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Abstract: Hot recycling of reclaimed asphalt pavement (RAP) into new hot-mix asphalt (HMA) is a
complex process that must be precisely calibrated in the asphalt plants. In particular, temperature is a
key parameter that, if inadequately set, can affect the final mix performance as it influences the RAP
binder mobilization rate and the severity of bitumen short-term aging. The present paper aims at
evaluating the effect of HMA production temperature on the behavior of mixtures including 50%
of RAP and two types of rejuvenating agents. In particular, volumetric, mechanical, chemical, and
rheological properties of the mixes and binder-aggregate adhesion have been investigated on the
HMA produced in the laboratory at 140 ◦C or 170 ◦C. The results showed that the adoption of a
lower production temperature did not significantly influence the air voids content in the mix, but
determined a less stiff, brittle and cracking-prone behavior. Moreover, the decrease of the HMA
production temperature was profitable for the increase of bitumen-aggregate adhesion.
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1. Introduction

Many studies and applications worldwide have demonstrated that the use of reclaimed
asphalt pavement (RAP) in new hot-mix asphalt (HMA) has huge environmental and
economic advantages. Thanks to the increasing attention to environmental issues, road
administrations are currently having a greater broadmindedness towards hot recycling of
RAP in terms of acceptance of higher RAP percentages in new HMA.

In the industrial production of HMA, the management of high percentages of RAP
is challenging. The first issue is RAP heating. Different methodologies allow drying and
heating RAP, for example parallel drums or recycling ring, but in many batch plants the
RAP is still conveyed to the virgin aggregates in the elevator and is cold and partly wet
when it reaches the mixing chamber [1]. Moreover, the adoption of high RAP contents
determines a lower control of the mix gradation, especially if RAP is not crushed and
separated into different fractions [2]. Indeed, hot recycling of RAP implies the use of
rejuvenating agents (also called “rejuvenators”), which allow recovery of some of the
chemical, rheological and mechanical properties that the RAP bitumen has lost with aging.
However, rejuvenators should also be adequately managed by HMA producers in terms of
type, dosage and addition location in the plant framework [3,4]. Rejuvenating agents have
been the subject of several studies, which have highlighted their great benefits while also
focusing attention on avoiding undesired effects. Table 1 summarizes the advantages and
disadvantages of the rejuvenating agents.
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Table 1. Summary of the benefits and disadvantages of rejuvenating agents.

Benefits References

Rejuvenators allow disrupting asphaltene clusters and restoring the
volatiles components that bitumen lost with aging [5,6]

Rejuvenators allow reducing binder stiffness and brittleness, enhancing
fatigue and thermal cracking resistance [7]

Rejuvenators can be produced from the processing of biological, secondary
or waste materials [8]

Disadvantages References

Some additives only restore the bitumen oily components but do not act on
the asphaltene clusters, reducing the rejuvenating effect [9]

Rejuvenator dosage must be carefully defined to avoid the risk of mix
cracking (low dosage) or rutting/moisture sensitivity (high dosage) [10,11]

Rejuvenators must be homogeneously widespread in the bituminous phase
to avoid localized distress on the pavement [12]

Rejuvenators can lose their efficacy if subjected to high temperatures [13]

Within this complex system, a fundamental variable that greatly influences the produc-
tion process and the final mix of volumetric and mechanical properties is the temperature.
However, its importance is often neglected. During the HMA manufacturing, the tempera-
ture of the different components (bitumen, virgin aggregate, RAP, and rejuvenating agent)
can vary in a large range [14].

On the one side, the adoption of higher temperatures for virgin aggregate and RAP
determines a higher amount of RAP binder to melt and blend with the virgin bitumen [15].
However, the higher the temperature, the more harmful the short-term aging of the virgin
and RAP bitumen [8,16]. Moreover, the greater mobilization of RAP bitumen entails a
different virgin bitumen/RAP bitumen proportion, which may affect the properties of the
aged-virgin bitumen blend [15,17].

