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Abstract: This paper presents research on the collection, analysis, and evaluation of the fundamental
data needed for road traffic systems. The basis for the research, analysis, planning and projections for
traffic systems are traffic counts and data collection related to traffic volume and type. The quality
and accuracy of this data are very important for traffic planning or optimization. Therefore, the
purpose of this research is to apply advanced methods of automatic counting of motorized traffic and
to evaluate the impact of this data on the measurement of important traffic indicators. The accuracy
of measurements arising from the traditional method of data collection through manual counting
will be compared with the most advanced methods of automatic counting through cameras. For this
purpose, an analytical algorithm for the recognition and processing of data related to road users as a
function of the time of day was applied. The program was written in the programming language
Python, and the accuracy of the data and its effect on the results of qualitative traffic indicators were
analyzed using the Synchro software model. The developed program is capable of recognizing and
classifying different types of vehicles in traffic, such as motorbikes, motorcycles, cars, pick-ups, trucks,
vans and buses, as well as counting the traffic volume over time. The results obtained from these two
models show the advantages of applying advanced methods of data collection and processing related
to dynamic traffic processes, as well as the quality in terms of the impact on the measurement of
qualitative traffic indicators. A comparison of the quality of results for the different time intervals and
varying levels of visibility in traffic is presented using tables and graphs. At nighttime, when visibility
was poor, the discrepancy between the manual and automatic counting methods was around 9.5%.
However, when visibility was good, the difference between manual counting and the automated
program was 4.87% for the period 19:00–19:15 and 3.64% for the period 05:00–05:15. This discrepancy
was especially noticeable when distinguishing between vehicle categories, due to the limitations in
the accuracy in recognizing and measuring the dimensions of these vehicles. The difference between
the two calculation models has a minor effect on qualitative traffic indicators such as: approach LOS,
progression factor, v/s, v/c, clearance time, lane group flow, adj. flow, satd, and flow approach delay.

Keywords: automatic counting; motorized traffic; data collection; traffic indicators; traffic processes;
data accuracy; software model

1. Introduction

Planning a traffic road network, designing traffic systems, or modelling these systems
in order to manage traffic problems starts with collecting data about the traffic volume
or basic data related to the road users. The demand for motorized traffic has increased
enormously in urban centers and this is accompanied by major problems in traffic operation
being manifested in a decrease in the quality of motorized and unmotorized movement,
traffic delays and other safety problems [1]. The main indicators that are related to traffic
demand and are important for modelling, optimization, and the analysis of proposed
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solutions are based on these traffic measurements. In this regard, the quality and accuracy of
these basic data are very important for the other processes of traffic planning or optimization
to show acceptable results. In relation to the increased demand for motorized movement
and the need for temporal and spatial non-linearity analysis, there is a need to find a new
approach or a new, more favorable measurement model such as the automatic numbering
model, which would save time compared to manual counting and the results would be
qualitative. Due to the impact on the measurement of qualitative indicators of traffic,
especially of heavy vehicles in traffic, the accuracy of the categorization of the vehicles that
are part of motorized traffic is very important. The objective of the study is to enhance the
accuracy of qualitative traffic indicators by exploring the effect of the techniques employed
for qualitative baseline measurements.

Consequently, we will answer three questions:

