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Abstract: Ancillary structures are essential for highways’ safe operationality but are mainly prone to
environmental corrosion. The traditional way of inspecting ancillary structures is manned inspection,
which is laborious, time-consuming, and unsafe for inspectors. In this paper, a novel image processing
technique was developed for autonomous corrosion detection of in-service ancillary structures. The
authors successfully leveraged corrosion features in the YCbCr color space as an alternative to the
conventional red–green–blue (RGB) color space. The proposed method included a preprocessing
operation including contrast adjustment, histogram equalization, adaptive histogram equalization,
and optimum value determination of brightness. The effect of preprocessing was evaluated against a
semantically segmented ground truth as a set of pixel-level annotated images. The false detection
rate was higher in Otsu than in the global threshold method; therefore, the preprocessed images were
converted to binary using the global threshold value. Finally, an average accuracy and true positive
rate of 90% and 70%, respectively, were achieved for corrosion prediction in the YCbCr color space.

Keywords: ancillary structure; corrosion noncontact sensing; unmanned aerial systems; image
processing; artificial intelligence

1. Introduction

Most ancillary structures, such as high-mast light towers, cantilevered sign structures,
overhead traffic signals, and luminaires, are continuously exposed to wind-related fatigue
cracks, vibration issues, missing bolts, and loosened nuts [1]. However, corrosion can be
considered as the most common defect in them. In ancillary structures, corrosion is caused
by factors such as exposure to weather elements, chemicals, and salt compounds. Tradi-
tional inspection methods, such as visual and physical nondestructive evaluations (NDEs),
can be time-consuming, expensive, complex, dangerous, and even impossible for inaccessi-
ble areas. The outcome of the manned evaluations is typically subjective and inconsistent.
It is possible that accuracy depends on the inspector’s experience and location’s accessi-
bility for inspection [2]; however, visual inspections remain the most common method
for corrosion damage assessment. Maintenance and protection of traffic (MPT) safety
legislation demands make it further challenging for stakeholders to perform in-service
ancillary structure physical and visual inspections [3]. Therefore, developing noncontact
methods augmented with artificial intelligence (AI) as an alternative to conventional defect
detection is a necessity.

Corrosion can be defined as the reaction of a metal to the surrounding corrosive
environment due to the change in its properties, consequently resulting in functional dete-
rioration of the metallic object [4]. The service life of a steel structure can be reduced by
external or internal surface corrosion [5]. The United States records an estimated annual
corrosion damage cost of approximately USD 10.15 billion for steel bridges [6]. Figure 1a,b
illustrates images of an existing ancillary structure in Grand Forks, ND, exhibiting signifi-
cant corrosion and without visible corrosion, respectively.
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The hands-on inspection technique has certain drawbacks [9] that create the need 
for computerized digital image recognition, a feasible alternative regarding safety, effi-
cacy, consistency, and accuracy. Despite the advantages of the currently practiced NDE 
technique in the inspection of steel structures, the automated optical technique is the 
most preferred due to its simplicity in use and interpretation [6,10,11]. This usually in-
volves the onsite acquisition of digital images of the structure, followed by an offsite 
analysis using image processing techniques for corrosion detection [6,12]; however, 
there have been some attempts for real-time processing [13,14]. 
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[6–8], as these image-based algorithms are usually affected by undesirable illumination 
presence of the background. 

The state’s Department of Transportation (DOT) commonly performs corrosion de-
tection inspections using visual and physical methods. The primary goal of this research 
is to develop an automated adaptive image processing-based algorithm to detect the 
corrosion of in-service ancillary structures under ambient environmental conditions. In 
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Corrosion significantly affects the overall cost of steel structure maintenance [7], and
if neglected, can lead to section loss and eventual failure. For instance, the corroded
ancillary structure shown in Figure 1a was replaced due to severe corrosion to avoid
continuous deterioration and subsequent failure. A total of 42% failures of structural
elements occur due to corrosion of steel structures [8]. Moreover, continuous contact with
water or electrolytes could cause internal corrosion in the case of tubular members [3].

The hands-on inspection technique has certain drawbacks [9] that create the need for
computerized digital image recognition, a feasible alternative regarding safety, efficacy,
consistency, and accuracy. Despite the advantages of the currently practiced NDE tech-
nique in the inspection of steel structures, the automated optical technique is the most
preferred due to its simplicity in use and interpretation [6,10,11]. This usually involves the
onsite acquisition of digital images of the structure, followed by an offsite analysis using
image processing techniques for corrosion detection [6,12]; however, there have been some
attempts for real-time processing [13,14].

Researchers have proposed various image processing techniques to detect steel struc-
ture corrosion [7,8,15]. The texture analysis technique characterizes the pixels of images
for classification problems. Pixels associated with corrosion in visual images of ancillary
structures have a rougher texture and a distinct color compared to noncorroded or sound
pixels. Here, color and rough texture are considered features for pixel classification. Past
research studies have investigated corrosion using RGB (red, green, blue) color space with-
out considering the presence of undesired objects in the image’s background [12,16]. Most
studies have either evaluated corrosion without corrosion quantification from ground truth
or have used images collected under controlled environments [6–8], as these image-based
algorithms are usually affected by undesirable illumination presence of the background.

