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Abstract: The condition of a bridge is critical in quality evaluations and justifying the significant costs
incurred by maintaining and repairing bridge infrastructures. Using bridge management systems,
the department of transportation in the United States is currently supervising the construction and
renovations of thousands of bridges. The inability to obtain funding for the current infrastructures,
such that they comply with the requirements identified as part of maintenance, repair, and rehabilita-
tion (MR&R), makes such bridge management systems critical. Bridge management systems facilitate
decision making about handling bridge deterioration using an efficient model that accurately predicts
bridge condition ratings. The accuracy of this model can facilitate MR&R planning and is used to
confirm funds allocated to repair and maintain the bridge network management system. In this study,
an artificial neural network (ANN) model is developed to improve the bridge management system
(BMS) by improving the prediction accuracy of the deterioration of bridge decks, superstructures,
and substructures. A large dataset of historical bridge condition assessment data was used to train
and test the proposed ANN models for the deck, superstructure, and substructure components, and
the accuracy of these models was 90%, 90%, and 89% on the testing set, respectively.

Keywords: bridge deterioration; bridge condition; artificial neural network; machine learning;
condition prediction

1. Introduction

Historically, the deterioration of bridges in the United States (US) has been a great
challenge. For example, a recent study by the American Society of Civil Engineers (ASCE)
identified that there are more than 610,000 bridges in the US and that approximately 9.1%
of these bridges are either structurally unsound or not operational [1]. Transportation
authorities employ a bridge management system (BMS) to maintain these structures and
ensure the safe operation of bridges. A BMS stores inventory data such as inspection
data and applies deterioration models to predict future bridge conditions in order to
plan maintenance, repair, and rehabilitation (MR&R). This is achieved via the accurate
prediction of MR&R operations. BMSs have been used to accurately predict future bridge
conditions [2,3]. The Federal Highway Administration (FHWA) has summarized the typical
used condition of bridge components on a scale of 0–9, as shown in Table 1.

Each bridge component is deteriorated at a unique rate, independent of other com-
ponents, as discussed in [4]. Using the BMS deterioration model, it is easy to determine
future bridge conditions, and the predicted conditions can be used to facilitate effective
decision making and determine appropriate MR&R operations. First, the formulation
of deterioration models applied in the infrastructure management system is primarily
performed for a pavement management system. We note that these models have been
utilized since the 1980s to predict bridge conditions in order to facilitate effective financial
estimations of different management methods and select an appropriate method. Gen-
erally, all deterioration models are classified into four main categories, i.e., mechanistic,
deterministic, stochastic, and artificial intelligence (AI) models.
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Table 1. FHWA ratings for bridge conditions (FHWA, 1995).

Code Description

9 Excellent condition

8 Very good condition (no problems noted)

7 Good condition (some minor problems)

6 Satisfactory condition (structural elements show some minor deterioration)

5 Fair condition (all primary structural elements are sound but may have minor section loss, cracking, spalling, or scour)

4 Poor condition (advanced section loss, deterioration, spalling, or scour)

3 Serious condition (loss of section, deterioration, spalling, or scour have seriously affected primary structural
components; local failures are possible, and fatigue cracks in steel or shear cracks in concrete may be present)

2
Critical condition (advanced deterioration of primary structural elements. Fatigue cracks in steel or shear cracks in
concrete may be present or scour may have removed substructure support. Unless closely monitored, it may be
necessary to close the bridge until corrective action is taken.)

1
Imminent failure condition (major deterioration or section loss present in critical structural components or obvious
vertical or horizontal movement affecting structure stability; bridge is closed to traffic, but corrective action may permit
light service)

0 Failed condition (out of service; beyond corrective action)

Mechanistic models are typically well known as those used to predict the operational
lifetime of a structure by applying mathematical fundamentals related to the degradation
of concrete based on the microstructure of concrete before and during deterioration [5].
Mechanistic models are commonly efficient when applied at the project level other than at
the network level [6].

Several studies have employed deterministic models to approximate the forecasted
conditions by assuming that there exists some perfect knowledge of variables restricting
the approach not to include the random errors in the prediction [7,8]. Most deterministic
models use the regression method, where a wide range of mathematical relationships are
applied, e.g., exponential decay [9] and polynomial expressions [10,11]. The conditions
of a bridge’s superstructure were modeled by applying various functional forms, e.g.,
linear, nonlinear, nonparametric, and nonlinear parametric, to construct several regression
models [12].

Stochastic models allow the formulation of deterioration modeling approaches because
various parameters, e.g., randomness and uncertainties, are factored into the deterioration
process [13]. In many previous studies, the stochastic Markovian model has been applied
extensively when modeling the infrastructure deterioration of bridge components [14].
Several methods have been tested to approximate the probabilities of Markovian transition
for a bridge, such as the expected value method approach shown in [15], as well as
econometric approaches such as the ordered probity techniques reported in [2,16], count
data models, random-effects probit models [17], poisson regression models and negative
binomial regression models [2]. Regression-based methods are commonly used [18,19].
However, several studies have proven that regression-based methods introduce bias when
predicting future bridge conditions when applying the Markov chain [20].