1. What is the difference in data accuracy between the manual and automatic numbering
models?

2. What is the impact of the basic data obtained from two models in the determination
of qualitative traffic indicators?

3. How accurate is the data obtained by automatic counting in conditions of poor
visibility at night?

We address these questions below, with the concrete results obtained by also applying
the data comparison model. Traffic processes are complex and dynamic; therefore, there is
a need for frequent traffic counts in relation to time and space, especially in urban areas,
because there is a need to adapt the forms of traffic control, traffic optimization or supply, in
accordance with the traffic’s demand [2]. Until recently, traffic volume counts were usually
realized through a manual method. Now, with the beginning of the use of advanced
automatic techniques, special devices are being applied through which the realization of
traffic counts is enabled automatically. Therefore, the analysis and evaluation of the quality
of the basic information (traffic counts) obtained through cameras and the processing of
this information in comparison to the methods of manual traffic counting have been the
target of this research. Opportunities to bring engineering support specialties together
through technology may be found by utilizing the performance technology and database
capabilities of technology information management systems [3]. YOLO has developed a
similar system which consists of dividing an image into N equally sized grids of M ×M.
Each grid is responsible for detecting and localizing any objects that are present in its
region [4]. These grids can also predict the bounding box coordinates of an object, relative
to the coordinates of the cell, as well as the object marker and the probability of the object
being present in the cell. This process reduces the computational burden since both the
detection and recognition of objects are handled by the cells of the image; however, it can
lead to a lot of repetitive predictions due to numerous cells detecting the same object with
distinct bounding box predictions [4]. Some authors [5] have proposed a scheme as part of
a research project that concluded shortly before the public release of YOLO version 4, which
includes new methods that likely improve classification, detection, and counting rates [5].
Abdelwahab [6] evaluated the proposed method; three experiments were employed using
five videos representing different circumstances. In all experiments, the GMM was used for
creating the background model for only the ROI [6]. Other authors (Ref. Lin Zheng, Junjiao)
provided a new method for the rapid detection and classification of traffic anomalies and
improved the accuracy of detection and classification [7]. Although manual methods
for traffic counting have been shown to be successful in terms of the quality of the data
obtained, they require time and commitment, a large number of staff, and also the data
processing requires time equivalent to the counting time. Therefore, the application of
automatic counting methods, enabling efficiency in terms of the time required to obtain
the information and the data processing as well as the quality of this information, is an
enormous contribution to the planning, projection and efficiency of traffic management.
Automated traffic data collection has been sought in transportation applications to reduce
cost and improve efficiency compared to manual data collection [8].
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Approach and Methodology

For research purposes, an algorithmic model was applied to recognize the different
categories of vehicles in traffic, enabling data processing. The program was built using the
programming language “Python” and the accuracy of the data was analyzed through the
built-in software model “Synchro” to assess the impact on the results of qualitative traffic
indicators. Object detection is the process of predicting the class of one or more objects
within an image and drawing a bounding box around them (Figure 1). This is commonly
used to identify specific objects, such as vehicles, in a given frame [9]. Deep learning is a
form of artificial intelligence where the system tries to learn from data without the need
for labels or pre-defined features. In particular, convolutional neural networks (CNNs) are
used to perform unsupervised object detection [10].
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Object detection models generally have two corridors:

1. An encoder takes a frame (image) as input and applies a series of layers and blocks to
it in order to generate statistical data that can be used to identify and label the objects
within the frame, such as vehicles;

2. The encoder will send the data to a decoder, which will then use the information to
generate bounding boxes and labels for every object present [11–13].

The tracker of objects utilizes the Euclidean distance concept to monitor an object [4].
The authors of [14] formulated a speedy algorithm that can be used to count vehicles

in traffic videos without requiring vehicle tracking. A reference model was generated for
a small area in the video frame to enable this and the proposed algorithm increased the
speed of video processing by utilizing every third frame instead of every frame [14].

The authors of [15] implemented a virtual detection line in each of the traffic lanes
to count the number of cars. The points at which the vehicles entirely crossed these lines
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were determined by these lines [15]. In this research, they offered an alternative and new
approach for counting the number of vehicles crossing the road in video sequences by
recognizing motion using incremental subspace learning [15]. YOLOv4 is an integrated
algorithm combining detection and recognition, which can directly obtain the location and
category of the target from an image. This algorithm is an improved version of YOLOv1,
YOLOv2, and YOLOv3 [16]. One of the primary innovations of the work by the authors [17]
is the edge-based technique for preprocessing and filling missing sensor data, which takes
into consideration both temporal and geographical information. It achieves better accuracy
in handling small targets due to the addition of CSPNet in the CNN design of YOLOv4.
YOLOv4-Tiny is a simplified version of YOLOv4, which reduces the accuracy compared to
YOLOv4. This is because the YOLOv4-Tiny backbone network is relatively shallow and
is unable to extract higher-level semantic features [18]. In order to meet the requirements
of high detection speed and accuracy, the proposed target detection algorithm improved
YOLOv4-Tiny. YOLOv4 divides an image into an M×M grid before it is fed into the neural
network, with each grid cell responsible for predicting objects. Each grid is capable of
predicting up to B bounding boxes, each of which has an associated confidence score [19].
Each box contains five variables which are defined in Equation (1).

P = [C1, C1, · · · , Cn] (1)

POtensor = N·N·
(

Numbero fpixels
·Q+ P

)
(2)

H = ∑
i=0
j=0

P(i, j)N, Q ∗
[
<́log(<́) + log(<́)

(
1− <́i

)
(1−<)

]
− ∑

i=0
j=0

nob(i, j)N, Q ∗
[

POtensor log(<́) + log
(

1− <́i

)
∗ log(1− Pi(o)]

]
(3)

2. Model Design and Automatic Measurements through Cameras

For the needs of the model design and to achieve the goal of this research, traffic
counts were made in the road segments between the 10 intersections of the national road
N9 in Fushe Kosove, Figure 2.
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Figure 2. Road network maps where traffic counts were made.