On the other side, the use of lower aggregate and RAP temperatures at the plant has an
opposite effect. In particular, a lower degree of blending between RAP and virgin bitumen
is achieved with a lower penalization of the binder properties [18]. However, the minor
heating of the HMA components determines a higher bitumen viscosity, which, in turn,
may affect the mix compactability [19].

Some studies have recently investigated the effect of the production temperature on
the effectiveness of the hot-recycling process, mainly focusing on warm-mix asphalt (WMA)
techniques. The work by carried out by a RILEM (International Union of Laboratories and
Experts in Construction Materials, Systems and Structures) inter-laboratory task group
showed that a temperature decrease of 30 ◦C during the production of HMA including
RAP determines an increased performance against rutting, cracking, and fatigue, without
reducing the mix workability [20]. Another study demonstrated that some rejuvenating
agents may suffer high temperatures and evaporate, partly or totally, reducing their effect
on the restoration of RAP bitumen properties [13]. Carbonneau et al. obtained a comparable
stiffness and fatigue performance between an HMA and a WMA (produced at a 28 ◦C
lower temperature) including 40% of RAP content [21]. Yousefi et al. showed that WMA
produced with 50% of RAP and a temperature reduction of 25 ◦C had higher fracture
toughness and energy at low and intermediate temperatures compared to a reference
HMA [22]. Rathore et al. reduced the HMA production temperature by 30 ◦C and included
60% RAP (without rejuvenating agents) but obtained a lower performance compared to the
reference HMA without RAP [23].

Most of this research dealt with the characterization of bituminous binders, mastics or
mixtures [24,25], but there are no studies on the interphase behavior with particular focus
on the bitumen-aggregate adhesion. Some papers focused on the effect of the temperature
on the adhesion [26–28], but they do not investigate the presence of RAP.
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To have a clearer comprehension of the influence of temperature on the hot recycling of
RAP, a global study, including the mix characterization and the evaluation of the adhesive
properties between aggregate and binder, has been carried out. In particular, the objective of
the present study is the evaluation of the influence of the HMA production temperature on
the volumetric, mechanical, chemical, and rheological properties of the mixtures including
50% of RAP. Moreover, adhesion tests were carried out to assess the bond between bitumen
(virgin and aged) and aggregate (virgin and RAP) at the different temperatures.

2. Materials and Methods
2.1. Experimental Program

To fulfil the research objective, HMA mixtures containing virgin aggregate, RAP, bitu-
men and rejuvenator were produced in the laboratory at 140 ◦C or 170 ◦C. Air voids con-
tent, voids filled with bitumen, indirect tensile stiffness modulus, indirect tensile strength,
cracking tolerance index, and complex modulus were determined on gyratory compacted
specimens. Fourier-transform infrared (FTIR) spectroscopic analysis was carried out on the
bitumen extracted from the loose mixtures sampled before compaction. Moreover, binder
bond strength (BBS) tests were carried out between virgin/recycled aggregate substrates
and blends of aged and virgin bitumen with different proportions, by imposing the gluing
temperatures of 140 ◦C and 170 ◦C. Specifically, the BBS tests were carried out with the
aim to:

• Investigate the influence of the aged bitumen content on the binder adhesive properties;
• Evaluate which kind of aggregate, virgin or RAP, provides the higher adhesion with

bitumen;
• Assess the influence of temperature on binder-aggregate adhesion.

Table 2 summarizes the experimental program.

Table 2. Experimental program.

Property Norm Repetitions

Air voids content and voids filled with bitumen EN 12697-8 4
Indirect tensile stiffness modulus @ 20 ◦C EN 12976-26 4
Indirect tensile strength @ 25 ◦C EN 12697-23 4
Cracking tolerance index @ 25 ◦C ASTM 8225-19 4
Complex modulus @ Tref = 20 ◦C AASHTO T342-22 2
FTIR absorbance spectrum - 16
Binder bond strength @ 25 ◦C AASHTO TP-91 5