Bridge deterioration depends upon several factors, e.g., environmental exposure,
average daily traffic, design parameters, and other physical bridge properties. Therefore, an
accurate prognosis of bridge deterioration is an extremely complicated task. Due to recent
advancements in AI models, e.g., machine learning and deep learning, many applications
in a wide range of engineering and technology fields are exploiting the benefits of AI
models. In addition, large datasets from various fields are available, and such datasets are
used to train and test AI models to successfully predict outcomes with sufficient accuracy.

For example, [21] studied a comparison-based convolutional neural networks (CNN)
method to determine the state rating of bridge components in the US state of Maryland,
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and the developed models achieved 86% mean prediction accuracy. In addition, artificial
neural network (ANN) applications have been around for approximately 30 years, and
ANN models have been used as substitutes for the conventional approaches used in
various civil engineering disciplines [22–27]. A common ANN approach has been used
to model bridge deterioration [28] where a multilayer perceptron (MLP) is employed to
establish the association of bridge age (in terms of years) and the bridge condition rating
(rated on a scale of 1–9). It was reported that 79% of all predicted values matched the
actual values. An ANN-based analysis of historical maintenance combined with inspection
records of concrete-built bridge decks in the state of Wisconsin was performed, and this
model achieved 75% accuracy in categorizing the state rating [29]. Furthermore, ANNs
were applied to ascertain wave loads based on a certified set of data [30]. Here, the
ANN approach was used to predict solitary wave forces on a coastal bridge deck. In
addition, ANN models were used to estimate bridge damage, and other researchers have
modeled the deterioration of a railway bridge in Poland using an ANN to analyze the open
decks [31–33].

In this study, ANN models were developed to predict the condition ratings of three
different bridge components, i.e., the bridge deck, superstructure, and substructure. The
proposed models were developed by applying historic bridge condition evaluations from
Ohio from 1992 to 2019. With the proposed ANN models, we found that the correlation
between the predicted and actual values is high, which demonstrates that the proposed
models were able to predict the bridge conditions. The proposed ANN models represent
an information-oriented state prediction method for bridge elements with an exemplified
forecasting accuracy. In addition, the models were deployed as an information-based
modeling method for condition ratings to improve the decision-making processes in a BMS.

2. Methodology

An ANN model uses different mathematical layers to learn various features in the
data being processed. Typically, an ANN model comprises thousands to tens of thousands
of manmade neurons arranged in layers as units. The input layer is designed to receive
multiple types of data and extract various features in the data. The extracted information
is then passed to a hidden layer. The feature learning and transformation processes
occur in a hidden layer, and the output layer converts the processed information to its
original format to facilitate easy interpretation. However, due to the exponential increase
in computational power over the last few years, ANN models have evolved to incorporate
multiple hidden layers.

In addition, many design optimizations, e.g., architectural variations, and preprocess-
ing techniques are being incorporated into these models. Consequently, these advanced
ANN models can produce highly accurate results; thus, ANN researchers can improve
their models by performing a variety of simulations based on combining a set of hyperpa-
rameters, e.g., the total number of layers (i.e., up to 14 hidden layers) and neurons (i.e., up
to 512 neurons), activation functions, biases, and weights.

In this study, TensorFlow and Keras were used to implement the ANN models, and
these models were trained and tested on Google’s Colab platform, which has the computa-
tional power of several graphical processing units. As a result, the optimal model that can
provide the most valuable results can be realized.

2.1. Data Processing

In this study, the data used to formulate the deterioration models of bridge structures
were sourced from the National Bridge Inventory (NBI) database. These data include
information about the geometric properties of the bridge, i.e., length, width, degree of skew,
the operational category of the bridge, road network, type of construction materials, and
the type of construction design. The FHWA items from the NBI database are detailed in
Table 2.



Infrastructures 2022, 7, 101 4 of 17

Table 2. Description of FHWA items.

Data Item Item

In
ve

nt
or

y

Highway agency district FHWA 2
Year built FHWA 27
Average daily traffic (ADT) FHWA 29
Design load FHWA 31
Skew FHWA 34
Material type FHWA 43A
Structure type FHWA 43B
Number of main spans FHWA 45
Structure length FHWA 49
Deck width FHWA 52
Year reconstructed FHWA106
Deck structure type FHWA 107

