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Abstract: One of the most effective ways to increase the longevity of pavement structures is through
the integration of geosynthetic reinforcement. Geosynthetics are synthetic materials such as geotex-
tiles, geogrids, or geocomposites that are added to the interface between the subgrade and the base
layer of a pavement structure. To evaluate the effect of various parameters on the structural benefits
of geosynthetic reinforcement on the pavement structure of low-volume traffic flexible pavements, a
finite element (FE) study was performed using the ABAQUS program. These parameters included
the geosynthetic type, geosynthetic tensile stiffness, subgrade stiffness, and base thickness. The
FE rutting curves for the 100 cycles were calibrated using the mechanistic–empirical (M-E) transfer
functions, which were then used to calculate the long-term rutting curves. The traffic benefit ratio
(TBR) was initially calculated based on the calibrated rutting curves for each pavement layer. The
calculated TBRs were then used as an input in AASHTOWare to compute the base effective resilient
modulus (MR-eff) and the factor of base course reduction (BCR). The results showed that adding one
layer of geosynthetics enhanced the rutting performance of pavement structures significantly (up to
8.9 in TBR, 322% in MR-eff, and 64% in BCR). Geogrids showed higher benefits than geotextiles due to
the interlocking between base aggregates and geogrid aperture. The values of TBR, MR-eff, and BCR
increase with the increasing tensile stiffness of the geosynthetics and the rutting target and with the
decreasing subgrade stiffness. The results also demonstrated peak values of TBR, MR-eff, and BCR for
a base thickness of 25.4 cm.

Keywords: FEM; MEPDG; geosynthetic; TBR; MR-eff; BCR

1. Introduction

Pavement failure refers to the loss of integrity or functional performance of a road
surface. There are several different mechanisms that can contribute to pavement failure,
including excessive loading from vehicles, weathering and exposure to environmental
elements such as moisture and temperature changes, material fatigue due to repeated
loading, and aging of the pavement structure. One of the most known pavement failure
mechanisms (or distresses) is the rutting at the surface of the pavement structure, which
can be a result of densification in pavement layers or deformation of weak natural subgrade
soil or both [1]. In the state of Louisiana, the main problematic issue that is associated with
different pavement distresses is the presence of weak natural soil. A common practice for
treating weak subgrade soil in Louisiana is by stabilizing the surface layer with cement
and/or lime, depending on the soil type. The increased stiffness of stabilized soil would
act as a platform that causes the bottom unstabilized soil to receive a lower magnitude of
the applied traffic and pavement loads, thus lowering the highest vertical pressures on
top of the natural soil/subgrade. The stated method is not practical on very weak natural
soils and can have environmental drawbacks. In addition, the required time for the con-
struction sequence of stabilization can be a problem in many projects. Using geosynthetic
reinforcement can provide an effective alternative solution for soil treatment/stabilization
that can alleviate the aforementioned problems in the pavement structure. In addition,
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geosynthetics can offer many economic benefits for pavement projects by increasing the
speed of construction and extending the pavement’s life expectancy in the long run.

Many different applications have made use of geosynthetic materials such as filtration,
separation, and reinforcement in pavement construction. Many types of research have
been carried out to calculate the advantages of utilizing various kinds of geosynthetic
products in pavement construction [1–9]. Geogrids and geotextiles are the most utilized
types of geosynthetic products in pavement construction, which have been evaluated in
many previous research studies. The results of other research studies have shown that
using geosynthetics to reinforce pavements has been proven to be an effective approach
for decreasing the rutting depth of pavements [10–12]. As a result, the lifespan of a pave-
ment can be increased significantly [13–15]. Additionally, for the same service life of the
unreinforced section, the designed thickness of the base course layer can be minimized by
utilizing the geosynthetic reinforcement in pavements [2,15,16]. Geosynthetic reinforce-
ment allows pavement structures to be constructed on weak soils [17,18]. The geosynthetics’
reinforcement performance in pavement structures is substantially influenced by the differ-
ent sections and material characteristics such as asphalt and the base course thicknesses,
the stiffness of natural/subgrade soil, geosynthetics type, stiffness, and location [19–23].

Despite the growing practical applications of geosynthetics in pavement construction,
the application of design theories, design methodologies, and design guidelines for using
geosynthetics in pavement structure construction is evolving at a pretty slow rate. There
are several studies in the literature aimed at incorporating geosynthetics reinforcement
in pavement section design by introducing new design methodologies and guidelines for
different pavement requirements and conditions [3,5,13].

The framework of the AASHTO 1993 is largely utilized in the current ways of adding
geosynthetic reinforcement in the design of flexible pavement structures. In this framework,
the base course layer structural number is increased by a certain factor when the pavement
section is reinforced with geosynthetic reinforcement. As a consequence, the design method
causes a decrease in the base course layer thickness, when a geosynthetic material is used as
a reinforcement [6,16]. The new Mechanistic–Empirical Pavement Design Guide (MEPDG)
released in 2008 is not only founded on the empirical methods for pavement section design,
the mechanistic part of the MEPDG includes the elastic responses of the pavement layers
in the process of design, while the empirical part uses the elastic responses to derive the
long-term distresses of the pavement section using empirical transfer functions [24,25].
The effect of geosynthetic reinforcement should be reflected in either the mechanistic or
the empirical part of the MEPDG design. However, since there is a lack of knowledge
on the geosynthetic reinforcement mechanisms within the MEPDG design process and
there is an absence of enough studies to calculate the geosynthetic benefits for pavement
structures, there is no nationally or universally accepted specification or approach for
reinforced flexible pavement design. As a result, research into and studies on reinforced
flexible pavements in the context of MEPDG are still ongoing.