The counts were realized within a time interval of 24 h, applying the methods of
manual and automatic counting through cameras. Then, a comparison of the data obtained
through these two methods was made in terms of the quality of this data and the impact
they may have on the application of other important models for the management of traffic
problems. Figure 3 shows the flow chart of the methodological approach for the traffic
count and qualitative indicator measurement.
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Algorithm 1: Finding the left of the frame (image).

Input: Parameters x, y h and w
Output: Banderas of the different vehicles, N1 → NN

int ∈ (x, y, h and w)
for 1 to N do

self(x,y) → w, h
selfcx → x + self(x,y)

selfcy → y + self(x,y)
return→ self(x,y)
def→ different vehicles, N1 → NN ∗ self(x,y)[N ∗M]

(x, y, h and w) ∼= Id ∃ Id→box
Center ∀ self(x, y, h and w)

for xi, yj to Center do
# Finding the position of the vehicle

if yj → Poline and yj → Pomidel_line
if @ Ulist and Up ∃ Uplist

elif yj ∃ Dowpoline
and yj ∃ Dowmidelline

end
if @ Dowpo_line → Id ∃ Id→box

elif yj > Dowpo_line

if @ Uplist → Id ∃ Id→box
elif yj > Dowpo_line

end
Ulist ∼= Id ∃ Id→box

Center ∀ self(x, y, h and w) → 2RGB,±1
end end

Measurement data from recordings through cameras and the application, for several
15 min intervals, for different visibility conditions, for one intersection, are presented in
Figures 4–6 as well as Tables 1–3.
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Algorithm 2: Part of the algorithm for counting and categorizing vehicles during automatic
counting through cameras.

import cv2
class RealTime(Processing):

def __init__(self):
super().__init__()
def realTime(self):
# Set the frame rate of the video capture device
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FPS, 800)
while True:

# Read the video frame and resize it
ret, frame = cap.read()
frame = cv2.resize(frame, (self.width, self.height))
# Create a blob from the image
blob = cv2.dnn.blobFromImage(frame, self.scale, (self.width, self.height),

(self.mean, self.mean, self.mean), swapRB=True, crop=False)
# Set the input of the neural network
self.net.setInput(blob)
# Get the output layers of the network
layers = self.net.getUnconnectedOutLayersNames()
# Feed the data to the network and get the output
outs = self.net.forward(layers)
# Call the postProcess() function from the Processing class
objects = self.postProcess(frame, outs)
# Draw the counting texts in the frame
for obj in objects:

label = obj [0]
confidence = obj
xmin = obj [2]
ymin = obj [3]
xmax = obj [4]
ymax = obj [5]
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
cv2.putText(“Kamionete, Autobus, Kamion, Veture, Biciklete, kem-besore “, frame,

label + “ “ + str(round(confidence, 2)), (xmin, ymin–5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,
255, 0), 2)

# Write the counting data into a csv file
self.writeData(objects)
# Show the frame
cv2.imshow(“Real Time”, frame)

# Press ‘q’ to quit
if cv2.waitKey(1) & 0xFF == ord(‘q’):

break
# Release the video capture device and destroy all windows

cap.release()
cv2.destroyAllWindows()

The results of automatic measurements from the video recording for the period
05:00–05:15, for different categories of vehicles in traffic are presented in Table 1.

The results of automatic measurements from the video recording for the period
19:00–19:15 (Figure 5), for different categories of vehicles in traffic are presented in Table 2.

The results of automatic measurements from video recording (Figure 7) for the period
21:00–21:25, for different categories of vehicles in traffic are presented in Table 3.

The summary results, as shown in Tables 4 and 5 and Figures 8–10, prove the quality
of the data obtained from the automatic count in terms of accuracy of measurements and
adequate categorization of vehicles participating in the traffic.
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Table 2. Results obtained from camera count during the day.

Direction Car Motorcycle Bus Trucks Total

Time period: 19:00–19:15
Up 149 0 0 9 158

Down 224 1 7 22 254
Total 373 1 7 31 412

Table 3. Results obtained from camera count in the evening.

Direction Car Motorcycle Bus Trucks Total

Time Period: 21:00–21:15
Up 53 1 0 3 57

Down 125 5 2 23
Total 178 6 2 26 212
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Table 4. Results obtained from camera count in the different time periods.