R
at

in
g Deck condition FHWA 58

Superstructure condition FHWA 59
Substructure condition FHWA 60

The National Bridge Inventory (NBI) database is difficult to apply due to the imbalance
of data and scattering of information. During the design and implementation phases of
the deterioration models, complications were avoided by cleaning the NBI data. This was
further facilitated by eliminating the condition rating of the bridge structures, and informa-
tion about the condition of the missing deck structure, superstructure, and substructure
used to train the ANN models. Here, condition ratings that were less than three were
eliminated because very few bridge components have a condition under three. In addition,
data whose condition rating is denoted N (“Not Applicable”) were also eliminated because
they represent culverts, which were considered irrelevant to the current task. After the
initial data preparation, erroneous data were also eliminated. The information was verified
to eliminate mistakes in the data, e.g., negative age values, negative average daily traffic
(ADT) values, and skew angles of 90 degrees. This constraint was used to eliminate most
decks, superstructures, and substructures that had undergone repairs. If a bridge’s condi-
tion rating increased due to repairs, the condition data after treatment were removed such
that only deterioration condition data remained in the dataset.

2.2. Data Standardization

It is beneficial to standardize the input data and output results to prevent calculation
hitches, such as features with wider ranges from dominating the distance metric, to satisfy
the algorithm states and facilitate the network learning process [34]. Data standardization
is the process of converting data categorically and normalizing numerical data. It is
imperative to understand data encoding and normalization in the implementation of a
neural network model. We note that the total number of nodes located in the layer at
the input side of an ANN model is determined by the number of inputs. In addition, the
total number of nodes depends on how the input factors are arranged. Here, continuous
quantitative variables, e.g., year of construction, age of the structure, and ADT, were
applied in a single node. Discrete information identifies the number of nodes that must
show a qualitative variable. In this study, the standardization of quantitative variables was
performed using the Z-score, which is expressed as follows:

z =
x − µ

σ
(1)

where z is the standardized value, x is the nonstandardized value, µ is the mean value, and
σ is the standard deviation.

We note that the discrete input factors have exclusive categorized classes, where each
class is linked to a node in the input layer depending on the various input numbers chosen
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for various ANN models. The key concept of standardization is that units are dropped ran-
domly for each training iteration. Here, the ANN model showed the corresponding rating
of the bridge condition. Regarding the integer scale of the rating system, we considered the
output to be a discrete variable and formatted the output in a binary format similar to the
discrete input parameters.

In this study, 60% of the dataset was selected randomly without replacement to train
the multilayer perceptron (MLP) networks, 20% was selected as the validation set, and 20%
was selected as the test set. Here, the data used for testing were meant to approximate the
generalizability of the model, and the validation data dictated the model selection and how
the model’s parameters were adjusted.

2.3. Multilayer Perceptron

The MLP is type of feedforward Neural Network. Additionally, they are made up of an
individual or multiple layers of neurons. A multilayer feedforward neural network that is
trained through backpropagation (BP) depends on a controlled technique, i.e., the network
formulates the model depending on features input to the system, which is required to
establish a connection between the input and output [35]. This MLP enables the prediction
of an output that corresponds to particular features of the input feedforward NN such that
nonlinearity functions are configured in sequential layers, then into a unidirectional format
drawn from the input layer via the hidden layers, and then toward the output layer.

A neuron is applied as an underlying building block in BP networks. Here, a typical
neuron is denoted as n and comprises several inputs and a single output which is regarded
as an activation state. The computational analysis of a neuron is formulated in Equation (2),
where p (i) denotes the activation state, the number of neurons is represented by R, the
weight of the neuron is represented by w (i), and the ni represents the outputs from the
neuron of the ith example. Here, the activation state is multiplied by the weight. Then, we
sum the products and the end sum is denoted as Net, whereas the Net input is estimated
in the initial layer of the network as the product (sum) of the source times the weight is
added to the bias. Additionally, if the input is significantly greater, the weight has to be
exceptionally small in order to avoid the whole transfer function becoming saturated.

n = ∑R
i=1 p(i)·w(i) (2)

After determining Net, F, i.e., an activation function, is employed for the modification
purposes of generating an input of the neuron.

2.4. Activation Function

A critical benefit that has substantially improved the functionality of feedforward
networks comes from replacing sigmoid hidden units with piecewise linear hidden units,
e.g., rectified linear units (ReLU), which are the most common activation functions used in
NNs [36]. Thus, in this study, we used the ReLU function, which is expressed as follows:

σ(z) = max(0, z) =
{

0, i f z < 0
z, i f z ≥ 0

(3)

The ReLU activation is depicted in Figure 1. Here, when z is negative, the function is
zero; otherwise, the function is z. Despite this, the function is said to be non-linear, as values
less than zero, or negative values, always result in zero. From this property, the gradient
remains intact because multiplying by 1 does not change the value. The diminishing error
of the slope occurs when the activation function slope drops below the point where the NN
cannot manage. Here, the ReLU slope is 0 when the input is less than 0 or a large value
where the input is greater than 0. Thus, the ReLU is used to prevent a diminishing slope
error as an effect of the activation function.



