti-
cal, so we did not compare the baseline with our approach in terms of development time
and model size. Direct comparison with standard CNN architectures such as VGGNet [19],
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AlexNet [20], ResNet [21], and DenseNet [22] was also deemed unnecessary for the research
presented in this paper due to the following reasons:

1. The standard CNN architectures were developed as part of the annual ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [69], where researchers compete
to correctly detect and/or classify objects and scenes in a large database consisting of
14,197,122 images organised into 21,841 categories. As such, the pre-trained models
are inherently very large.

2. Self-reported model size and development time will vary among research studies due
to variations in the computer system specification, purpose of experiments, data size,
etc. For example, Hang et al. [23] used nine standard CNN architectures (with some
modifications, such as layer freezing) to classify plant leaf diseases, and compared
model size and training time. InceptionNet-v2 [46] produced the smallest model size
of 45.1 MB within 2187.3 s. This is super-fast when compared to the 6.40 h used to
train our smaller bespoke CNN model that is only 1.08 MB. Their experiment was
faster due to higher system specification (i.e., i7-8700k processor and 32GB RAM,
accelerated by two NVIDIA GTX 1080TI GPUs).

Figure 3. Training/validation loss and accuracy for image size 80 × 45.

Based on these reasons, we believe that models trained with the standard CNN archi-
tectures are unlikely to result in lower model size and computational cost than our bespoke
CNN models, even if they are modified and self-implemented with the experimental dataset
used in this paper.

In terms of accuracy, our approach performed better than the baseline model, which
produced 50.05% accuracy during training, validation, and testing. Thus, emphasis in this
section is on the comparative performance between the CNN models. The smaller CNN
model is generally more accurate than the larger one during training, validation, and testing.
Specifically, the smaller model is 6.72% more accurate during training and 4.69% during
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testing. However, both models produced the same accuracy (79.21%) during validation.
An important variation to note is the accuracy margin between training, validation, and
testing per model, as huge differences may indicate how generalisable (or not) a models
is. For example, the variation between validation and testing accuracy is minimal for
both CNN models. In particular, the small model is 1.67% more accurate during testing
than validation, but the large model degraded by 3.02% during testing than validation.
The ‘training to validation’ and ‘training to testing’ variation is much higher for both
models, which provokes an interesting discussion. For the large module, accuracy reduced
by 10.35% from training to validation and 13.37% from training to testing. The small
model exhibited a similar pattern, but with even larger accuracy reduction from ‘training to
validation’ (17.07%) and ‘training to testing’ (14.40%). These variations can be seen clearly
in Figures 3 and 4 for the large and small models, respectively.

There are many reasons why CNN models exhibit this behaviour, ranging from over-
fitting to model complexity; it could even be due to unrepresentative training, validation,
and/or testing data. The model’s ability to adapt properly to new data (i.e., generalisation)
is highly influenced by how similar or dissimilar the unseen data, drawn from the same
distribution, are from the one used to train the model. The loss function usually helps to
unravel the reasons for fluctuating accuracy values from ‘training to validation to testing’.
For example, loss observed in the small model increased exponentially from training
(0.1073) to validation (2.1885) to testing (5.4401). However, loss observed in the large
model increased from training (0.2954) to validation (0.7083), but decreased to 0.5692
during testing. These observations are certainly not the classic case of ‘loss decreases while
accuracy increases’, and the various reasons for this are discussed further in Section 5.

Figure 4. Training/validation loss and accuracy for image size 225 × 264.
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Figure 5. Training/validation loss and accuracy for the Baseline classifier (Random Guess).

5. Discussion

In order to understand the fluctuations in loss and accuracy values observed in
Section 4, it is important to explain the relationship dynamics between loss and accuracy.
Intuitively, loss and accuracy are believed to be inversely correlated, where lower loss and
higher accuracy should lead to better predictions. However, this is not the case in Table 3,
where the smaller model with higher loss led to higher accuracy and better prediction than
the larger model. Although surprising, this is not unheard of, as loss and accuracy are not
necessarily exactly inversely correlated. While loss is a measure of the variation between
class labels (0 or 1) and the raw prediction (which is typically a float), accuracy measures
the difference between class labels and threshold prediction (also represented as 0 or 1).
Therefore, raw prediction changes exponentially with loss, but accuracy is more ‘resilient’
because raw predictions will have to go over/under a certain threshold to actually affect
the accuracy value.

To put this into context, let us consider the binary classification performed in the
experiment, where the task is to predict whether an image is organic or recyclable waste.
The raw prediction of the CNN is a sigmoid (outputting a float between 0 and 1), but the
CNN is trained to output 1 if the image belongs to organic waste and 0 otherwise. In the
results shown in Figure 3, two phenomena are happening at the same time, i.e., the classic
‘loss decreases while accuracy increases’ and the less classic ‘loss increases while accuracy
stays the same’. In the earlier phenomenon, some images with borderline predictions
may be predicted better, and so the output class changes (e.g., an organic image whose
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prediction was 0.4 becomes 0.6). This is the classic ‘loss decreases while accuracy increases’
behaviour that is usually expected. However, some images with very poor predictions may
continue to worsen (e.g., an organic image whose prediction was 0.3 becomes 0.2). This
leads to the less classic ‘loss increases while accuracy stays the same’ phenomenon. It is
also important to note that when cross-entropy loss is used for classification (as is the case
with the experiments presented in this paper), bad predictions are penalised much more
strongly than good predictions are rewarded. Thus, for an organic image, the loss is log(1—
prediction), which means that, even if many organic images are correctly predicted (low
loss), a single misclassified organic image will have a high loss, hence disproportionately
increasing the mean loss. This phenomena has been illustrated by other researchers [70]
to show that increasing loss and stable accuracy could also be caused by good predictions
being classified a little worse.