The state’s Department of Transportation (DOT) commonly performs corrosion detec-
tion inspections using visual and physical methods. The primary goal of this research is to
develop an automated adaptive image processing-based algorithm to detect the corrosion
of in-service ancillary structures under ambient environmental conditions. In addition,
actual onsite conditions of ancillary structures, such as background and natural lighting,
were considered while processing the data.

2. Overview of Corrosion Detecting Sensors

There are numerous nondestructive techniques for corrosion detection. Fiber Bragg
grating (FBG) sensors are used to evaluate coated steel’s corrosion behavior [17]. The
performance of electrochemical tests and FBG sensors was compared. Two types of
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coating—polymetric and wire arc-sprayed Al-Zn (aluminum-zinc) coatings—were used to
verify the FBG sensor’s performance. Finally, it was shown that FBG sensors perform well
for both detecting corrosion and crack initiation. In past studies, researchers found ultra-
sonic sensors to be one of the most effective devices for corrosion detection [18,19], but they
required expertise to identify the critical location of corrosion. Again, an optical microscope
was used to detect the hidden corrosion of depths 0.02 to 0.40 mm in steel plates [18].

Moreover, the traffic lane may need to be closed as these methods need contact with the
investigating structural element. Corrosion identification using image processing methods
can address both limitations. Digital cameras collect the digital data necessary for image
processing methods. However, the sensor type and number specified for data collection are
not constant in all inspections. Visual and thermal cameras are the most widely used sensors
for corrosion detection and structure evaluation due to their availability, even though other
sensor types can perform corrosion assessment and evaluation [12]. In addition, these
sensors can be mounted on an unmanned aerial vehicle/system (UAV/UAS) [9], which
does not need the closure of a traffic lane, as well as auxiliary arrangements such as a ladder
and other detection instruments.

3. Color Spaces and Image Processing Techniques
3.1. Color Spaces

The human eye or camera sensor can detect light incidents when reflected off a
material. The beam of light that reaches the eye or camera is the interactive result between
the distribution of the light source’s spectral power and the target’s spectral reflectance.
The formation of color into a signal can be described by the following Equation (1) [20].

f c(x) =
∫

ω
E(γ, x)ρc(γ)dγ (1)

Here, f c (x) is the measured observation value; E(γ,x) is reflected energy from the
surface, where γ is the wavelength and x is the spatial coordinate of the image; and
ρc is the camera sensitivity, where c∈ {R, G, B} and ω is the visible spectrum. R, G,
and B are red, green, and blue, respectively. Understanding color space is necessary to
develop digital image processing models and properly develop color image processing
methods. According to colorimetry, each color is a combination of three color coordinates.
Commission Internationale de l’éclairage (CIE) introduced color space by mathematical
formulas [21]. Again, color is defined as the portion of EM (electromagnetic) radiation
seen by humans [20]. The wavelength band ranges from approximately 380 nm to 740 nm.
The color images contain more detail and information than grayscale images [22]. Some
of these details are chromaticity and luminosity. Chromaticity refers to color classification
based on its deviation from white light, also known as hue and purity. The luminosity
parameter measures the hue’s degree of brightness or darkness. Color spaces can be of
different types: RGB (red, green, blue), HSV (hue, saturation, value), HSI (hue, saturation,
intensity), L*a*b (luminosity, red or green component, yellow or blue component), YCbCr
(luminosity and combination of chrominance component). In this study, two color spaces,
RGB and YCbCr, were considered. RGB is the conventional color space for visual imaging.
On the other hand, it is revealed that human vision is more sensitive to the luminance
component; therefore, it becomes more efficient to represent images in YCbCr form. A
concise explanation of these two color spaces is mentioned in the following sections.

3.1.1. RGB Color Space

RGB color spaces are primarily composed of three color bands. The intensity value
ranges from 0–255 for each band. A combination of all color bands at the same intensity
results in white color (255,255,255); however, the absence of all color components results in
black color (0,0,0). The brightness of the same color can be modified by manipulating the
color components using a constant multiplier or quotient [23]. The origin of the RGB color
space is represented in a 3D cube in Figure 2, with values ranging from 0–255.
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Figure 2. RGB color model representation.

3.1.2. YCbCr Color Space

The Y component of the YCbCr color transformation space depicts the luminance
component, a measure of light intensity. The Cb and Cr components represent the chromi-
nance component, which measures the green component with respect to the blue and red
component intensity differences [24]. The most important feature of the YCbCr model is
that it imitates human vision, which responds to light intensity changes more than hue
changes [25]. Therefore, the Y component has a range of [16–235], while the Cb and Cr com-
ponents have a range of [16–240] [25]. Figure 3 illustrates the transformation of captured
images from RGB to YCbCr color space. As can be seen in Figure 3, pixels associated with
corrosion are more pronounced in the YCbCr color space. The mathematical equation for
this transformation will be introduced later in this paper.
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3.2. Image Processing Techniques

Routine corrosion detection is vital to ensure ancillary structure integrity. However,
conventional physical and visual methods are used with inspection aids such as ladders or
scaffolders to gain access to difficult parts of the structure. Image acquisition using UAS
combined with image-based corrosion detection algorithms is an alternative solution that
can increase accuracy and robustness without lane closures [9]. Moreover, image processing
techniques using an automated inspection system are timesaving and less tedious than
visual inspections [26,27].