2. Objectives

The current study aims to incorporate the structural benefits of geosynthetic rein-
forcement on flexible pavement structure rutting performance for low-volume traffic roads
based on the MEPDG design concept. This study quantifies the use of thorough finite
element analysis to examine the impact of numerous variables that contribute to the ad-
vantages of geosynthetic reinforcement in flexible pavement constructions and through
a parametrical study to determine the long-term traffic benefit ratio (TBR) benefits of
geosynthetic reinforcement. Using AASHTOWare 2.6.0 software, the outcomes of the FE
models were combined with the mechanistic–empirical (ME) method for calculating the
structural contribution of geosynthetics to reinforced pavement sections such as the base
course effective resilient modulus (MR-eff) and the base course reduction (BCR) factor.
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3. Finite Element (FE) Modeling

The commercial finite element program ABAQUS was used in this study to explore
the behavior of geosynthetic-reinforced pavement sections under repeated traffic loadings.
For this purpose, several FE models were built and evaluated employing two-dimensional
axisymmetric conditions to explore the effectiveness of various parameters in the rutting
performance of geosynthetic-reinforced pavements. For all of the pavement sublayers, eight-
node quadrilateral elements with biquadratic axisymmetric (CAX8R) were adopted for the
element properties in the model. For the geosynthetic reinforcement in the models which is
placed at the top of the subgrade layer (red dashed line in Figure 1), the adopted elements
are three-node membranes. For all of the modeling, an extremely fine-meshed model with
a total of 9176 elements was chosen (6572 elements for the subgrade, 1860 elements for the
base, and 744 elements for HMA). The schematic view and dimensions of the finite element
models used in this investigation are shown in Figure 1.
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In order to capture the realistic responses of the pavement sections under traffic load-
ings in finite element models, the following models were adopted to model the sublayers’
behavior in the pavement sections.

3.1. Hot Mixture Asphalt (HMA)

In this study, time-dependent (viscoelastic) behavior was selected to simulate the
behavior of HMA materials under repeated wheel loadings. In the first step, the shear
and bulk modulus of the HMA material are required to be characterized to simulate the
viscoelastic behavior of HMA. The Prony series can be used in the finite element numerical
simulation to model the HMA viscoelastic behavior, which can be defined as the following
equations (Equations (1) and (2)):

G(t) = G0

(
1−

n

∑
i=1

Gi

(
1− e−t/τ

))
(1)

K(t) = K0

(
1−

n

∑
i=1

Ki

(
1− e−t/τ

))
(2)
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where G(t) is the relaxation shear modulus, K(t) is the relaxation bulk modulus, G0 is the
instantaneous shear modulus, K0 is the instantaneous bulk modulus, and Gi, Ki, and τ are
the input coefficients.

The Prony series should be fitted to the HMA dynamic modulus master curve for at
least five stages to derive the Prony series parameters (τ, G, and k) for use in the FE models.
In this study, the properties of the HMA Prony series adopted from a previous study [21]
was used here for the numerical simulation as presented in Table 1.

Table 1. HMA Prony series parameters.

Elastic
Properties

Poisson’s Ratio 0.35

Instantaneous Modulus (MPa) 3447

Viscoelastic
Properties

gi , ki 0.452 0.278 0.148 0.108 0.00746 0.00436

τi 0.000113 0.00314 0.013 0.184 2.29 25.7

3.2. Unbound Granular Base Course

The behavior of the granular base course material was modeled using the modified
drucker–prager with cap (MDPC) constitutive model in the FE study. The MDPC plasticity
model has been used for numerical simulation by geotechnical researchers in various
geotechnical problems, and it is capable of considering the hardening mechanism to account
for plastic compaction. The yield surface of the MDPC constitutive model has three parts
(Figure 2); the shear failure line, the elliptical cap, and the region of transition, which
seamlessly joins the cap and shear failure surface.
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The shear failure line of MDPC is defined in the p–t plane as:

Fs = t − p ∗ tanβ − d = 0 (3)

where d and β are the cohesion and friction angle of the soil, respectively. The calibrated
MDPC constitutive model parameters were derived from the consolidated undrained (CU)
triaxial tests performed in a previous study [23] as shown in Table 2.
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Table 2. The MDPC parameters of the base course layer.

Constants Definitions Variable Value

Elasticity
Elastic modulus (MPa) E 248

Poisson’s ratio ν 0.35

Cap Plasticity

Material cohesion (kPa) d 48.3

Angle of friction β 66

Cap eccentricity 0.015

Initial yield surface position 0.005

Transition surface radius 0.07

Flow stress ratio 1

3.3. Subgrade Soil

The modified Cam–Clay (MCC) model was selected in the current study to model
the behavior of natural/subgrade soil, which is considered to be soft, medium stiff, and
in stiff clay conditions. The critical state concept theory serves as the foundation for the
elastoplastic MCC model. The yield surface of the MCC model in the p′–q plane is an
ellipse. The magnitude of pre-consolidation pressure controls the initial size of the ellipse.
The yield surface of MCC can be defined as follows:

f = q2 −M2
c p (Pc − p) = 0 (4)

where q is the deviatoric stress, Pc is the pre-consolidation pressure, and p is the mean stress.
The calibrated parameters for the MCC model which represent the soft, medium, and stiff
clays, were determined for the existing clay soil properties in Louisiana that were derived
in a previous study through experimental tests [23]. The subgrade’s calibrated parameters
of clay soil with various stiffness conditions for the MCC model are presented in Table 3.

Table 3. The MCC model’s subgrade layer characteristics.