2.2. Materials

The HMA mixtures were designed to comply with Italian standards for binder layers
with a maximum aggregate size of 16 mm. The mix gradation was obtained by blending
4 fractions of limestone virgin aggregates (coarse-grained and small-grained gravel, sand
and filler) and 2 fractions of RAP. The coarse RAP was characterized by a particle diameter
between 8 and 16 mm and a bitumen content of 4.8% by RAP weight, the fine RAP by
a particle diameter lower than 8 mm and a bitumen content of 5.1% by RAP weight.
The penetration at 25 ◦C and the softening point of the RAP bitumen were, respectively,
12 × 10−1 mm and 77 ◦C. A fixed RAP content of 50% by aggregate weight was adopted
for all the mixtures. Figure 1 shows the HMA gradation.

A 50/70 penetration bitumen, typically used in Italy to produce bituminous mixtures,
was used as virgin binder. Table 3 shows the main physical and rheological properties of
the bitumen. The dosage of virgin bitumen in the HMA was 2.7% by mix weight, which
corresponded to a total bitumen content of about 5.2% by mix weight if considering the
bitumen brought by the two RAP fractions (approximately 2.5% by mix weight).
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Figure 1. HMA gradation.

Table 3. Characteristics of the virgin bitumen.

Property Unit Norm Value

Penetration at T = 25 ◦C 10−1 mm EN 1426 55
Softening point ◦C EN 1427 52.1
Temperature G*/sinδ > 1 kPa ◦C EN 14770 64
Glover-Rowe parameter at T = 15 ◦C,
ω = 0.005 rad/s Pa - 189

Two commercial rejuvenating agents were used in the mixtures: rejuvenator A consists
of modified polyamines and vegetal oils, while rejuvenator B is a crude tall oil derived
from pine wood and includes resin acids, fatty acids, and unsaponifiable. The rejuvenating
agents were analyzed through FTIR spectroscopy. Table 4 summarizes the characteristic
peaks of the two products. According to the results of a previous study [29], the rejuvenator
dosages were 9% and 6% by RAP binder weight respectively for additives A and B.

Table 4. Characteristic peaks of the rejuvenators from FTIR analysis.

Wavenumber Compound Group Rej. A Rej. B

3010 cm−1 Alkene C-H stretching High Medium
1742 cm−1 Ester C=O stretching Small High
1589 cm−1 Amine N-H bending High Absent

The HMA laboratory production provided the heating of the mix components in the
oven at 140 ◦C or 170 ◦C: the virgin aggregate and the RAP were heated for 3 h, the virgin
bitumen for 2 h. The rejuvenating agents were added to the virgin bitumen 30 min before
HMA mixing. The HMA mixing was carried out using an automatic mixer and including,
in order, coarse aggregate, RAP, virgin bitumen and filler, according to EN 12697-35. The
loose mix was kept in the oven for 30 min, and afterwards, cylindrical specimens were
produced using a gyratory compactor with angle 1.25◦, vertical pressure 600 kPa and
100 gyrations, according to EN 12697-31.

2.3. Test Protocols

The bulk density was obtained by weighing the specimen in air and in water, without
applying any sealing, according to EN 12697-6 procedure A. The maximum density was
calculated from aggregate and bitumen densities and proportion (EN 12697-5, procedure
C). The air voids content (AVC) of the specimens was determined as the complement to 1
of the ratio between bulk and maximum densities, in percentage. Moreover, the content of
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voids filled with bitumen (VFB) was calculated as the percentage of void in the aggregate
skeleton occupied by the binder.

The Indirect Tensile Stiffness Modulus (ITSM) tests were carried out using a servo-
pneumatic device, according to EN 12697-26-Annex C. Pulse loads with a rise time of 0.124
s were applied to reach the target horizontal deformation of 5 µm. The ITSM was calculated
with the following equation:

ITSM =
F·(υ + 0.27)

z·h (1)

where F (N) is the vertical load peak; ν is the Poisson’s ratio (0.35); z (mm) is the horizontal
deformation and h (mm) is the mean specimen height. The test was performed at 20 ◦C
and provided 4 repetitions under the same conditions.