Collecting quality image data is a crucial step for obtaining reliable evaluation re-
sults. Image data using UAS can be collected using hand-held or mounted sensors or
other data collection platforms. In texture analysis, a rough area was categorized as a
corroded region performed on the images captured by a camera with a resolution between
12 MP–18 MP [7,28]. Again, UAS can be integrated with image processing techniques for
large steel structure corrosion detection with intelligent obstacle avoidance, positioning,
stable hovering, and other flight characteristics [29]. Non-contact-based thin steel film
electrical resistance (TFER) is another technique developed to detect corrosion by measur-
ing the change in the sensing element’s electrical resistance [30]. The k-means clustering
algorithm was used to extract the region of interest (ROI) from the images of pipelines in a
subsea environment by grouping the corroded pixels of different intensities [31]; however,
the mean reported accuracy was 90%. To improve the result of conventional image process-
ing, different preprocessing steps such as the change of color space, applying filters, and
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morphological operators play significant roles [6,32,33]. The transformation of color space
might help to segregate the background from the foreground with the same color [32];
however, the L*a*b color space proved better among the 14 color spaces used for conversion.
Again, the use of Fourier transforms together with image processing steps was found to
be most effective in cyan (C), magenta (M), yellow (Y), or CMY color spaces, with about
99% accuracy for corrosion detection [33]. Some researchers have focused on developing
a relationship between the statistical features of sound and defective images [26,34]. A
rust defect detection method (RUDR) was designed to analyze corrosion detection images
comprising data preparation, analysis, statistical modeling, testing, and validation. The
images were preprocessed prior to the main processing. The preprocessing step evaluated
the presence or absence of defects in each digital image. The image was further processed
and evaluated if found to be defective [26].

On the other hand, the combination of k-means clustering and statistical parameters
was adopted for corrosion detection. Mean, median, skewness, and textural parameters
in the HSI color space were used to segment microscopic corrosion images with 10 pixels
by 10 pixels, yielding 85% accuracy [34]. The similarity index is also used for corrosion
recognition using color and texture features extracted from the images [35]; the images with
a similarity index less than one are defined as defective. Finally, pixels are compared with
the corrosion color spectrum. Pitting corrosion had also been detected in pipelines using a
support vector machine (SVM)-based machine learning model, yielding an accuracy rate
of 92% [8]. On the other hand, 67–90% corrosion detection accuracy was obtained from
the fully trained artificial neural network from the images transformed into four different
color spaces [6].

Past research shows that images used for corrosion detection were free of artifacts and
collected under controlled lighting conditions. Therefore, artifacts such as background were
not excluded from the dataset, unlike other studies where the datasets are clean and do not
depict the actual onsite condition of structures. At the time of preprocessing, the brightness
of the images was modified accordingly. The model’s performance was validated using
images captured by a camera mounted on the UAV. Removal of the background is an
essential step in preprocessing. In most studies [6–8], model performance was evaluated
by determining only the conventional performance metrics. In this study, image quality
metrics were also considered as model performance evaluators. Furthermore, the proposed
method will enable the inspector to exclude the image’s background, making it a possible
and effective method for real-time inspection.

4. Dataset Generation and Processing
4.1. Image Data Acquisition

A cellphone camera was used to capture 300 images from four in-service traffic poles
located in Grand Forks, North Dakota, on 17 May 2021, between the hours of 10 am to noon.
The poles had an average height of 7 m and a cantilever arm length of 6–7 m. This mobile
phone had phase detection autofocus (PDAF) technology designed to mimic human eyes
by pairing masked pixels on the image sensor. Examples of images collected are shown in
Figure 4. The specifications of the camera used are summarized in Table 1. The sizes of
the images are 2322 pixels by 4128 pixels. The images were collected for differing degrees
of corroded and sound regions showing different background scenes in the image. In
addition, the data were collected considering the traffic to ensure the safety of inspectors.

Another set of image datasets was collected in Fargo using a UAS equipped with a
visual camera to verify the model’s performance with respect to image quality. The ambient
weather condition for temperature, humidity, and wind speed during data collection is
shown in Table 2 [36].



Infrastructures 2023, 8, 66 6 of 20

Infrastructures 2023, 8, x FOR PEER REVIEW 6 of 21 
 

collected are shown in Figure 4. The specifications of the camera used are summarized 
in Table 1. The sizes of the images are 2322 pixels by 4128 pixels. The images were col-
lected for differing degrees of corroded and sound regions showing different back-
ground scenes in the image. In addition, the data were collected considering the traffic to 
ensure the safety of inspectors. 

    

    

Figure 4. Representative images with corrosion. 

Another set of image datasets was collected in Fargo using a UAS equipped with a 
visual camera to verify the model’s performance with respect to image quality. The am-
bient weather condition for temperature, humidity, and wind speed during data collec-
tion is shown in Table 2 [36]. 

Table 1. Camera specifications. 

Type of the Device Samsung Galaxy M30 UAS Camera 
Resolution 13 Megapixels 7860 × 4320 Megapixels 
Aperture size f-stop; f/1.9. f-stop; f/2.8–f/11 

Table 2. Ambient weather conditions during data collection. 