Stiffness G (MPa) ν M λ ҡ e0

Weak 7.4 0.4 0.56 0.173 0.035 1.5

Medium stiff 19.1 0.4 0.86 0.087 0.017 1.3

Stiff 31.8 0.4 1.2 0.043 0.009 0.7

For considering the loading history on clay soils in the numerical models, a decreasing
over consolidation ratio (OCR) was considered for the subgrade soil, which starts from 3 at
the surface and reaches 1 at a depth of 4.57 m.

3.4. Geosynthetics

To evaluate the effects of geosynthetic type and stiffness on the benefits of reinforcing
pavement structures, both geogrid and geotextile types with three different tensile stiff-
nesses were used to reinforce the pavement at the interface between the base course and
the subgrade layer. The difference between the geogrid and geotextile in the FE numerical
models was distinguished through the simulation of the geogrid/geotextile–geomaterial
interface, as will be discussed in the following section. The equivalent isotropic elastic
stiffnesses, Eequivalent, of the geosynthetics were derived from the geosynthetics’ orthotropic
linear elastic properties according to the machine and cross-machine directions. The values
of Eequivalent for three different geosynthetic stiffness ranges (low, medium, and high) taken
from Perkins et al. [26] are shown in Table 4.
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Table 4. Geosynthetics equivalent elastic modulus for different stiffnesses.

Geogrid and Geotextile Stiffness v Eequivalent (MPa)

Low 0.25 430.2

Medium 0.25 928

High 0.25 1259.7

3.5. Interface Models between the Geotextile/Geogrid and Soil

The friction model of Coulomb which is available in the ABAQUS software was used
to simulate the interaction behavior between the geosynthetics and geomaterials. There
should be no separation between the two neighboring elements. The normal interaction
in Coulomb’s model is reproduced with hard contact, whereas to represent the shearing
behavior, a friction coefficient (µ) and elastic slip value (Eslip) were selected to simulate
the tangential interaction which is simulated along with the geosynthetic-base/subgrade
interface. The friction coefficient and elastic slip value for the base course and the geotextile
interface were selected as 0.85 and 1 mm, respectively, while these values for the geotextile
and subgrade interface were 0.75 and 1 mm, respectively. Meanwhile, the friction coefficient
and elastic slip values of 1.475 and 1 mm were selected for the geogrid and base course
interface, respectively, while these values for the geotextile and subgrade interface were 0.75
and 1 mm, respectively. The friction coefficients between different surfaces were selected
based on the pullout tests performed in previous research [26].

The interlocked aggregates in the geogrid aperture were modeled using a newly
proposed modeling technique. In this technique, the geogrid layer in this model was split
into two sublayers and bonded the aggregates in between, as illustrated in Figure 3. The
tensile stiffnesses of the two geogrid sublayers were taken to be half (E/2) of the geogrid
stiffness. The interlocking aggregate layer was estimated to have a 10 mm thickness. This
was equivalent to the crushed limestones’ maximum aggregate size (Dmax/2) divided
by half.
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3.6. Confinement Effect

In order to account for the impact of confinement on base course aggregates, Gu et al. [27]
looked at several experimental findings on geosynthetic-reinforced specimens. They next
put out a stress distribution plan that adequately accounts for the aggregates’ increased
confinement stress. This method suggests that geosynthetics under vertical loading produce
an influence zone that acts as additional confinement for the aggregates, adding up to
the lateral pressure brought on by compaction. For various geosynthetic types, the lateral
confining stresses were estimated. This area of impact is assumed as a 7.62 cm zone located
on top of the geosynthetic layer, featuring a maximum confining stress of ∆σ3max at the
level of the geosynthetic material and ∆σ3max equal to zero at the edge. Using UMAT
subroutines, at the first stage of analysis, the lateral confining pressures are taken into
account in the FE models. Table 5 displays the calculated values of ∆σ3max.
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Table 5. Maximum lateral confining stress for geosynthetics with varying levels of stiffness.

Geogrid Stiffness ∆σ3max (kPa) Geotextile Stiffness ∆σ3max (psi)

Low 29 Low 25

Medium 31 Medium 29

High 34 High 32.4

3.7. Cyclic Wheel Loading

When a vehicle’s speed and its kind change, the wheel loading’s form, size, and dura-
tion change [28]. In this study, the MEPDG design guideline’s specification NCHRP2004
was adopted for the peak pressure (80 psi) and the contact area (a circular area with a
radius of 6 in) of the wheel loading in the FE numerical models [29]. A haversine-shape
loading with a uniform distributed pressure was considered to simulate the wheel loading
on the pavement surface, where the following equation was used to compute the load F at
the moment t:

F =
P
(
1− cos

( 2πt
T
))

2
(5)

where 550 kPa is used as the peak pressure (P = 550 kPa), the time for one loading cycle is
0.1 s (T = 0.1 s), and the resting time to the next load is 0.9 s, simulating a 1 Hz frequency
moving load (Figure 4).
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3.8. Finite Element Parametric Study

A total of 84 FE models were developed and evaluated during this study. The thickness
of HMA was assumed to be 8.9 cm (3.5 in.) for all of the models, which equals the
thickness of low-volume traffic roads in Louisiana. In order to evaluate the contribution
of each variable/parameter to the pavement’s responses under repeated loading, a FE
parametric study was performed on different subgrade strengths/stiffnesses, different base
thicknesses, two geosynthetics types, and different geosynthetics tensile moduli. As shown
in Table 6, three different stiffnesses were selected for the subgrade stiffnesses, four different
thicknesses were selected for the base course aggregate, and three different stiffnesses were
selected for geosynthetics with two different types of geotextiles and geogrids. The location
of the geosynthetic layer was assumed in this study to be at the base-subgrade interface.
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Table 6. Parametric study.