Infrastructures 2022, 7, 101 6 of 17

Infrastructures 2022, 7, x FOR PEER REVIEW 6 of 17 
 

A critical benefit that has substantially improved the functionality of feedforward 

networks comes from replacing sigmoid hidden units with piecewise linear hidden units, 

e.g., rectified linear units (ReLU), which are the most common activation functions used 

in NNs [36]. Thus, in this study, we used the ReLU function, which is expressed as follows: 

𝜎(𝑧) = max(0, 𝑧) = {
0, 𝑖𝑓 𝑧 < 0
𝑧, 𝑖𝑓 𝑧 ≥ 0

             (3) 

The ReLU activation is depicted in Figure 1. Here, when z is negative, the function is 

zero; otherwise, the function is z. Despite this, the function is said to be non-linear, as 

values less than zero, or negative values, always result in zero. From this property, the 

gradient remains intact because multiplying by 1 does not change the value. The dimin-

ishing error of the slope occurs when the activation function slope drops below the point 

where the NN cannot manage. Here, the ReLU slope is 0 when the input is less than 0 or 

a large value where the input is greater than 0. Thus, the ReLU is used to prevent a dimin-

ishing slope error as an effect of the activation function. 

 

Figure 1. ReLU activation function. 

2.5. Cost Function 

A cost function is considered the measure of the goodness of a Neural Network (NN) 

relative to the training sample and the predicted output. Weights and biases are depend-

ent variables in the cost function implementation. It is a “one-value” that is used to rate 

the goodness of an NN’s overall performance. According to [37], ideally, a cost function 

will be reduced during training. The cost function can be expressed as follows: 

𝐸 =
1

2
∑ (𝑦𝑖 − 𝑎𝑖)

2           𝑁
𝑖=𝑛+1   (4) 

The mean square error (MSE) is calculated by squaring the difference between each 

network output and its real label and averaging. Where E is our cost function (which is 

also referred to as loss function), N represents the number of training images, y is depicted 

as the true label (real), and a comprises a vector (such as network predictions). It is obvious 

to guess the importance of the cost function when considering its existence in the output 

layer and associating it with the adaptation of weight in the network. In addition, it is 

significant to modify the cost function within the output layer because it is constantly 

moving backward via the Net and does not change the equation of the hidden layer. Nev-

ertheless, when used in the output layer, it should entirely be a differentiable unit to allow 

error derivatives computation for training [38]. 

2.6. ANN Implementation 

Figure 1. ReLU activation function.

2.5. Cost Function

A cost function is considered the measure of the goodness of a Neural Network (NN)
relative to the training sample and the predicted output. Weights and biases are dependent
variables in the cost function implementation. It is a “one-value” that is used to rate the
goodness of an NN’s overall performance. According to [37], ideally, a cost function will be
reduced during training. The cost function can be expressed as follows:

E =
1
2 ∑N

i=n+1(yi − ai)
2 (4)

The mean square error (MSE) is calculated by squaring the difference between each
network output and its real label and averaging. Where E is our cost function (which
is also referred to as loss function), N represents the number of training images, y is
depicted as the true label (real), and a comprises a vector (such as network predictions).
It is obvious to guess the importance of the cost function when considering its existence
in the output layer and associating it with the adaptation of weight in the network. In
addition, it is significant to modify the cost function within the output layer because it is
constantly moving backward via the Net and does not change the equation of the hidden
layer. Nevertheless, when used in the output layer, it should entirely be a differentiable
unit to allow error derivatives computation for training [38].

2.6. ANN Implementation

In this study, Google Colab Notebook was used to write the code for the deck condition,
superstructure, and substructure models using TensorFlow and Keras. One critical feature
of Google Colab is that it offers an unlimited and open-source ecosystem, known as
TensorFlow, that assists the development and unveiling of the platform in compliance with
the Apache 2.0 license. In addition, Keras, which is an API for high-quality deep learning,
realizes the easy establishment, training, evaluation, and testing of various NNs. Combined,
Keras and TensorFlow form the tf.keras stack, where Keras serves as the backend to provide
extra essential capabilities [39].

In this study, an NVIDIA Tesla P100-PCIE-16GB Graphics Processing Unit (GPU) was
used in the training phase. Here, dropout, which is a simple method to prevent overfitting
in NNs, was applied to realize to reduce computational costs and realize effective regular-
ization in order to reduce overfitting while improving the generalization error [40]. The
dropout rate was set to 0.25, and the Adam optimizer was applied with a learning rate
of 0.0001. The Adam optimization algorithm refers to a stochastic gradient add-on that
is frequently applied in deep learning approaches. The Adam optimization algorithm ex-
ploits the advantages of two state-of-the-art optimization methods, i.e., Adaptive Gradient
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Algorithm (AdaGrad), which handles sparse gradients, and Root Mean Square Propagation
(RMSProp), which handles objectives that are considered to be nonstationary [41]. The error
gradient estimate accuracy associated with the NN training process was regulated with a
batch size of 64. A single cycle through the entire training dataset is referred to as an epoch.
Typically, a few epochs are required to train an NN. Initially, the constructed NN comprises
200 epochs. The network was updated to determine the effect of increasing the number of
epochs. Then, an analysis demonstrated that the training process where the epoch count
for the three models—deck, superstructure, and substructure—read 700 epochs created the
NN network with the best performance. Table 3 shows the model training characteristics
for the deck, superstructure, and substructure models.