Date Time Temperature Humidity Wind Speed 

17 May 2021 
9:53 a.m. 74 °F 38% 6 mph 
10:53 a.m. 77 °F 34% 6 mph 
11:53 a.m. 81 °F 29% 13 mph 

20 July 2022 
10.53 a.m. 82 °F 60% 14 mph 
11.53 a.m. 83 °F 54% 18 mph 
1.53 p.m. 86 °F 41% 16 mph 

4.2. Data Annotation 
Images were annotated using an image labeler app in MATLAB R2020a image pro-

cessing toolbox. All computations in this study were performed on a desktop computer 
with a 64-bit operating system, 16 GB memory, and a 2.9 GHz processor running an Intel 
® Core™ i7-10700 CPU. The annotated images were used as ground truth for bench-
marking the input images. As shown in Figure 5, all images were labeled into two clas-
ses: corroded and non-corroded. A total of 95,539,808 pixels of these categories were an-
notated for each image. Depending upon the severity of corrosion, a range of 2.5 to 
64.5% of the pixels of the images were annotated as corrosion with red, blue, and pink 
colors. The different colors represent the different severity of corrosion. The remaining 
portion was considered as background pixels. Since the determination of the corrosion 
scale was way beyond this paper’s scope, all images were converted to binary images 
(pixels with and without corrosion) and used as ground truth for further analysis. This 
semantic segmentation method is known as a dense prediction, as it predicts the class of 
each input pixel with respect to the assigned class. 

Figure 4. Representative images with corrosion.

Table 1. Camera specifications.

Type of the Device Samsung Galaxy M30 UAS Camera

Resolution 13 Megapixels 7860 × 4320 Megapixels

Aperture size f-stop; f/1.9. f-stop; f/2.8–f/11

Table 2. Ambient weather conditions during data collection.

Date Time Temperature Humidity Wind Speed

17 May 2021

9:53 a.m. 74 ◦F 38% 6 mph

10:53 a.m. 77 ◦F 34% 6 mph

11:53 a.m. 81 ◦F 29% 13 mph

20 July 2022

10.53 a.m. 82 ◦F 60% 14 mph

11.53 a.m. 83 ◦F 54% 18 mph

1.53 p.m. 86 ◦F 41% 16 mph

4.2. Data Annotation

Images were annotated using an image labeler app in MATLAB R2020a image pro-
cessing toolbox. All computations in this study were performed on a desktop computer
with a 64-bit operating system, 16 GB memory, and a 2.9 GHz processor running an Intel ®

Core™ i7-10700 CPU. The annotated images were used as ground truth for benchmarking
the input images. As shown in Figure 5, all images were labeled into two classes: corroded
and non-corroded. A total of 95,539,808 pixels of these categories were annotated for each
image. Depending upon the severity of corrosion, a range of 2.5 to 64.5% of the pixels
of the images were annotated as corrosion with red, blue, and pink colors. The different
colors represent the different severity of corrosion. The remaining portion was considered
as background pixels. Since the determination of the corrosion scale was way beyond
this paper’s scope, all images were converted to binary images (pixels with and without
corrosion) and used as ground truth for further analysis. This semantic segmentation
method is known as a dense prediction, as it predicts the class of each input pixel with
respect to the assigned class.
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4.3. Scene Constraints and Preprocessing

In developing a robust and viable algorithm for corrosion detection, existing environ-
mental constraints play a crucial role. For instance, sunlight reflection could cause some
portions of the region of interest to have high brightness, while other parts could be under
the shadow; illumination plays a vital role in image quality. The illumination of all the
images was modified by developing an algorithm to increase the proposed algorithm’s
success. All the original images were preprocessed by converting them to the YCbCr color
space to control the luminance. In addition, varying objects on the image background
could challenge the ease of corrosion detection. Though the corroded part had prominent
color, sometimes the background color created complexity. The existing site constraints and
surrounding objects were captured in the background during data collection. Since these
were field data, the researchers had no control over these constraints appearing on the im-
age’s background. Dey [37] discussed the effect of uneven illumination and concluded that
noise due to external interference and imbalanced illumination is a typical image-related
artifact during image acquisition. In addition, the uneven distribution of light could have
been caused by the presence of large objects in the image’s background [38]. They also
mentioned that the presence of other objects’ shadows makes it challenging to optically
segment and isolate the object of interest. The constraints resulting from illumination
variations and the presence of undesired objects in the background make conventional
segmentation techniques ineffective in corrosion detection for small objects. Moreover, an
unsupervised segmentation technique can produce unreliable results in the presence of
noise components, shadows, and reflections from light sources.

A preprocessing algorithm was developed in this study to increase the quality of the
collected images for corrosion detection. Some image enhancement steps followed the
preprocessing operation. In this step, contrast adjustment and histogram equalizations
were used to distribute the pixels uniformly or eliminate noise from the image. First, the
contrast was adjusted to improve the output image quality, resulting in 1% of the pixel
values being saturated at high and low intensities. Here, saturation implies remapping
pixel values in a low-contrast grayscale image to fill the entire intensity range [0, 255]. After
the contrast adjustment, the input image’s histogram was equalized using Equation (2) to
ensure uniform distribution of pixels’ intensities [16].

c(I) = 1/N ∑I
i=0 h(i) (2)

where N is the number of pixels in the image. Here, c(I) is the cumulative distribution from
the integration of the histogram of the original image, h(I).