Subgrade
Stiffness

Base
Thickness

(cm)

HMA
Thickness

(cm)

Geosynthetic
Location

Geosynthetic
Stiffness

Geosynthetic
Type

Weak
Medium stiff

Stiff

20.3

8.9

Base/sub-
Interface

Low
Medium

High

Geogrid
Geotextile

25.4 Base/sub-
Interface

30.5 Base/sub-
Interface

35.6 Base/sub-
Interface

4. Methodology

As described in Figure 5, six steps were taken in the current study to calculate the
structural benefits of using geosynthetic reinforcement in pavement construction. In these
steps, the FE results were first calibrated and then combined with the transfer functions
in the MEPDG. The benefits were evaluated using AASHTOWare software. In order to
calculate the structural benefits of geosynthetics in terms of TBR, MR-eff, and BCR, the
following steps were used:
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In step 1, an FE parametric study was performed using the developed 2D axisymmetric
quasi-static FE models. The FE models were used to simulate the geosynthetic-reinforced
pavement under repeated loading for 100 cycles for low-volume roads. The developed FE
models consider both the confining pressures due to the effect of geosynthetic reinforcement
on the base aggregates [30]. The rutting curve during the loading cycles and the vertical
resilient strain of the sublayers were obtained for each model.

In step 2, the MEPDG transfer functions (rutting equations) were then calibrated
fitting the results for each sublayer rutting curve in 100 cycles using the resilient vertical
strains derived in step 1. The rutting equations were fitted into rutting curves based on the
criterion of the least square of error method. The MEPDG transfer functions are explained
in Section 4.1.

In step 3, the calibrated rutting curves of each sublayer were extended to reach the
pavement total rutting targets of 12.7, 19.05, and 25.4 mm in order to establish the rutting
curves versus the loading cycles. The corresponding loading cycles for each rutting target
are derived in this step.

In step 4, the traffic benefit ratio (TBR) was used to determine the long-term advantages
of employing geosynthetics in pavement structures. The derivation of TBR is explained
in Section 5.

In step 5, the structural benefits of reinforced sections were calculated in terms of
increased effective resilient modulus of base (MR-eff) using AASHTOWare software.

In step 6, the base course reduction (BCR) values were derived. The MR-eff and BCR
deriving methods are explained in Section 5.

4.1. MEPDG Transfer Functions

The total rutting for pavement structures in the MEPDG is the sum of individual
sublayers ruttings. The vertical resilient strain (elastic deformation) and the rutting for
each sublayer are correlated by the transfer functions (rutting equations) in MEPDG. The
transfer function for the HMA layer is given as:

∆HMA = εp(HMA)hHMA = β1rkzεr(HMA)10k1r Nk2r β2r Tk3r β3r hHMA (6)

where ∆HMA is the permanent rutting, hHMA is the thickness of the HMA layer, εp(HMA) is
the permanent plastic strain, kz = the factor of depth confinement, εr(HMA) = the mid-depth
vertical resilient strain from the model, T = the temperature of the pavement, N = the
number of loading cycles, k1r, k2r, and k3r = the global field calibration coefficient, and β1r,
β2r, and β3r = the local calibration coefficients.

The transfer function of the base course layer and subgrade is given in the follow-
ing equation:

∆soil = βs1ks1εvhsoil

(
ε0

εr

)
e−(

ρ
N )

β

(7)

where ∆soil is permanent deformation, βs1 is a calibrating factor, εv is the mid-depth and
top vertical resilient strain for the base course and subgrade, ε0, εr β, and ρ are material
parameters, N is the number of loading cycles, and hsoil is the layer thickness of the base
course or subgrade.

5. Calculating TBR

The use of geosynthetic reinforcement usually results in increasing the service life of
pavement structures by reducing the permanent deformation due to vehicular loadings.
The increased service life of pavement structures can be expressed in terms of the traffic
benefit ratio (TBR), which is defined as the ratio between the required cycles of the rein-
forced section (NR) to the unreinforced section (NU) for a specific level of performance or
reaching a rutting target. The rutting target is typically chosen to be 12.7, 19.05, or 25.4 mm
rutting depths.
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TBR =
NR
NU

(8)

To derive the TBR value from Equation (8), the number of cycles to reach the rutting
target is derived for the pavement section without reinforcement (NU) and the pavement
section with reinforcement (NR) from the calibrated/extended curves of numerical modeling.

Calculation of Structural Benefits

The derived TBRs from the previous section were incorporated into the Mechanistic-
Empirical approach using the AASHTOWare 2.6.0 in order to quantify the structural benefits
of geosynthetics as reinforcement in the pavement structure, in terms of effective base layer
resilient modulus (MR-eff) and bace course reduction (BCR). The following stages were
adopted to quantify the structural benefits for each TBR value in the reinforced pavement
section (as described in Figure 6):

Infrastructures 2022, 7, x FOR PEER REVIEW 10 of 23 
 

section with reinforcement (𝑁ோ) from the calibrated/extended curves of numerical model-
ing.  

Calculation of Structural Benefits 
The derived TBRs from the previous section were incorporated into the Mechanistic-

Empirical approach using the AASHTOWare 2.6.0 in order to quantify the structural ben-
efits of geosynthetics as reinforcement in the pavement structure, in terms of effective base 
layer resilient modulus (MR-eff) and bace course reduction (BCR). The following stages 
were adopted to quantify the structural benefits for each TBR value in the reinforced pave-
ment section (as described in Figure 6): 

 
Figure 6. Different stages of structural benefits calculations. 

In stage 1, the value of NU that corresponds to the rutting target for the unreinforced 
pavement section is derived. In this stage, the corresponding pavement section for a se-
lected TBR is modeled in AASHTOWare using the Louisiana calibrated design coefficients 
for each sublayer. The number of average annual daily trucks (AADT) is then adjusted in 
the model so that the rutting curve reaches the target rutting ending in point 1. The rutting 
targets are equal to the rutting of selected TBRs, which can be 12.7, 19.05, or 25.4 mm.  