An electro-mechanical press allowed performing the Indirect Tensile Strength (ITS)
tests at 25 ◦C according to EN 12697-23. The test provided a constant deformation rate
of 50 ± 2 mm/min until the load reached, after the failure, a value equal to 30% of the
peak. From the vertical load versus vertical displacement curves, the Cracking Tolerance
Index (CTI) was calculated according to ASTM 8225-19. CTI is an indicator of the specimen
ductility and can be calculated through the following equation:

CTI =
h

hre f
·

G f

m75
· l75

d
(2)

where h (mm) and d (mm) are the mean specimen thickness and diameter, respectively; href
(mm) is the reference thickness equal to 62 mm; Gf (N/mm) is the fracture energy (i.e., the
area of the load-displacement curve divided by the specimen section h · d); l75 (mm) and
m75 (N/mm) are respectively the displacement and the slope of the load-displacement
curve when the load decreases to 75% of the peak. ITS and CTI were determined as the
average on 4 test repetitions.

The linear viscoelastic (LVE) characterization of the mixtures was carried out through
uniaxial cyclic compression tests, according to AASHTO T378-17. In particular, the complex
modulus E* of the specimens was measured using a servo-hydraulic universal testing
machine. During the test, haversine compression loads were applied to achieve a vertical
strain amplitude of 50 microstrain (50 × 10−6 mm/mm). The test was performed at four
temperatures (5 ◦C, 20 ◦C, 35 ◦C and 50 ◦C) and eight frequencies (from 0.1 to 20 Hz). Two
specimens were tested for each mixture.

A hot extractor (wire mesh filter) with trichloroethylene and a rotary evaporator were
used to extract the bitumen from the mixtures, according to EN 12697-1 and EN 12697-3. The
bitumen was analyzed through FTIR spectroscopy in Attenuated Total Reflectance (ATR)
mode with a diamond crystal. The spectra were captured within a wavenumber range
between 4000 and 600 cm−1, with a resolution of 4 cm−1. 16 spectra were accumulated
to obtain the final binder spectrum. Carbonyl (ICO) and Sulfoxide (ISO) Indexes were
calculated from the FTIR spectra to quantify the aging effects. According to [30], ICO and
ISO were calculated using the following equations:

ICO =
A1690

A1460 + A1375
(3)

ISO =
A1030

A1460 + A1375
(4)

where A1690 is the area of the spectrum around the carbonyl group (1690 cm−1); A1030 is
the area of the spectrum around the sulfoxide group (1030 cm−1); A1460 and A1375 are the
reference areas of the ethylene (1460 cm−1) and methyl (1375 cm−1) peaks.

A self-aligning Pneumatic Adhesion Tensile Testing Instrument (PATTI) equipment
was used to perform binder bond strength (BBS) tests, according to AASHTO TP-91. Two
substrates, reproducing virgin limestone aggregate and RAP, three RAP/virgin binder
rates (20/80, 35/65 and 50/50), two rejuvenators (coded with the letters A and B) and two
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bitumen application temperatures (140 ◦C and 170 ◦C) were investigated. In particular,
the RAP substrate was simulated by spreading about 10 µm of virgin bitumen at 170 ◦C
on hot limestone plates (at the same temperature). According to AASHTO R30, the plates
underwent two conditions in the oven, respectively at 135 ◦C for 4 h and at 85 ◦C for 120 h.
The RAP bitumen was produced in the laboratory from the virgin bitumen by aging it
according to RTFOT (85 min at 163 ◦C) and PAV (20 h at 100 ◦C and 2.1 MPa) protocols.
The RAP and virgin bitumens were mixed with proportions 20/80, 35/65 and 50/50 to
evaluate the effect of different mobilization rates of the RAP bitumen. The rejuvenating
agents (A or B) were added to the binder during the blending of RAP and virgin bitumens.
The temperature of 140 ◦C or 170 ◦C was imposed during RAP/virgin binder stirring.
To glue the pull stub on the plates, these were heated in the oven for 2 h, the limestone
plates at 140 ◦C or 170 ◦C, the RAP plates at 60 ◦C. Little bitumen “balls” were positioned
on the stubs at room temperature; then, they were heated at 140 ◦C or 170 ◦C for 30 min
and finally glued on the plates. The BBS tests were carried out at 25 ◦C, and 5 repetitions
were provided.