Table 3. Model training parameters.

Parameter Implementation

Dropout 0.25
Epochs 700

Activation function ReLU
Optimization function Adam

2.7. Feature Selection

The advantage of the approach used to select variables is that it ensures smooth
implementation of the ANN model, i.e., only variables that affect the output are selected.
In addition, the essential factors that determine the bridge condition rating were selected
as the input variables. Statistical analyses performance regarding the correlations testing to
ascertain the statistical relationship that occurs between the database parameters and the
bridge condition ratings is observed. According to [42], if the correlation coefficient value
is less than 0.3, it is considered to be statistically independent; thus, linear contribution
does not exist with one another. However, due to the NN model’s ability to handle the
complex relationships of various nonlinear parameters, it is unnecessary to apply typical
statistical methods, which could result in poor detection of the underlying output–input
relationships. Thus, more factors were selected, and their corresponding influences on the
ANN models were evaluated equally.

As shown in Table 4, it is clear that the identified parameters regarding design load,
type of support, type of design, deck structure type, and age complied with the deck
rating statistics. In addition, the parameters regarding design load, type of support, year
of construction, and age complied with the superstructure rating statistics. Finally, the
parameters regarding the design load, type of design, type of support, year built, and age
complied with the substructure rating statistics. The first ANN models were developed
using the input parameters. Here, the effect of additional parameters on network perfor-
mance was examined. Additional factors to aid in the examination consisted of parameters
fetched from interrelation analyses whose locations were beyond the statistically depen-
dent bandwidths. These parameters included ADT, number of spans, structure length,
skew, type of service on, deck width, and material type. To examine the effect of these
additional parameters on the ANN models, the models were trained using statistically
verified parameters. Then, the performance of the baseline model and the newly trained
network was compared. Here, variations occurring in the forecasting performance were
determined to evaluate model performance.

The proposed initial models were validated using the baseline configurations for
the deck, superstructure, and substructure models. Then, we evaluated the performance
of the baseline models. The results demonstrated that the initial ANN models with the
baseline model’s configuration were entirely ineffective in terms of predicting the deck,
superstructure, and substructure conditions. Therefore, additional ANN models were
developed using additional input parameters for the baseline models, and the architecture
of the remaining models was maintained to determine the final input features.
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Table 4. Correlation coefficient results.

Parameters
Deck Superstructure Substructure

Condition Condition Condition

Highway district −0.04 −0.08 −0.09
Year built 0.19 0.41 0.33

Average daily traffic (ADT) −0.06 −0.03 −0.09
Design load 0.42 0.32 0.35

Skew −0.04 −0.03 −0.02
Type of service on −0.09 −0.04 −0.1

Type of service under 0.13 0.02 0.07
Material type −0.07 0.03 0.04
Design type 0.34 0.19 0.3

Type of support −0.31 −0.34 −0.2
Number of spans in main unit −0.19 −0.05 −0.14

Length of maximum span −0.03 0.02 0.04
Structure length −0.13 0.02 −0.07

Deck width −0.12 0.021 0.19
Deck structure type 0.36 0.03 0.02

Age −0.49 −0.48 −0.61

In the case of the deck model, the following input parameters provided the best
performance with the initial ANN models: year built, skew, ADT, design type, span
number in the main unit, structure length, deck width, design load, type of support, deck
type, and structure age. Similarly, in the case of superstructure and substructure models, the
input parameters for optimal performance with initial ANN models included the year built,
skew, ADT, design type, span number in the main unit, structure length, deck width, design
load, type of support, material type, and structure age. The corresponding sizes of the
feature matrices used to train and test the ANN models to predict the deck, superstructure,
and substructure conditions were 68,652 × 11, 79,821 × 11, and 102,015 × 11, respectively.

2.8. Network Architecture

After selecting the input variable, we determined both the input size and output size.
However, numerous dimensions of the network architecture are unknown. The network’s
predictive performance is heavily influenced by its architecture; thus, it must be chosen and
handled carefully. The additional architectural parameters include the number of hidden
layers and the number of neurons in each hidden layer.

It is known that the architecture of an NN can influence network performance; how-
ever, to the best of our knowledge, there are no standard methods to evaluate optimal net-
work architectures. As a result, in this study, different networks with various architectures
were implemented to identify the best-performing NN. This evaluation was conducted
after executing various systematic variations to identify the optimal number of hidden
layers and the optimal number of neurons in each hidden layer.