The second phenomenon (loss increases while accuracy stays the same) is more likely
the case with the large model and less likely with the small model due to the level of ‘loss to
accuracy’ asymmetry observed in Figure 3 vs. Figure 4. For the small CNN model shown in
Figure 3, both accuracy and loss are increasing, which may indicate that the CNN is starting
to over-fit, especially because both phenomena are happening at the same time. Specifically,
the CNN seem to be learning patterns only relevant for the training set and not great for
generalisation (classic phenomena) where some images from the validation set are being
predicted really wrong, which has an amplified effect on the ‘loss asymmetry’. At the same
time, the CNN is still learning some patterns which are useful for generalisation (less classic
phenomena) as more images are being correctly classified. In such cases, dropout usually
helps in generalising the model. The bespoke CNN architecture presented in this paper uses
a dropout of 0.5 (for both large and small models) which means that 50% of the network
neurons are dropped during training whereas all the neurons are used for validation. A
less aggressive dropout below 0.5 may bring the training and validation loss much closer,
thus making the model more accurate during testing. That said, the asymmetry observed in
the small model (Figure 3) may also be due to other factors, such as model complexity and
unrepresentative validation data. In the former case, the model may be too complicated for
the task, and perhaps a reduction in the depth (number) of layers may resolve the problem.
In the latter case, the training data may be unrepresentative compared to the validation data.
The recommended solutions to such problems are to randomise the training–validation
and testing data split and increase the experimental dataset, respectively. This seems very
unlikely to be the cause of the problem in our experiments, because both recommendations
have already been applied—the split (60% training, 15% validation, and 25% testing) was
randomly drawn from the experimental data, and augmentation was used to increase
the original dataset from 24,705 to 345,870 images as reported in Table 1. A possible
observation from the literature (not taken into consideration in our experiments) is that
some researchers [18] have discredited the original dataset as relatively confusing, with
some images either being mislabelled and/or having multiple labels between organic and
recyclable. This and other factors related to reducing model complexity and tuning the
dropout will be investigated in future research.

The larger model (although less accurate) seems more generalisable based on the
observations in Figure 4. The CNN exhibited only the less classic ‘loss decreases while
accuracy stays the same’ behaviour. Specifically, the CNN peaked at epoch 9, with training
loss (0.1591) and accuracy (0.9432), and validation loss (0.7830) and accuracy (0.8314). It
is very common for researchers to apply early stoppage to their code at this point, thus
leading to higher performance being reported. However, both training and validation loss
seem to be going high at this point, which means that the model was probably over-fitting.
The model seemed to stabilise around epoch 19 (training loss: 0.3558, training accuracy:
0.8712, validation loss: 0.6905, and validation accuracy: 0.8074) with the odd spikes in
loss and accuracy. Indeed, the validation loss and accuracy values obtained at this point
seem much closer to the overall results obtained during testing, as shown in Table 3. This
shows that the large model is more robust and generalisable compared to the small model.
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Therefore, future research and experimentation is required to improve the effectiveness
and generalisability of the proposed framework of the small model to achieve a balance
between loss and accuracy.

6. Conclusions

We have investigated the automation of waste classification by evaluating the per-
formance of a bespoke CNN architecture trained on two different image resolutions of
Sekar’s [24] dataset available on Kaggle. We acknowledge that several research works
have been reported in this area that utilised the same dataset, but none to our knowledge
has been explicit about their experimental setup, or provided source code which allows
for their results to be replicated. As such, we implemented a random guess classifier
which forms a baseline against which the performance of our approach was compared. As
the task is a binary-class one involving a modest dataset size of 24,705 images, we used
augmentation to increase the dataset to 345,870. We investigated the performance of two
image resolution sizes of the dataset (large model: 225 × 264 and small model: 80 × 45) and
compared the results. Our experiments show that the bespoke CNN performed better than
the baseline classifier. The small model is relatively lighter than the large model by 1.27 MB,
and the training time is also better with the small model (6.40 h) compared to the large
model, which took 65.46 h to train. This means that the small model would be suitable for
embedded applications on low cost devices with a low-resolution camera and/or limited
memory size. On the other hand, the large model is memory demanding and would suit
applications with high-resolution camera and no memory size constraints.

In terms of accuracy, the small model also performed better than the large one, but the
large model seem more generalisable. However, the results obtained in the small model
might just be a signal to the model complexity and/or original data veracity. For example
the model might be too complex for the classification task, and literature evidence suggests
that some images in the original data are either mislabelled and/or have multiple labels
between organic and recyclable. In future work, a deeper analysis would be performed on
the experimental data to identify and remove any mislabelled images before re-training the
model. We will also consider various parameter tuning such as increasing the epoch and
using a less aggressive dropout below the 50% currently in place.
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