The flowchart in Figure 2 summarizes the experimental program and the specimen
preparation methods.
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3. Results
3.1. Volumetric Properties

Figure 3 shows the volumetric properties of the mixtures in terms of air voids content
(AVC) and voids filled with bitumen (VFB). It can be observed that the volume of void in the
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specimens was rather low (ranging between 2 and 4%) for all the HMA mixes due to high
values of VFB (>75%). Despite a certain data scattering, the volumetric properties seemed to
be independent from the HMA production and compaction temperature (140 ◦C or 170 ◦C)
and from the rejuvenator type (A or B). This denoted that the mixtures were adequately
compactable even at 140 ◦C due to a correct estimation of the virgin bitumen content.
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Figure 3. Volumetric properties of the mixtures: (a) Air voids content; (b) Voids filled with bitumen.

3.2. Indirect Tensile Stiffness Modulus

Figure 4 depicts the values of ITSM measured at 20 ◦C. It can be immediately noted
that the HMA stiffness was noticeably influenced by the production temperature. An
increase of the temperature from 140 ◦C to 170 ◦C determined an increase of ITSM by 47%
and 40%, respectively, for the HMA with rejuvenator A and B. In particular, the stiffness of
the mix with rejuvenator A increased from 7600 to 11,100 MPa; for the mix with rejuvenator
B, the ITSM rose from 9800 to 13,700 MPa.
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This result was related to the more severe short-term aging that the virgin bitumen
and the aged RAP bitumen achieved from HMA production to specimen compaction at
the higher temperature of 170 ◦C. Moreover, a higher degree of blending between virgin
and RAP bitumen probably happened when mix production temperature was 170 ◦C.
Among the rejuvenating agents, additive A allowed a greater reduction of the RAP bitumen
stiffness, thus a lower ITSM of the mixture, compared to additive B.
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3.3. Indirect Tensile Strength Test

Figure 5 shows the results from indirect tensile tests in terms of ITS and CTI. In can
be observed that ITS values were higher at the production temperature of 170 ◦C for both
the HMA mixtures with rejuvenator A or B. In particular, ITS increased from 1.24 MPa
to 1.46 MPa (+18%) when using rejuvenator A, from 1.41 MPa to 1.78 MPa (+26%) when
using rejuvenator B. It is highlighted that only the HMA with rejuvenator A produced at
140 ◦C complied with Italian national specifications [31], which provided a maximum ITS
of 1.40 MPa.
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Figure 5. Variation of ITS (a) and CTI (b) as a function of mix production temperature and rejuvena-
tor type.

The CTI, which represents the ability of the HMA to contrast crack propagation,
showed a decreasing trend when increasing the mix production temperature. For both the
mixes with rejuvenator A and B, the higher production temperature corresponded to a
higher brittleness, indicated by a decrease of CTI of about 60%.

As in the case of the ITSM, the results from indirect tensile tests confirmed that the
adoption of high production temperature significantly affected the HMA performance
due to the amplified short-term aging and to the mobilization of a greater amount of RAP
bitumen, which blended with the virgin one into a harder and stiffer binder. Again, the
rejuvenator A showed a higher effectiveness mainly related to the higher dosage.