Finally, all the pixel values were redistributed using adaptive histogram equalization,
which differs from histogram equalization. In the adaptive method, several histograms
were computed for the images. Finally, the output image shows improved contrast and a
more visible edge than the input images. Figure 6 shows corroded images before and after
preprocessing. Corrosion is seen to be more visible in the preprocessed images than the
raw images, since the presence of shadow or uneven illumination have been minimized in
the final image.
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The change in brightness as a result of the preprocessing is computed from Equations (3)–(5) [39].
If R′, G′, B′ is the normalized value of the R, G, B image for the standard RGB color space (sRGB), the
relative luminance(Y) can be defined as Equation (3).

Y = 0.2126× sR + 0.7152× sG + 0.0722× sB (3)

Here, sR can be determined from Equation (4).

sR =


R′

12.92 i f R′ ≤ 0.03928(
R′+0.055

1.055

)2.4
Otherwise

(4)

Similarly, sG and sB values can be determined from Equation (4) by replacing R′

with G′ and B, after which the brightness (L*) of the image can be calculated from the
following Equation (5).

L∗ =

{
Y× 903.3 Y ≤ 0.008856
Y

1
3 × 116− 16 Y > 0.008856

(5)

Since the brightness of images plays a significant role in detection accuracy, the per-
formance of the model was verified by testing on another dataset. The dataset consists
of images without corrosion and UAV payload images. The images without defects will
be mentioned as sound images in all the text later. Moreover, image quality has an enor-
mous impact on the result of image processing techniques. Quality metrics such as the
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), Natural Image Quality
Evaluator (NIQE), and Perception-based Image Quality Evaluator (PIQE) have been deter-
mined for the images [40–42]. In this case, sound images are used as reference images. The
quality metrics were used to detect possible poor images after the preprocessing.

4.4. Artifact Reduction from Images

Except for the issues related to illumination, the presence of undesirable objects as
background could affect the performance of the corrosion detection model. A computa-
tionally light framework for the user was developed to subtract the background from each
image. At first, the boundary was drawn by a polygon around the background. Afterward,
a binary mask was generated, where nonzero pixels were for the background and zero
pixels were for the region of interest. In the next step, the background was subtracted
from the input image. By completing this step, the region of interest was separated from
the background. Finally, the input image was overlaid on the binary image (Figure 7).
After overlaying, the background color turned yellow by default. The novelty of this
algorithm is that in real-time, the inspector can subtract the background to explore their
desired inspection location. Color space transformation is the next step implemented on
these images.

Infrastructures 2023, 8, x FOR PEER REVIEW 9 of 21 
 

    
(a) (b) (c) (d) 

Figure 7. (a) Original image; (b) selected regions as background; (c) binary mask of background; 
(d) overlaid image. 

4.5. Color Space Transformation 
The proposed approach transformed the captured images in RGB color space into 

YCbCr color space. Afterward, the transformed images were split into three different 
components (channels) based on luminance and chrominance. Equation (6) shows the 
transformation matrix [25]. Corrosion was expected to be more pronounced in the Cb 
component, and therefore segmented more conveniently. Finally, the color threshold 
app of MATLAB image toolbox was used for the thresholding to extract the foreground 
(object) from the background. Figures 8 and 9 show images in YCbCr color space and 
corrosion detection of images shown in Figure 4. 

൥ 𝑌𝐶𝑏𝐶𝑟൩ = ൥ 16128128൩ + ൥ 0 ⋅ 279 0 ⋅ 5040 ⋅ 98−0 ⋅ 148 − 0 ⋅ 2910 ⋅ 4390 ⋅ 439 − 0 ⋅ 368 − 0.071൩ ൥𝑅𝐵𝐺൩ (6)

 

    

    

Figure 8. Representative images in YCbCr color space to show corrosion. 

    

 
 

 
 

 

Figure 9. The corroded region in the Cb component of YCbCr color space in representative imag-
es. 

4.6. Binarization 
4.6.1. Otsu Threshold Method 

In this process, each pixel in the image is placed in one of two classes. One class 
contains pixels within the region of interest; the other contains pixels not in the region of 
interest. In this step, corroded pixels are labeled as one and the remainder as 0. Binariza-
tion is an essential step in image processing. The binary image is used afterwards to 

Figure 7. (a) Original image; (b) selected regions as background; (c) binary mask of background;
(d) overlaid image.

4.5. Color Space Transformation

The proposed approach transformed the captured images in RGB color space into
YCbCr color space. Afterward, the transformed images were split into three different
components (channels) based on luminance and chrominance. Equation (6) shows the
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transformation matrix [25]. Corrosion was expected to be more pronounced in the Cb
component, and therefore segmented more conveniently. Finally, the color threshold app
of MATLAB image toolbox was used for the thresholding to extract the foreground (object)
from the background. Figures 8 and 9 show images in YCbCr color space and corrosion
detection of images shown in Figure 4. Y

Cb
Cr

 =

 16
128
128

+

 0 · 279 0 · 5040 · 98
−0 · 148− 0 · 2910 · 439
0 · 439− 0 · 368− 0.071

R
B
G

 (6)
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4.6. Binarization
4.6.1. Otsu Threshold Method