In stage 2, the corresponding rutting value of the unreinforced section to NR value is 
derived. In this stage, the rutting curve at stage 1 is extended by increasing the number of 
load cycles from NU to NR, reaching to point 2. In order to extend the curve, the derived 
AADT in stage 1 (AADTU) is multiplied by the derived TBR from the model to derive the 
value of AADTR (AADTR = AADTU * TBR). The final rutting at point 2 is higher than the 
rutting target of the reinforced section. 

In stage 3, the effective base layer resilient modulus (MR-eff) is derived for the selected 
TBR. In this stage, the base layer resilient modulus (MR) of the model is increased to push 
the rutting curve down to match the rutting target level of the reinforced section at the 
number of cycles equal to NR. The new rutting curve in this stage is ended at point 3.  

In stage 4, the base course reduction (BCR) value is derived. In this stage, the number 
of loadings in the model is changed to the AADTU, and the base thickness with the MR-eff 
is adjusted (decreased) so that the rutting curve would be ended in point 1 (i.e., match the 
rut curve of the unreinforced section). The new curve endpoint is the same as the endpoint 
in stage1. The BCR value is the percent difference between the initial and adjusted base 
thickness (Equation (9)). 

* TBR
Figure 6. Different stages of structural benefits calculations.

In stage 1, the value of NU that corresponds to the rutting target for the unreinforced
pavement section is derived. In this stage, the corresponding pavement section for a selected
TBR is modeled in AASHTOWare using the Louisiana calibrated design coefficients for
each sublayer. The number of average annual daily trucks (AADT) is then adjusted in the
model so that the rutting curve reaches the target rutting ending in point 1. The rutting
targets are equal to the rutting of selected TBRs, which can be 12.7, 19.05, or 25.4 mm.

In stage 2, the corresponding rutting value of the unreinforced section to NR value is
derived. In this stage, the rutting curve at stage 1 is extended by increasing the number of
load cycles from NU to NR, reaching to point 2. In order to extend the curve, the derived
AADT in stage 1 (AADTU) is multiplied by the derived TBR from the model to derive the
value of AADTR (AADTR = AADTU ∗ TBR). The final rutting at point 2 is higher than the
rutting target of the reinforced section.

In stage 3, the effective base layer resilient modulus (MR-eff) is derived for the selected
TBR. In this stage, the base layer resilient modulus (MR) of the model is increased to push
the rutting curve down to match the rutting target level of the reinforced section at the
number of cycles equal to NR. The new rutting curve in this stage is ended at point 3.
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In stage 4, the base course reduction (BCR) value is derived. In this stage, the number
of loadings in the model is changed to the AADTU, and the base thickness with the MR-eff
is adjusted (decreased) so that the rutting curve would be ended in point 1 (i.e., match the
rut curve of the unreinforced section). The new curve endpoint is the same as the endpoint
in stage1. The BCR value is the percent difference between the initial and adjusted base
thickness (Equation (9)).

BCR =
Reduction in base thickness

Initial base thickness
∗ 100 (9)

6. Results and Discussion
6.1. Permanent Deformations and Verification

As discussed in Section 3.1, the MEPDG provides transfer functions for each sublayer
of the pavement structure. The rutting curves (permanent deformation) of each sublayer
from different FE models for the first 100 load cycles are used to calibrate the MEPDG
transfer functions (rutting equations). Each sublayer’s calibrated transfer function was then
used to derive the long-term rutting curve. The summation of derived long-term ruttings
of all of the sublayers will produce the long-term total surface rutting of the pavement
structure. In accordance with the calibrated rutting equations, Figure 7 illustrates instances
of the M-E calibrated rutting curves from the first 100 loading cycles of the FE models
and the long-term extrapolated M-E predictions for the unreinforced, geogrid-reinforced,
and geotextile-reinforced sections for the base thicknesses of 30.5 cm and geosynthetics of
medium stiffness.
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Figure 7. The example of (a) calibrated ruttings for 100 cycles and (b) extrapolated ruttings.

The full-scale findings in a prior investigation at the Pavement Research Facility (PRF)
site on geosynthetic-reinforced test lane sections using cyclic plate load testing (CPLT) were
used to verify the M-E extrapolated long-term rutting curves [13]. At the PRF site, on weak
subgrade soil (CBR = 1.5), six test lane sections with a length of 24.4 m and width of 4 m
were constructed. The extrapolated calibrated FE results were verified by the lane’s sections
number 3,4 and 6 from the PRF. The long-term rutting curves from the FE extrapolation
were compared with the measured rutting curves from the CPLTs, as shown in Figure 8.
The results demonstrated good agreement between the FE extrapolated rutting curves and
the CPLT rutting curves.
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6.2. Traffic Benefit Ratios (TBRs)

One approach to quantify the benefits of using geosynthetic reinforcement in pave-
ment structures is by evaluating the TBR. The TBR value represents the increased ratio
of the pavement’s service life due to the inclusion of geosynthetics for a selected level of
performance or a rutting target. For three different levels of performance (corresponding
to rutting depths of 12.7, 19.05, or 25.4 mm), the TBR values were derived from the FE
extended rutting curves for the different reinforced sections using the procedure explained
in Section 4. Figures 9–11 present the variations of derived TBR values versus the base
course thickness for different rutting depths, geosynthetics types, geosynthetics tensile
stiffnesses, and subgrade strengths/stiffnesses. The figures clearly demonstrated that the
TBR values increase with the increasing rutting target. The differences in TBRs for different
rutting targets are usually higher for geogrid-reinforced cases as compared to geotextile-
reinforced cases, with a maximum difference of up to 96% at a 25.4 cm base thickness on a
weak subgrade soil. The difference between the TBR for the geogrid-reinforced sections at
25.4 cm base thickness for the medium stiff and stiff subgrades is 73% and 37%, respectively.
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The thickness of the base course layer also shows a significant effect on the TBR values.
The TBR values for all of the cases reach a maximum (optimal) value at a 25.4 cm base
thickness. Reaching a peak value for TBR due to changing the base thickness was also
reported by other researchers [31,32]. Apparently, the benefits of using geosynthetics to
reinforce pavements show an optimal TBR value for a base course thickness of 25.4 cm.