3.4. FTIR Spectroscopic Analysis

Figures 6 and 7 show the results from FTIR spectroscopy on the bitumens extracted
from the different HMA mixes. Specifically, Figure 6 depicts the FTIR spectra between
the wavenumbers of 2000 and 600 cm−1. It can be observed that all the binders presented
clear bands at 1690 cm−1 and 1030 cm−1, denoting the presence of the carbonyl (C=O) and
sulfoxide (S=O) groups generated by oxidation. Moreover, the bitumen extracted from the
HMA mixes produced at 170 ◦C showed a higher height of these bands, particularly the
one at 1690 cm−1. During the bitumen extraction a total recovery of RAP binder and a full
blending with the virgin one happened independently from the mix production tempera-
ture. Therefore, the taller peaks observed for the HMA produced at 170 ◦C was clearly an
effect of the more severe short-term aging of the virgin and RAP bitumens. The increasing
content of the oxidation products when adopting a high HMA production temperature was
quantified in terms of carbonyl index ICO and sulfoxide index ISO (Figure 7). In particular,
the ICO increased by 82% and 60%, respectively, when rejuvenator A and B were used,
confirming what was visually observed in the FTIR spectra. Differently, the increase of ISO
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when raising the mix production temperature was significant in the case of rejuvenator A
(+32%), while only a 2% increase was determined for the HMA with rejuvenator B.
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Figure 6. Absorbance spectra from FTIR analysis on the extracted binders.
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Figure 7. Oxidation indexes from FTIR analysis: (a) Carbonyl index ICO; (b) Sulfoxide index ISO.

Finally, it was observed that the FTIR analysis allowed tracing the presence of the
rejuvenators by analyzing their characteristic bands. In particular, the band at 1742 cm−1

was evident in the spectra of all the binders (Figure 6), especially in those from the HMA
with rejuvenator B. Similarly, the presence of amines in rejuvenator A determined a higher
height of the peaks at 1589 cm−1 in the bitumen from the HMA mixes where this additive
was used. This result supports what was hypothesized in previous studies [32], i.e., that
FTIR spectroscopy can allow evaluating the presence and even the dosage of rejuvenators
in HMA including hot-recycled RAP.
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3.5. LVE Characterization

The measured rheological data (norm and phase angle of the complex modulus,
storage and loss moduli) were depicted in the Black space and Cole-Cole plot, as shown in
Figure 8. From these graphs, it can be noted that the complex modulus |E*|approximately
varied between 300 MPa and 22,000 MPa, while the phase angle ϕ varied between 5◦

and 32◦. The experimental data in Black and Cole–Cole diagrams aligned along a regular
trend, confirming the validity of the time-temperature superposition principle (TTSP).
This allowed considering the materials as thermo-rheologically simple and applying the
temperature shift factors to build the complex modulus and phase angle master curves. In
particular, the measured data were shifted with respect to time to obtain single isothermal
functions at the reference temperature (20 ◦C).
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Figure 8. Rheological data: (a) Black space; (b) Cole–Cole plot.

The Generalized Logistic Sigmoidal (GLS) model was adopted to represent the exper-
imental data [33,34]. The definition of the norm of the complex modulus and the phase
angle as a function of the reduced frequency fr are shown in the following equations:

log E∗( fr) = δ +
α[

1 + λe[β+γ(log fr)]
]1/λ

(5)

φ( fr) = −90αγ
e[β+γ(log fr)][

1 + λe[β+γ(log fr)]
](1+1/λ)

(6)

where logfr is the logarithm of the reduced frequency, δ is the static asymptote, α is the
difference between the values of the glassy and static asymptote, λ, β and γ are shape
parameters.

Figure 9 shows the master curves of |E*| and ϕ at the reference temperature of 20 ◦C.
The results showed that the mixtures produced at 140 ◦C had a lower stiffness compared to
the HMA produced at 170 ◦C (Figure 9a). In particular, the difference was higher at low
frequencies/high temperatures, while comparable |E*| values (approximately 21,000 MPa)
were obtained for all the mixtures at high frequencies/low temperatures. This denoted
that at low temperatures the binder was equally stiff, and the different short-term aging
due to the different HMA production temperature was not appreciable. Differently, at high
temperatures, the more aged binder of the mixtures produced at 170 ◦C opposed softening
and entailed a stiffer specimen behavior.
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Figure 9. Master curves of the tested specimens: (a) Complex modulus |E*|; (b) Phase angle ϕ.