In this process, each pixel in the image is placed in one of two classes. One class
contains pixels within the region of interest; the other contains pixels not in the region of in-
terest. In this step, corroded pixels are labeled as one and the remainder as 0. Binarization is
an essential step in image processing. The binary image is used afterwards to build a set of
parameters for classification. Successful binarization depends on the selection of the thresh-
old value. This method can determine an optimum threshold by minimizing the weighted
sum of variance between two classes: background and foreground. The colors in grayscale
vary from 0 to 255. The binarization process can be described by Equations (7)–(10) [43].
At any threshold t, the variance between two classes (σ2) is evaluated by Equation (7):

σ2(t) = ωbg(t)σ
2

bg(t) + ωfg(t)σ
2

fg(t) (7)

ωbg(t) = Pbg(t)Pall (8)

ωfg(t) = Pfg(t)Pall (9)

The variance can be calculated using the formula below:

σ2(t) = ∑(xi − xmean)
2/N− 1 (10)
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where x_i is the value of the pixel at i in the group (bg or fg), x_mean is the mean of pixel
values in the group (bg or fg), and N is the number of pixels.

4.6.2. Global Threshold Method

A threshold value should be selected in a way that would suppress the background
while leaving the corroded pixels visible. A low threshold value will create noisy pixels
that can distort the features, introduce extra features, and increase the complexity of the
analysis. The Otsu method selects the threshold value automatically, whereas in the global
threshold method, one arbitrary number is used for the whole image. In this study, we
developed an iterative algorithm by evaluating the relationship between the threshold
value and the performance metrics rather than choosing an arbitrary threshold value.
The model was evaluated with the performance evaluation metrics: (i) accuracy (ACC),
(ii) positive predictive value/precision (PPV), (iii) F1-value, (iv) sensitivity/recall/true
positive rate (TPR), (v) specificity/true negative rate (TNR), (vi) false-positive rate (FPR),
(vii) false-negative rate (FNR), (vii) intersection over union (IOU).

The metrics are calculated by the following Equations (11)–(15):

ACC =
TP + TN

TP + FP + TN + FN
(11)

F1− Score =
2TP

2TP + FP + FN
(12)

TPR =
TP

TP + FN
(13)

TNR =
TN

TN + FP
(14)

IOU =
TP

TP + FP + FN
(15)

Here, TP means correct detection of the corroded pixel and TN means correct detection
of sound pixels. On the other hand, FN and FP are opposite to TP and TN, respectively.
ACC is the rate of correct corrosion detection for the total detections. The PPV and TPR
provide helpful information about the prediction outcome. TPR gives the fraction of actual
corrosion that the model correctly detects. Lower TPR rates indicate a high number of
false negatives. All the performance metric parameters are determined with respect to the
ground truth. Figure 10 shows the representative relationship between the threshold value
and performance metric elements. The point where all the curves for each performance
metric element meet can be termed an intersection point. The intersection points for all
other images were also determined and used as the base threshold value for binarization.

4.7. Morphological Operations

The output of the proposed image processing method is a binary image that includes
one or more connected components segmented as corrosion (Figure 11). However, most se-
mantic segmentation techniques suffer from residual misclassification, generally manifested
as more minor discontinuities in the binary image. Morphological operations can manipu-
late the shape and size of connected components in binary images. They are commonly
used in texture analysis, noise elimination, and boundary extraction [44]. Morphological
operation is applied using a small template called structuring element (se). The structural
element is applied to all possible locations of the input image and generates an output
image with the same size as the input. The operation’s output produces a new binary
image with a non-zero-pixel value at that location if the operation is successful. There
are different structural elements, such as diamond shapes, lines, disk shapes, circles, and
spheres. Conventionally, opening and closing operations are performed on binary images.
This study performed opening and closing operations with disk-shape structural elements
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on the RGB images after the illumination modification. Since the dimensionality of the RGB
image is greater than that of the structural element, this morphological operation worked
along each channel. In this step, any artifacts from processed images were removed. After
binarization, a line-shaped structural element with a length of 20 at an angle of 180 degrees
denoised the binary image more than the disk shape. Therefore, it is better to apply the
morphological command after defining the boundary of the region of interest. In this
study, all the detected edges bridged other regions for extracting the target area before
implementing the morphological operations (Figure 12).
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Figure 11. (a) Binary image before preprocessing; (b) binary image after preprocessing; (c) dilated
edges with a line-shaped structural element; (d) connected area.
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If morphological opening is γs(A) and morphological closing is βs(A), then from
Equations (16) and (17) [45]:

γs(A) = (A 	 $)⊕ $′ (16)

βs(A) = (A ⊕ $) 	 $′ (17)

Here, A is the binary image, and $ is the structural element of the desired shape and
size. In this work, $ is a line-shaped structural element with a length of 20. 	 and ⊕
operators are used for erosion and dilation, respectively. $′ is the transpose of $.
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Dilation also transforms the images with a change in size. This operation stretches
or thickens the region of interest by bridging the gaps between pixels [41]. Dilation can
remove negative impulsive noises. The dilation of A by the structuring element $ is defined
by Equation (18) [45]. Here, Ac denotes the complement of A.

A⊕ $ = (Ac 	 $)c (18)

5. Results and Discussion
5.1. Brightness and Image Quality

The novelty of the proposed method is the brightness modification of the test images
at the preprocessing stage. This step is followed by background removal, color space
transformation, and corroded pixel detection rate determination. From the results presented
in Table 3, it is found that in comparing the processed and preprocessed images, the
brightness change is not beyond 10%. This implies that the proposed model did not change
the brightness of the images unnecessarily to change the image quality.