For all cases, the type of geosynthetic material (geogrids versus geotextiles) has an
important effect on the TBR benefits, and the differences between TBR values are the highest
for the weak subgrade as compared to the other subgrade stiffnesses. The comparison
between the calculated TBR values for various reinforced pavement sections shows that
geogrids have higher TBR values than geotextiles (up to 40%). The higher TBR values for
geogrids can be linked to the behavior of interlocking (that was modeled in this study)
between the geogrid apertures and the base aggregate, which resulted in consistent rutting
behavior with the accelerated field test sections [13].

The effect of the geosynthetics’ tensile stiffness was also evaluated for all of the
geosynthetic-reinforced cases. For the geogrid-reinforced cases, the TBR values for the low
stiffness cases range from 1.35 to 5.3, and for the high stiffness cases, they range from 1.74
to 8.9. The changes in geogrid stiffness from low to high for the geogrid-reinforced cases
result in an increase in TBR value of up to 68%. However, for the geotextile-reinforced cases,
the TBR values for the low-stiffness cases range from 1.25 to 3.75, and for the high-stiffness
cases, they range from 1.58 to 5.92. The changes in geotextile stiffness from low to high for
the geotextile-reinforced cases result in up to a 54 % increase in TBR value.
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Figure 9. TBR variations with base thickness for pavements reinforced with a single layer of (a) high,
(b) medium, and (c) low stiffness geosynthetics on the weak subgrade.
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Figure 10. TBR variations with base thickness for pavements reinforced with a single layer of (a) high,
(b) medium, and (c) low stiffness geosynthetics on the medium stiff subgrade.
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6.3. Effective Base Resilient Modulus (MR-eff)

One approach to incorporate the benefits of geosynthetic reinforcement into the ME
design of flexible pavements is to assume that all the geosynthetic benefits (for design
purposes) go into reinforcing the base course layer only. In this method, the resilient
modulus of the whole base layer thickness will be increased from MR to MR-eff, as explained
in Section 4.1 (stage 3), such that the rutting curve of the unreinforced section (with MR-eff)
is pushed down to match the rutting target of the geosynthetic-reinforced section. In this
approach, the properties of other sublayers will be the same as in the corresponding section.

As explained in Section 3.3, the calculated TBR values from FE analysis are used as
an input in AASHTOWare to derive the corresponding MR-eff values for the base layer.
As a result, the variation in MR-eff values follows the same pattern as the TBR values that
shows a peak at 25.4 cm base thickness. The derived MR-eff values are also higher for
higher rutting targets. The results of the AASHTOWare analysis show that the effective
base modulus (MR-eff) can be increased up to 322% for the geosynthetic-reinforced sections.
In addition, the results show that the value of MR-eff increases with increasing the subgrade
strength/stiffness, it increases with increasing the geosynthetic tensile modulus, and it
increases with decreasing the based thickness. For all of the cases, MR-eff is higher for
geogrid reinforcement than geotextile reinforcement. Table 7 summarizes the results of the
MR-eff values for all of the cases.

Table 7. Derived MR-eff increased values for reinforced cases over a weak subgrade soil.

Type Gesy.
Stiffness

Base
Thickness

(cm)

MR-eff Increase (%)

Weak Subgrade Medium Stiff Subgrade Stiff Subgrade

12.7
mm

19.05
mm

25.4
mm

12.7
mm

19.05
mm

25.4
mm

12.7
mm

19.05
mm

25.4
mm

Geotextile

High tensile
stiffness

20.3 77 122 150 56 81 94 25 33 42

25.4 136 222 283 103 131 153 33 58 81

30.5 100 133 175 42 83 92 19 25 44

35.6 44 67 83 14 56 67 11 17 33

Medium tensile
stiffness

20.3 67 83 94 50 62 89 17 31 39

25.4 136 169 186 94 129 142 25 50 69

30.5 61 89 117 36 58 75 11 33 44

35.6 31 50 61 11 33 53 8 14 19

Low tensile
stiffness

20.3 44 50 67 22 28 50 3 14 17

25.4 89 106 133 56 64 89 14 19 25

30.5 44 61 89 17 25 50 8 14 25

35.6 17 33 50 8 17 31 6 14 19

Geogrid

High tensile
stiffness

20.3 94 136 155 81 144 164 25 44 69

25.4 156 239 322 161 222 277 36 67 100

30.5 111 156 186 108 152 180 14 47 67

35.6 67 77 100 58 78 97 8 17 22

Medium tensile
stiffness

20.3 77 122 150 81 133 156 22 42 47

25.4 136 222 283 136 211 261 31 61 83

30.5 100 133 175 89 136 172 11 39 61

35.6 44 67 83 31 67 86 8 14 19

Low tensile
stiffness

20.3 17 89 105 50 64 89 3 22 36

25.4 105 156 178 83 111 142 19 47 58

30.5 72 111 133 44 67 94 8 28 27

35.6 22 42 61 11 28 31 6 14 22
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6.3.1. Effect of Subgrade Stiffness on MR-eff