Depending on the above assertions, training of the various NN architectures was per-
formed, and they were verified depending on the dataset. This was conducted depending
on the node number in all hidden layers and the total number of variants in the hidden
layers. Here, the goal was to select the ANN model with the optimal architecture. First,
a 32-neuron ANN model with a single hidden layer was subjected to the training and
validation processes. Then, this model was modified to include two hidden layers with
16 and 32 neurons, respectively. In the subsequent configuration, the number of neurons in
both hidden layers was increased by 32 and 256 neurons in each layer. Then, a third hidden
layer was introduced, where the number of neurons in the first, second, and third hidden
layers was 16, 32, and 64, respectively. In addition, the model with three hidden layers was
subjected to training and validation, and the resulting number of neurons in the respective
layers was 32, 256, and 512 neurons. Then, a configuration with four hidden layers was
subjected to training and validation with 32, 256, 512, and 512 neurons, respectively. In the
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subsequent step, we attempted to evaluate the effect of varying the number of layers. Here,
the total number of layers was increased to 5, 6, 7, 8, 9, and 14, where the combinations
of neurons were 32, 256, 512, 512, and 512, respectively. All the models with hidden layer
counts beyond four layers were subjected to training and validation using 512 neurons. The
architectures of the different models and their respective validation are detailed in Table 5.

Table 5. Validation of the numerous network architectures.

Model Architecture
Deck Superstructure Substructure

MAE R2 MAE R2 MAE R2

11-32-1 0.49 0.41 0.52 0.36 0.46 0.46

11-16-32-1 0.47 0.43 0.51 0.38 0.45 0.47

11-32-256-1 0.42 0.55 0.45 0.48 0.41 0.54

11-16-32-64-1 0.45 0.48 0.48 0.42 0.44 0.49

11-32-256-512-1 0.3 0.66 0.25 0.73 0.27 0.7

11-32-256-512-512-1 0.22 0.75 0.2 0.78 0.24 0.73

11-32-256-512-512-512-1 0.15 0.83 0.16 0.82 0.15 0.82

11-32-256-512-512-512-512-1 0.11 0.88 0.1 0.89 0.11 0.88

11-32-256-512-512-512-512-512-1 0.1 0.89 0.11 0.88 0.12 0.87

11-32-256-512-512-512-512-512-512-1 0.12 0.86 0.12 0.86 0.13 0.86

11-32-256-512-512-512-512-512-512-512-1 0.14 0.83 0.14 0.83 0.14 0.84

11-32-256-512-512-512-512-512-512-512-512-512-512-512-512-1 0.16 0.81 0.17 0.81 0.21 0.76

Next, the various networks affiliated with the deck, superstructure, and substructure
models were trained and validated, where various nodes in the hidden layers were exe-
cuted. Here, we found that the model with the smallest mean absolute error (MAE) and
highest coefficient of determination (R2) was simulated to determine the verification set in
order to identify which deck, superstructure, and substructure models demonstrated the
best performance.

In this analysis, the MAE metric was used to determine the prediction accuracy of
the models. Essentially, MAE represents the mean (average) deviation of the predicted
values from observation values [43]. As shown in Table 5, the model with seven hidden
layers obtained the smallest MAE value of 0.10 for the bridge deck model. In another case,
the model with six hidden layers obtained MAE values of 0.10 and 0.11 for the bridge
superstructure and substructure models, respectively. In addition, we found that there was
a gradual reduction in the MAE values as the number of hidden layers increased from one
to seven. For models with greater than seven hidden layers, we found that the MAE value
began to increase again. Thus, we observed a tradeoff relationship between accuracy and
the number of hidden layers. In addition, the results exhibited reduced accuracy when
additional computations were performed.

The second set of results is related to the coefficient of determination, i.e., the R2 value,
which represents a comparison of the mutual relationship between the predicted and real
values. Table 5 shows the R2 values obtained by the deck, superstructure, and substructure
models with different architectures. Similar to the MAE analysis, the highest R2 value
for the bridge deck model was obtained by the model with seven hidden layers (0.89),
as shown in Figure 2. In addition, the highest R2 value for both the superstructure and
substructure models was obtained by the models with six hidden layers (0.89 and 0.88,
respectively), as shown in Figures 3 and 4, respectively.
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We found that the deck model with an input layer containing 11 neurons, seven hidden
layers with 32, 256, 512, 512, 512, 512, and 512 neurons, respectively, and an output layer
with one neuron and a linear activation function obtained the overall smallest MAE value
and the highest R2 value. In addition, the superstructure and substructure models had
an input layer containing 11 neurons, six hidden layers with 32, 256, 512, 512, 512, and
512 neurons, respectively, and an output layer with a single neuron and a linear activation
function obtained the lowest MAE value and the highest R2 value.