Table 3. Comparison of brightness values of original and preprocessed sound and UAV images.

Image Original Brightness (cd) Preprocessed Brightness (cd) Brightness Change

Sound_1 61.40 56.10 8.63

Sound_2 59.60 54.69 8.24

Sound_3 64.54 57.78 10.47

Sound_4 64.54 57.78 10.47

Sound_5 59.95 54.69 8.76

Sound_6 62.62 59.29 5.32

Sound_7 62.80 59.61 5.09

Sound_8 63.56 60.57 4.71

UAV_1 50.18 53.12 −5.85

UAV_2 56.23 55.34 1.57

The same sound images were used for quality check. From the reported values of
quality metrics in Figure 13, it was found that after preprocessing, all values decreased.
The average reduction in BRISQUE is 21.5%, while for NIQE and PIQE quality metrics, the
reduction rates are 10.53% and 37.53%, respectively. This implies that the quality of the
images improved with the brightness modification.
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A comparison of images in the original and preprocessed conditions is presented
in Table 4. In Tables 4 and 5, all the brightness values in candela(cd) of different images
are presented. Further investigation was performed on the influence of preprocessing on
the TPR and TNR values. From the result, it is reported that brightness change did not
significantly affect TNR values. On the other hand, a change in brightness above 10%
reduced the correct detection rate up to 20%. The brightness of all the images except
images 5 and 8 changed by less than 10%; the corroded zone segregated from the sound
part more clearly. For example, in image 3, the right corner portion of the image was
overexposed to the sun; therefore, the corroded part became blurry. After preprocessing
with a 2.32% brightness increment, all the corroded parts became prominent, which finally
led to a 9% increment in TPR value. The highest increment in TPR value happened for
image 4, which is 20% with 3.5% brightness modification. The reason behind this significant
increment can be justified by the binary image presented in Table 6.

Table 4. Comparison of images in original and preprocessed condition.

Image Original Preprocessed Image Original Preprocessed

1
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Table 5. Comparison of brightness values of original and preprocessed images.

Image
Brightness (cd) Brightness

Change (%) Change in TPR (%)
Original Preprocessed

1 61.63 57.27 7.08 3

2 54.33 52.46 3.45 9

3 58.35 59.71 −2.32 9

4 57.33 55.34 3.48 20

5 50.64 58.15 −14.81 −6

6 53.61 54.17 −1.042 12

7 58.56 57.53 1.77 7

8 44.24 51.54 −16.49 −20
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Table 6. Comparison of a binary image with and without preprocessing.

Ground Truth Preprocessed Without Preprocessing
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The preprocessing steps included the conversion to the YCbCr color space, which was
found to be better for the separation of a corroded part from the background. Moreover,
proper extraction of the corroded region from the sound part helped in denoising. On the
other hand, the TPR value decreased by 20%, with a 16.5% increment in brightness for
image 8. From Table 4, it is clear that after the preprocessing steps, color modification of
the sound portion took place, and thus due to the similarity in color, the model predicted
these as false positives. The change in brightness after preprocessing is determined with
respect to the original image; a negative sign implies an increment after preprocessing. On
the other hand, a negative sign for TPR changes means a decrement in correct detection
with respect to the original image.

5.2. Optimum Threshold and Morphological Operators

In this study, both the Otsu and global threshold methods were used for image
binarization prior to preprocessing. For the global thresholding method, the threshold
value was not selected randomly. The value of the performance metrics for 0 to 1 threshold
value with increment 0.01 have been determined for each image (Figure 10). For all images,
there was no common intersection point for the plotted curves. The summation of the true
positive and true negative was determined for each threshold value (Figure 14). From the
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comparison of Figures 10 and 14, it can be deduced that at the intersection of the curves,
as the TPR value increased, the TNR decreased significantly. For example, most of the
performance metrics curves reached it’s peak at threshold value 0.6. However, in Figure 14,
it is depicted that the correct prediction rate of the sound pixels decreased by around 0.6.
The selected threshold value ranged from 0.27–0.52 for the images. Beyond this range, the
summation of TPR and TNR drastically dropped. In general, the Otsu and global threshold
methods work better on the images with bimodal histograms. Since the tested images are
with different scales of corrosion, the pixel intensity distribution would not be bimodal.
From Figure 14, it is evident that TPR+TNR-values change even with a 0.01 increment in
the threshold value. All the performance metrics related to each threshold method are
reported in Table 7. From the result, it is found that Otsu reduced the overall accuracy of
the model by 20%; therefore, global threshold values were adopted for the binarization of
the preprocessed images. After extracting the connecting edges, a dilation operator was
implemented with line-shaped structural element size 20- and 180-degree angles. This is
the optimum value for both size and angle. False-positive detection was higher with the
increasing size.
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Table 7. Comparison of Otsu and global threshold.

Image No. Otsu/Global Values TPR (%) TNR (%) Accuracy (%) F1-SCORE

1
Otsu = 0.47 100 48 49 8

Global = 0.27 71 98 96 58

2
Otsu = 0.6 41 11 30 83

Global = 0.52 77 74 76 80

3
Otsu = 0.4 56 98 80 71

Global = 0.41 41 99 74 57

4
Otsu = 0.53 78 57 62 48

Global = 0.45 51 69 66 40
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Table 7. Cont.