The HMA production temperature also influenced the phase angle values (Figure 9b).
In general, the mix produced at 170 ◦C showed lower phase angles compared to the
mix produced at 140 ◦C. The difference was maximum in the middle of the reduced
frequency spectrum (from 0.01 to 100 Hz), where it reached about 6◦. This indicated a more
pronounced viscous behavior of the mixes produced at 140 ◦C, which reflected a higher
ability to relax the stresses induced by traffic loading and delay the formation of cracks.

When comparing the |E*| and ϕ master curves of the HMA including different
rejuvenators, a similar behavior was observed for the same mix production temperature.
For all the tested specimens, a good superposition of the experimental data with the GLS
model function was achieved.

3.6. Binder-Aggregate Adhesion

The results from the BBS tests are shown in Figure 10 in terms of pull-off tensile
strength (POTS). It can be observed that the adhesive properties were inversely proportional
to the content of aged bitumen in the binder blend. This result was obtained for each type
of rejuvenator, HMA production temperature and substrate (virgin and RAP). As the POTS
values were slightly scattered, the statistical analysis of the experimental results through
t-test was carried out. In particular, the populations of POTS values were considered
statistically different if the probability α was lower than 0.05 (i.e., 5%).

The comparison of the POTS measured for the bituminous blends including 20% and
35% of RAP bitumen provided a value of α of 1.2 × 10−6. Similarly, α was 6.1 × 10−7 when
comparing the blends with 35% and 50% of RAP bitumen. So, the statistically analysis
confirmed that the binder-aggregate adhesion decreased when increasing the aged bitumen
content.

Among the different substrates, the adhesion was slightly higher on the limestone
plates for the RAP bitumen content of 20%, with α that was a little lower (0.03) than the
limit. On the contrary, for the higher RAP bitumen contents (35% and 50%), the POTS
were greater for the RAP substrate than for the limestone (α = 8.4 × 10−5). Probably, the
adhesion on the virgin aggregate was more significantly influenced by the binder stiffness,
so that the POTS were noticeably higher for the 20/80 RAP/virgin bitumen proportion
but noticeably decreased when raising the RAP bitumen content. Differently, on the RAP
substrate the decrease of the adhesion with the RAP bitumen content was less important.
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Figure 10. Pull-off tensile strength (POTS) values: (a) bituminous blends with rejuvenator A; (b) bitu-
minous blends with rejuvenator B.

When comparing the effect of the two rejuvenators, it can be noted that the POTS
values were similar for the RAP/virgin bitumen proportions of 20/80 (α = 0.33) and 35/65
(α = 0.37). For the RAP bitumen content of 50%, rejuvenator B allowed obtaining a higher
adhesion, as statistically supported by α = 1.2 × 10−6.

From the graphs, it can also be noted that the bitumen application temperature (140 ◦C
or 170 ◦C) did not show a great influence on the adhesive properties. The statistical analysis
confirmed this result, as the α value was higher than the limit (α = 0.50). This denoted that
the more severe aging achieved by the binder at high temperature counterbalanced the
higher adhesiveness.

4. Discussion

The study confirmed that temperature is an important variable that must be precisely
managed during the HMA production, especially when RAP is used. In many asphalt
plants, virgin aggregates are often overheated to ensure an adequate transfer of heat to the
RAP particles and avoid mix workability issues. However, inaccuracies on the aggregate
conditions (temperature and humidity) and worries about the risk of laying a too cold HMA
can lead to an excessively high mix temperature, which is not necessary or even detrimental
for an effective compaction. The volumetric analysis on the laboratory-produced HMA
mixes including 50% of RAP demonstrated that, in the specific context of the present
research, the material was easily compactable at both 140 ◦C and 170 ◦C (Figure 2).

If the different mix temperature did not influence the specimen volumetrics, it notice-
ably affected the mechanical, chemical and rheological behavior. In particular, the higher
HMA temperature entailed two phenomena:

1. the heavier short-term aging of the binder, especially the virgin bitumen [4], and
2. the mobilization of a greater amount of RAP bitumen, which resulted in a higher

aged/virgin bitumen ratio in the effective binder phase (the non-melted RAP bitumen
kept on covering the old aggregate particles and, only in a very small part, diffused in
the new bitumen).