3. Results and Discussion

A confusion matrix was applied to evaluate the performance of the ANN models in
terms of predicting the condition ratings of the different bridge components. Essentially,
confusion matrices consist of tabular illustrations of MLP predicting capability [44]. The
target outputs were compared, and the results were tabulated against the network’s pre-
dicted rating. Confusion matrices were developed in order to facilitate testing of the data
sets. Here, 20% of the data was selected to test the models.

Here, the computation of functionality variables for algorithms was performed by
evaluating the true positive (TP), false positive (FP), true negative (TN), and false negative
(FN) values all as found in the confusion matrix. In addition, accuracy, effectiveness, recall,
the F1-score, and the macroaverage [45] were investigated.

Accuracy =
TP

(Total Number of Condition)
(5)

Recall =
TP

(TP + FN)
(6)

Precision =
TP

(TP + FP)
(7)

F1-Score = 2 × Precision × Recall
Precision + Recall

(8)

When performing macroaveraging, the measure is initially computed per label, and an
average is taken according to the total number of labels. Through microaveraging, the equal
weight of each label is identified, regardless of the given label’s appearance frequency.

Precisionmacro avg(h, j) =
TPj(

TPj + FPj
) (9)

Recallmacro avg(h, j) =
TPj(

TPj + FNj
) (10)

where Precisionmacro avg (h, j) and Recallmacro avg (h, j) are derived as the arithmetic mean
of the accuracy and recall scores for each class and (h, j) represents an individual class of
each matrix.

F1-Scoremacro avg(h, j) = 2 ×
Precisionmacro avg(h, j)× Recallmacro avg(h, j)
Precisionmacro avg(h, j) + Recallmacro avg(h, j)

(11)

Figures 5–7 show the confusion matrices for the bridge deck, superstructure, and
substructure condition models. To compute for parameters like TP, TN, FN, and FP, we must
first determine their individual condition values. By definition, the TP value represents the
number of correct predicted values, i.e., the values lying in the diagonal of the confusion
matrix. The FN value represents the total number of values that lie in the corresponding row,
excluding the TP. The FP value represents the total number of values in the corresponding
column, excluding the TP. Finally, the TN of a given class represents the total number of
columns and rows, where the respective column and row to these classes are excluded.
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As shown in Figure 5, the TP, TN, FP, and FN values were 12,404, 81,059, 1327, and
1327, respectively, for the deck model. Similarly, Figure 6 shows that the TP, TN, FP, and
FN values were 14,387, 94,212, 1578, and 1578, respectively, for the superstructure model.
Finally, Figure 7 shows that the TP, TN, FN, and FP values were 18,198, 120, 213, 2205, and
2205, respectively, for the substructure model.

Condition model performance:

Deck accuracy = 12404/13729 = 0.90

Precision = 12404/(12404 + 1327) = 0.90

Recall = 12404/(12404 + 1327) = 0.90

F1-score = 2 × (0.9 × 0.9)/(0.9 + 0.9) = 0.90

Precision_(macroaverage) = (0.93 + 0.85 + 0.85 + 0.88 + 0.91 + 0.91 + 0.88)/7 = 0.89

Recall _(macroaverage) = (0.78 + 0.70 + 0.84 + 0.89 + 0.92 + 0.92)/7 = 0.83

F1-score _(macroaverage) = (0.85 + 0.77 + 0.84 + 0.89 + 0.92 + 0.92 + 0.82)/7 = 0.86

Similarly, for superstructure and substructure condition model performance measures:

Superstructure Accuracy = 14389/15965 = 0.90

Substructure Accuracy = 18198/20403 = 0.89

Tables 6–8 show the accuracy results obtained by the deck, superstructure, and sub-
structure models. Equation 7 depicts the precision by providing an approximation of
the accuracy associated with the model out of the summation of the predicted positive
observations. This is a reasonable method to evaluate the conditions when FPs might have
high costs. For example, the deck model obtained a precision value of 89%, which implies
that there is an 11% probability that this model will predict an FP condition by incorrectly
predicting some issue. Overall, the precision values of the three models were significantly
high. Recall evaluates the summation of TPs estimated by the model. Here, all three models
obtained recall values that were greater than 81%, which implies that if a particular section
of the bridge is characterized by repair issues (TP) and the corresponding model falsely
predicts this (FN), then the bridge may suffer some damage conditions, particularly where
the issue can affect other sections of the bridge.

Table 6. Test accuracy of the deck model.

Condition Precision Recall F1-Score Support

3 0.93 0.78 0.85 18

4 0.85 0.7 0.77 156

5 0.85 0.84 0.84 610

6 0.88 0.89 0.89 2384

7 0.91 0.92 0.92 5567

8 0.91 0.92 0.92 4401

9 0.88 0.77 0.82 595

accuracy 0.9 13,731

macro avg 0.89 0.83 0.86 13,731

weighted avg 0.9 0.9 0.9 13,731
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Table 7. Test accuracy of the superstructure model.