Image No. Otsu/Global Values TPR (%) TNR (%) Accuracy (%) F1-SCORE

5
Otsu = 0.53 99 31 48 48

Global = 0.45 93 53 89 81

6
Otsu = 0.33 60 68 44 37

Global = 0.46 33 95 44 37

7
Otsu = 0.6 95 43 53 49

Global = 0.27 40 95 85 49

8
Otsu = 0.33 77 92 85 83

Global = 0.35 80 91 86 84

5.3. Performance Metrics

In Figure 15, all the relevant parameters of performance metrics are presented for
both the original and preprocessed images. From the results presented in Figure 15, TPR
and accuracy are seen to have increased for all represented images except for images 5
and 8. The rate of increment for each image varies from 10 to 20%. The average TPR value
for all preprocessed images was about 66%, whereas this value was 56% for the images
without preprocessing. Among the investigated images, the corroded areas with uniform
illumination and without undesired objects were categorized with an average true positive
rate of 70%, whereas for uneven images, it is around 60%. The reduction in corrosion
detectability in images 5 and 8 could be due to the loss of some features in the image during
illumination modification, such as the increment in brightness. The reported brightness
increment is 14–16% for these two images, which is beyond the optimum value. On the
contrary, the proposed algorithm increased the accuracy and true positive rates by 7–10%
for the preprocessed images. The average TNR value for preprocessed images is 90%,
whereas it is 84% for images without preprocessing. These values indicate that the model
successfully detected the sound pixels. The overall rate of accuracy for the preprocessed
images was 90%, whereas for the original images it was about 77%. Similarly, the F1 score
considerably increased from 60% for the unprocessed images to 67% for the preprocessed
images. The mean IOU increased from 46% to 57.3% after preprocessing of images.
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5.4. Efficacy of Proposed Method
5.4.1. Comparision with the Previous Method

The authors adopted the methodology proposed in the previous study in [15]. The
researchers in [15] acknowledged that they had intentionally ignored the background for
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the sake of easiness of model development. On the other hand, a background removal
algorithm was incorporated by the authors in this study. After comparing two method-
ologies, it has been revealed that the proposed methodology detected 23% more corroded
pixels than the method mentioned in [15] when the image had background. However, the
proposed method showed its superiority, with 11% more correction detection, even with
the images with very negligible background. The results are presented in Table 8.

Table 8. Comparative results with previous method.

Previous Method Proposed Method
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5.4.2. Robustness of Model Irrespective to Dataset

The robustness of the proposed model was evaluated qualitatively on several images
collected by UAS from in-service ancillary structures. From visual scrutiny, it was confirmed
that the model was capable of segmenting the corroded pixels from the background at
large. In addition to this, it is worth mentioning that these test images were not used during
model development as they were collected after the model was developed. Results are
presented in Table 9.

Table 9. Robustness evaluation of proposed model on external images.

Original Image Binary Image by Proposed Model
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The efficacy of the developed model was evaluated in two different ways: compari-
son with previous method and tested on external images. In comparison with the previ-
ous method, the proposed model detected 23% more corroded pixels correctly from the 
images with background. Qualitative results of the proposed model on the external im-
ages are also promising.  

The study revealed that several factors, such as the presence of background objects, 
preprocessing, color space used for processing, image quality, and thresholding values, 
affect the performance of any conventional image processing model. Several of these 
shortcomings have been investigated and addressed through the proposed methodolo-
gy. The results from this study show significant promise for the future adoption of au-
tonomous unmanned aerial systems and artificial intelligence methods for image-based 
corrosion monitoring and detection in ancillary structures. Limitations of the proposed 
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proposed preprocessing steps. As a first step of background removal, a boundary was
drawn by a polygon around the background. Since it is drawn manually, leaving out any
background pixel can cause a false prediction. Like the other image processing method, the
threshold value for binarization needs to be defined, which might hinder the autonomy of
the model to some extent.

6. Conclusions

This study presents a novel image-based technique to detect corrosion in ancillary
structures. The model was evaluated on sets of images with and without preprocessing. The
maximum 20% TPR value improved after the preprocessing steps, followed by background
removal and color space transformation. However, the brightness modification should
be within the optimum range. Among the investigated images, the corroded areas with
uniform illumination and without undesired objects were categorized with an average
true positive rate of 70%, whereas for uneven images it was around 60%. Regarding the
threshold method, optimization of the threshold value with respect to the performance
metrics showed better results than Otsu.

The efficacy of the developed model was evaluated in two different ways: comparison
with previous method and tested on external images. In comparison with the previous
method, the proposed model detected 23% more corroded pixels correctly from the images
with background. Qualitative results of the proposed model on the external images are
also promising.

The study revealed that several factors, such as the presence of background objects,
preprocessing, color space used for processing, image quality, and thresholding values,
affect the performance of any conventional image processing model. Several of these
shortcomings have been investigated and addressed through the proposed methodology.
The results from this study show significant promise for the future adoption of autonomous
unmanned aerial systems and artificial intelligence methods for image-based corrosion
monitoring and detection in ancillary structures. Limitations of the proposed image-based
algorithms include the selection of the optimum threshold value for binarization, generic
brightness modification, and the need for background removal. Deep learning semantic
segmentation models in combination with image processing methods could be considered
for future work to develop a robust corrosion detection model to combat this limitation.
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