The derived MR-eff values show that the subgrade strength/stiffness greatly impacts
the results, as reflected by the TBR values. For the geotextile-reinforced sections and
the 19.05 mm rutting target, the maximum increase in MR-eff (corresponding to the base
thickness of 25.4 cm) for the high tensile stiffness geotextile ranges from 222% to 81% as
the subgrade stiffness changes from weak to stiff (Figure 12). However, the values of
maximum MR-eff change from 169% to 69% for the medium tensile stiffness geotextile and
from 106% to 25% for low tensile stiffness cases (see Table 6). For the geogrid-reinforced
sections, the results show a similar pattern. For high tensile geogrid and 19.05 mm rutting
target, the maximum increase in MR-eff is 239% for the weak subgrade and 67% for the
stiff subgrade. However, for the medium and low tensile stiffness and 19.05 mm rutting
target, the maximum increase in MR-eff values changes from 222% to 156% and from 61% to
47%, respectively.
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6.3.2. Effect of Geosynthetic Type on MR-eff

The comparison between the geogrid- and geotextile-reinforced cases shows that the
sections reinforced with geogrids always have higher MR-eff values than those reinforced
with geotextiles. The maximum MR-eff value at the 19.05 mm rutting target for pavements on
weak subgrade soil using high tensile stiffness geosynthetics increases from 222% to 239%
by changing the geosynthetic type from a geotextile to a geogrid (Figure 13). Meanwhile,
for the same pavement section with medium and low tensile stiffness geosynthetics, the
maximum value of MR-eff increases from 169% to 222% and from 106% to 156% by changing
the geosynthetic type from a geotextile to a geogrid, respectively.

For the pavement sections on the medium stiff subgrade soil and the 19.05 mm
rutting target (see Table 6), the maximum value of MR-eff also increases by changing the
geosynthetic type from a geotextile to a geogrid. These changes range from 131% to 222%
for high tensile stiffness geosynthetics, from 129% to 211% for medium tensile stiffness
geosynthetics, and from 64% to 111% for low stiffness geosynthetics.

The change in the MR-eff value due to the change in the geosynthetic type for pave-
ments on stiff subgrade soil also follows a similar trend. The maximum increase in MR-eff
values by changing the geosynthetic type from a geotextile to a geogrid ranges from 58% to
67% for high tensile stiffness geosynthetics, from 50% to 61% for medium tensile stiffness
geosynthetics, and from 19% to 47% for low stiffness geosynthetics.
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on weak subgrade soils for different geosynthetic types.

6.3.3. Effect of Geosynthetics Stiffness on MR-eff

The effect of the geosynthetic tensile modulus on MR-eff is evaluated in this section.
For the geotextile-reinforced cases, the change in the geotextile tensile modulus from low
to high at 19.05 mm rutting for pavements on weak subgrade soil increases the maximum
MR-eff value from 106% to 222%. For the same pavement sections on the medium stiff
and stiff subgrades, the maximum value of MR-eff increases from 64% to 131% and from
19% to 58% by changing the geotextile tensile modulus from low to high, respectively (see
Figure 14). However, for the geogrid-reinforced cases, the change in the geogrid tensile
modulus from low to high at 19.05 mm rutting for pavements on weak subgrade soil results
in increasing the maximum MR-eff value from 156% to 239% (see Table 6). For the same
pavement sections on medium stiff and stiff subgrade soils, the value of MR-eff increases
from 111% to 222% and from 47% to 67% by changing the geogrid tensile modulus from
low to high, respectively.
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6.4. Base Course Reduction (BCR)

Another approach to quantify the structural benefits of geosynthetic reinforcement
in flexible pavements is by evaluating the reduction in the base course layer thickness
as compared to the corresponding thickness of the unreinforced section. In this method,
the number of loadings (in terms of EASLs) of the reinforced section (service life) with a
resilient modulus equal to MR-eff is assumed to be equal to the corresponding unreinforced
section, as explained in Section 4.1 (stage 4). The structural benefits of geosynthetics are
presented in terms of base course reduction (BCR), which is defined here as the percent
reduction (or saving) in base thickness for the reinforced section of the same service life as
the unreinforced section (Table 8).

Table 8. Derived BCR values for reinforced cases over weak subgrade soils.

Type Gesy.
Stiffness

Base
Thickness

(cm)

BCR (%)

Weak Subgrade Medium Stiff Subgrade Stiff Subgrade

12.7
mm

19.05
mm

25.4
mm

12.7
mm

19.05
mm

25.4
mm

12.7
mm

19.05
mm

25.4
mm

Geotextile

High tensile
stiffness

20.3 28 34 38 22 28 33 17 22 25

25.4 42 47 53 34 39 41 29 34 37

30.5 32 36 40 25 30 31 17 22 27

35.6 26 34 39 25 29 31 17 20 24

Medium tensile
stiffness

20.3 30 31 36 21 26 31 14 20 24

25.4 39 45 50 32 36 39 29 33 36

30.5 27 33 37 23 26 30 12 17 18

35.6 21 24 32 24 27 29 13 15 19

Low tensile
stiffness

20.3 21 25 30 16 20 26 12 18 23

25.4 32 35 39 27 30 35 13 15 19

30.5 23 25 28 19 21 26 9 12 16

35.6 16 20 23 19 22 26 10 14 16

Geogrid

High tensile
stiffness

20.3 31 41 49 23 31 37 24 29 35

25.4 43 52 59 39 45 49 35 40 47

30.5 35 45 53 29 37 43 26 29 34

35.6 26 37 40 23 33 38 26 29 31

Medium tensile
stiffness

20.3 29 39 45 22 28 35 23 27 33

25.4 41 50 54 37 43 46 33 38 45

30.5 33 41 49 27 35 41 23 27 32

35.6 24 31 36 22 31 37 26 28 30

Low tensile
stiffness

20.3 23 33 39 18 23 28 12 18 22

25.4 36 42 49 30 34 38 28 33 37

30.5 28 37 44 22 26 30 15 21 26

35.6 19 28 31 22 26 29 13 16 21
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6.4.1. Effect of Subgrade Stiffness on BCR