Condition Precision Recall F1-Score Support

3 1 0.68 0.81 19

4 0.88 0.68 0.76 155

5 0.83 0.85 0.84 742

6 0.89 0.88 0.88 2719

7 0.91 0.92 0.91 6449

8 0.9 0.93 0.92 5276

9 0.88 0.74 0.8 605

accuracy 0.9 15,965

macro avg 0.9 0.81 0.85 15,965

weighted avg 0.9 0.9 0.9 15,965

Table 8. Test accuracy of the substructure model.

Condition Precision Recall F1-Score Support

3 0.94 0.84 0.89 19

4 0.85 0.78 0.81 154

5 0.85 0.77 0.81 671

6 0.88 0.89 0.89 4001

7 0.89 0.91 0.9 7752

8 0.91 0.91 0.91 6876

9 0.88 0.75 0.81 930

accuracy 0.89 20,403

macro avg 0.88 0.84 0.86 20,403

weighted avg 0.89 0.89 0.89 20,403

Overall, the F1-score of all three bridge component models was greater than 85%,
which means that the number of FPs and FNs was low. In addition, it signifies that the
model has predicted both correct and incorrect predictions. From these results, we conclude
that both the recall and precision of the models are significantly high. Nevertheless, it
is still 12% probable that these models will predict incorrect results for the three bridge
components. For example, a deck component parameter may yield an undue maintenance
notification at a 14% probability.

Finally, the model obtained the highest accuracy (90%) for both the deck and super-
structure components, and the model obtained 89% accuracy for the substructure com-
ponent. These results imply that training was performed accurately with an error rate of
approximately 10%. Here, accuracy was calculated using Equation (5), and it is significant
regarding true positives or true negatives against the overall results. This implies that
higher accuracy values significantly assist in the exploration of the number of data points
rightly predicted when compared with the overall data points. As shown in Tables 6–8, the
accuracy of the model was substantively high, and, in most cases, this model accurately
predicted the outcomes of both TPs and TNs.

In this study, a confusion matrix was applied when measuring the performance of
various elements, e.g., the deck, superstructure, and substructure conditions. Ideally, the
testing set was used to formulate the confusion matrices, which provided the generaliz-
ability of the network to unseen information. We found that the deck, superstructure, and
substructure models obtained accuracy that was greater than 89% on the test data.
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The input variables are ranked based on a set of criteria, such as the ratio of error with
omission to baseline error, and this is completed depending on the magnitude. According
to the findings, the age and type of support have a high impact on the deck condition. In
addition, the age and type of design have a high impact on the condition of the superstruc-
ture. Age and year built have great effects on the condition of the substructure, whereas
the average daily traffic has the least impact on bridge condition.

4. Conclusions

ANN modeling techniques in AI can incorporate multiple parameters into a model
that is both sophisticated and nonlinear. In terms of bridge engineering, an ANN model
can be trained and tested on data available in the NBI database in order to predict the
deterioration of a bridge.

In this study, various ANN models with different configurations were utilized and
formulated to perform predictions about the deterioration of bridge deck, superstructure,
and substructure components. The proposed model considers a comprehensive set of
geometric and functional parameters of the bridge structure to enhance prediction accuracy.
In addition, many standardized approaches are adopted in the proposed model to improve
its performance, including the evaluation of the most optimal set of model inputs, prepro-
cessing and dividing the data, selecting internal parameters for control optimization, and
model validation. During the data preprocessing stage, unnecessary and complicated NBI
data were cleaned so that appropriate and unbiased data were input to the model. Then,
the input data and results are normalized in order to conveniently train and test on this
dataset and produce standardized results. Then, the finalized dataset is utilized to identify
the most appropriate ANN architecture to obtain optimal accuracy for a given number of
hidden layers and neurons. Finally, with the optimal ANN configuration, the proposed
model is trained and tested for various components (i.e., the bridge deck, superstructure,
and substructure components) for the dataset. The results were then evaluated in terms of
accuracy, precision, recall, and F1-score. Overall, the accuracy of the final model trained for
the deck, substructure, and superstructure components was found to be greater than 89%
on the NBI dataset. Similarly, the F1-score, recall, and precision values were all greater than
81%. Therefore, we consider that the proposed ANN models have allowed us to identify a
strong correlation between the predicted values and actual values in the NBI dataset.

Finally, the proposed ANN models were used to develop a bridge deterioration model
to predict deterioration in all bridge systems. Consequently, this model is perceived to
assist in furnishing an ideal plan for bridge maintenance, scheduling any bridge with an
imminent requirement to earmark appropriate funds for its maintenance and repair.

However, the performance of the proposed ANN models can be improved. For
example, the model’s accuracy is dependent on a number of factors such as excessive
training on larger and more diverse datasets and configurations of ANN models; therefore,
the proposed model can be improved by considering the most optimal combination of
these factors.
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