Consequently, the HMA binder became more oxidized (as observed from FTIR analy-
sis) and the mix showed a stiff, brittle and cracking-prone behavior (higher ITSM and ITS,
lower CTI, higher |E*| and lower ϕ).

Regarding the influence of HMA production temperature on the bitumen-aggregate
bond, the bitumen should theoretically increase its binding ability as it reduces the viscosity
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when it is heated to higher temperature. On the other side, aging and oxidation tend to
make the bitumen harder but less adhesive. In the BBS tests carried out in the present
study, these effects reciprocally compensated, so that the temperature at which the binder
was stuck to the aggregate did not influence the POTS (Figure 9). However, the variable
that most affected the adhesion was the RAP/virgin bitumen ratio, which increased when
increasing the HMA production temperature. Therefore, the reduction of the mixing
temperature as it implies the lower mobilization of the RAP binder is positive for the
increase of adhesion between the bitumen and aggregate, both in the case of virgin and
pre-coated RAP particles.

5. Conclusions

The present research dealt with the evaluation of how the reduction of the HMA
production temperature from 170 ◦C to 140 ◦C influences the volumetric, mechanical,
chemical, rheological, and adhesive properties of the mixtures including 50% of RAP and
two different rejuvenators. In light of the experimental results, the following conclusions
can be drawn:

• The HMA production temperature did not influence the air voids content and voids
filled with bitumen of the specimens prepared with gyratory compaction;

• An increase of the temperature from 140 ◦C to 170 ◦C determined an increase of
stiffness (higher ITSM of about 45%) and strength (higher ITS of about 20%) and a
reduction of the ductility (lower CTI of about 60%);

• The FTIR spectroscopy allowed observing a higher amount of the oxidation products
(especially the carbonyl groups) in the chemical structure of the bitumen extracted
from the specimens produced at 170 ◦C;

• The LVE characterization showed that the mix produced at 170 ◦C had higher stiffness,
especially at high temperatures, and lower ability to relax stress, related to the lower
viscous properties;

• The binder-aggregate adhesion was noticeably affected by the ratio between RAP
bitumen and virgin bitumen in the binder blend (the higher this ratio, the lower the
adhesion). So, the adoption of lower HMA production temperatures can increase the
bond between the bitumen and aggregate, both in the case of virgin and the pre-coated
RAP particles, as it determines a lower mobilization of the RAP binder.

The laboratory tests highlighted that the reduction of the HMA production tempera-
ture is evidently positive for the performance of the mixtures including RAP. The promising
findings encourage further research on this topic. In particular, the main limitation of this
study lies in the specimen production process in the laboratory, which can present some
differences from the plant production. Moreover, in the present research only two HMA
production temperatures, 140 ◦C and 170 ◦C, were considered. For this reason, future
investigations will regard other production temperatures and a real scale field application.
This can also include the possibility of using warm mix asphalt solutions to further reduce
the HMA manufacturing temperature. These technologies would certainly allow the de-
crease of the fume and pollutant emissions during HMA production and laying, which is
fundamental in the optics of more and more sustainable roads, but the effect on the mix
behavior and bitumen-aggregate adhesion still need to be explored.

Author Contributions: Conceptualization, E.B. and M.B.; methodology, E.B.; formal analysis, E.P.;
investigation, E.P.; data curation, E.B.; writing—original draft preparation, E.B.; writing—review
and editing, E.P.; supervision, M.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors greatly thank InCoBit S.r.l. for providing the raw materials (aggre-
gate, RAP, virgin bitumen and additives) used in this study.



Infrastructures 2023, 8, 8 14 of 15

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tarsi, G.; Tataranni, P.; Sangiorgi, C. The Challenges of Using Reclaimed Asphalt Pavement for New Asphalt Mixtures: A Review.

Materials 2020, 13, 4052. [CrossRef]
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