The subgrade stiffness has an important effect on the derived BCR values. For geo-
textile reinforcement, the maximum BCR (corresponding to the base thickness of 25.4 cm)
for high tensile stiffness cases at 19.05 mm rutting varies from 47% for weak subgrade
soil to 34% for stiff subgrade soil (Figure 15). These values change from 45% to 33% for
the medium tensile stiffness geotextile and from 35% to 15% for the low tensile stiffness
geotextile (see Table 6). For the geogrid reinforcement, the results show a similar trend in
BCR. For the high tensile geogrid, the maximum increase in BCR at 19.05 mm rutting is
52% for the weak subgrade, while this value decreases to 40% for the stiff subgrade. For
the medium and low tensile stiffness, the BCR values at 0.75 in rutting change from 50%
and 38% to 42% and 33% for weak and stiff subgrades, respectively.
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6.4.2. Effect of Geosynthetic Type on BCR

The comparison of BCR values between the geogrid and geotextile reinforcements
shows that the geogrids have higher BCR values than the geotextiles. The maximum value
of BCR at 19.05 mm rutting for pavements on weak subgrade soil for the high tensile
stiffness geotextile is 47%; the BCR value is 52% for the high tensile stiffness geogrid
(Figure 16). For the same pavement sections but using medium or low tensile stiffness
geosynthetics, the maximum BCR value at 19.05 mm rutting is 45% and 35% for geotextiles,
while these values are 50% and 42% for the geogrids.

For the cases of pavements on the medium stiff subgrade soil and 19.05 mm rutting,
the BCR values increase from 39% to 45% for high geosynthetic stiffness, from 36% to 43%
for medium geosynthetic stiffness, and from 30% to 34% for low geosynthetic stiffness by
changing the geosynthetic type from a geotextile to a geogrid (see Table 7). For the same
sections and conditions on the stiff subgrade, the BCR values increase from 34% to 40% for
high tensile stiffness, from 33% to 38% for medium tensile stiffness, and from 15% to 33%
for low stiffness geosynthetics.
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6.4.3. Effect of Geosynthetics Stiffness on BCR

The results of this study demonstrate the effect of the geosynthetic tensile modulus
on the BCR value. For the geotextile-reinforced cases, the increase in the geotextile tensile
modulus from low to high for pavements on weak subgrade soil results in increasing the
maximum BCR value from 45% to 47%. Meanwhile, the derived maximum BCR values
for the pavement sections on medium and stiff subgrades increase from 30% to 39% and
from 15% to 34% by changing the geotextile tensile modulus from low to high, respectively
(Figure 17). Similarly, changing the geogrid tensile modulus from low to high for the
geogrid-reinforced pavements on weak subgrade soil results in increasing the maximum
BCR value at 19.05 mm rutting from 42% to 52% (see Table 7). For the same pavement
sections on medium and stiff subgrades, the values of BCR at 19.05 mm rutting change
from 34% to 45% and from 33% to 40% by changing the geogrid tensile modulus from low
to high, respectively.
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7. Summary and Conclusions

Several FE models have been developed using ABAQUS software to assess the effect
of various parameters such as geosynthetic type and tensile stiffness, subgrade stiffness,
and base thickness on the structural advantages of flexible pavements with geosynthetic
reinforcement for low-traffic roads (HMA thickness of 8.9 cm). The rutting curve for the
first 100 cycles was calibrated using the M-E transfer functions and then used to extrapolate
the long-term rutting curves. The advantages of geosynthetic reinforcement were first
calculated as traffic benefit ratio values (TBR). The structural benefits as effective base layer
resilient modulus (MR-eff) and base course reduction (BCR) factor for the base course layer
were then calculated using the AASHTOWare. The calculated structural benefits hold great
promise and potential for new solutions and addressing critical challenges in geosynthetic
reinforced pavement (GRP) design. Despite the fact that these benefits have yet to be put
into practice, they show a promising outlook for the future. The potential impact of these
advancements cannot be understated, as they have the ability to bring about substantial
improvement and progress in the field. It is important to keep in mind that the findings
of the current research are limited to low-volume roads with an asphalt layer thickness of
8.9 cm. The full extent of the geosynthetic’s structural benefits will be explored in the future
by conducting studies on medium- and high-volume roads with thicker asphalt layers.

The findings of this study resulted in the following conclusions:
The addition of one layer of geosynthetic material at the base/subgrade interface

can significantly enhance the rutting performance of pavement structures. The calculated
benefits can be up to 8.9 in terms of TBR, 322% in terms of MR-eff, or 64% in terms of BCR.

Geogrid reinforcement usually results in higher benefits than geotextile reinforcement.
The advantage of a geogrid over a geotextile can be explained by the interlocking effect of
the geogrid and base aggregates. For geogrids, the TBR values are up to 40%, the MR-eff
values are up to 40%, and the BCR is up to 35% higher than those for geotextiles.

The selected performance level in terms of rutting targets highly affects the struc-
tural benefits. The TBR, MR-eff, and BCR values would increase with the increase in the
rutting target.

The variations of TBR, MR-eff, and BCR values with changing base thickness demon-
strate peak values at the 10 in. base thickness of pavement structures for low-volume roads.

The results show that the structural benefits increase with increasing the geosynthetic
tensile stiffness. The variation in geosynthetics’ tensile stiffness from low to high stiffness
would increase MR-eff values up to 66% and the BCR values up to 114%.
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