Direction Car Motorcycle Bus Trucks Average Difference
in Counting

Processing Time
of the Data

Time Period: 21:10–21:25
Manual 195 7 0 30

9.43% 15 minAutomatic 178 6 2 26
Time Period: 19:00–19:15

Manual 427 1 9 36
4.87% 15 minAutomatic 412 1 7 31

Time Period: 05:00–05:15
Manual 40 0 3 3

4.54% 15 minAutomatic 38 0 2 4
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Table 5. Result obtained by “Synchro” model.

Movement
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With colored numbers are selected as the main indicators of traffic.

Referring to the results obtained from the automatic method and manual counts
performed by personnel employed to count vehicles, the largest changes in data quality are
observed in the period of limited overnight visibility (time 21:10–21:25).

In this period, the counting data had a deviation of about 9.5%, while in other mea-
surement periods, when visibility was good, the differences between the manual counting
method and the automatic method through the applied program followed a deviation
of about 4.87% for the period 19:00−19:15 and 4.54% for the period of measurements
05:00–05:15. In the quality of automatic measurements and accurate categorization of vehi-
cles, the position of the cameras is also important; in this case, they were put at a certain
angle to the direction of movement of the vehicles; therefore, the accuracy loss was likely to
be greater. These deviations are more pronounced especially in the process of categorizing
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vehicles, due to the reduction in opportunities for accurate recognition and measurement
of the dimensions of these vehicles.
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3. Impact on Qualitative Traffic Indicators

The analysis and evaluation of the qualitative indicators of traffic operation are based
on the basic data obtained in the research, traffic surveys or recordings; therefore, it is very
important that this data be of the highest quality. In the concrete case of this research, based
on the maximum difference of 9.5% between the sets of data obtained from manual and
automatic counts, for the period with limited visibility at night (21:10–21:25), we used the
“Synchro” model to analyze the impact of this on the results of important indicators of traffic
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operation such as: lane utilization factor, standard flow, adjusted flow, lane group flow, v/s
ratio, v/c ratio, progression factor, approach delay and approach LOS. The construction of a
road network in the model “Synchro”, including traffic modes and certain traffic demands
by means of manual and automatic methods of measurements as well as the simulation of
traffic operation, is presented in Figures 7 and 11.
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The results of the qualitative traffic indicators obtained from the "Synchro" model
are shown in Figure 8. Referring to the results obtained, no significant changes were
observed in the results of traffic indicators which were analyzed through the "Synchro"
model (Figure 8); therefore, we can conclude that both the quality, and the accuracy of
the data obtained from the use of the automatic method through the cameras and the
application of the analytical algorithm formulated in the programming language "Python"
are high. As such, we recommend this model for use for the purpose of traffic counts
and categorization of vehicles circulating in traffic, because even in the most extreme
conditions with the possibility of greater accuracy loss in results at night (conditions of
limited visibility), the impact of these losses on the analysis of important traffic indicators
is negligible.

4. Conclusions

The analysis and evaluation of the qualitative indicators of traffic operation are based
on the basic data obtained in the research, traffic surveys or recordings; therefore, it is very
important that this data be of the highest quality. Referring to the results obtained from
the automatic method (Python algorithm application) and manual counts performed by
personnel employed to count vehicles, the largest changes in data quality were observed in
the period of limited overnight visibility (time 21:10–21:25). In this period, the counting
data had a deviation of about 9.5%, while in other measurement periods, when visibil-
ity was good, the differences between the manual counting method and the automatic
method through the applied program followed a deviation of about 4.87% for the period
19:00–19:15, 4.54% for the time period of measurements 05:00–05:15. These deviations are
more pronounced especially in the process of categorizing vehicles, due to the reduction in
opportunities for the accurate recognition and measurement of the dimensions of these ve-
hicles. Referring to the results obtained, no significant changes were observed in the results
of the traffic indicators which were analyzed through the “Synchro” model; therefore, we
can conclude that both the quality, and the accuracy of the data obtained from the use of
the automatic method through the cameras and the application of the analytical algorithm
formulated in the programming language “Python” is high. This model provides accurate
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results even during traffic counts in conditions with poor visibility at night. As such, we
recommend this model for use for the purpose of traffic counts and the categorization of
vehicles circulating in traffic because, even the most extreme conditions giving the possibil-
ity of a greater accuracy loss in results at night (conditions of limited visibility), the impact
on the analysis of important traffic indicators of these losses is negligible. The authors′ next
study will focus on developing a methodology for measuring the accuracy of traffic counts
and traffic quality indicators in adverse weather conditions such as snow, rain, and fog
using edge computing and IoT.
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LOS level of service
N9 national road of Kosovo
CNN convolutional neural networks
Blob binary large object
v/s the highest flow ratio for a given signal phase
v/c volume capacity ratio
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