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Abstract: Earthquake-induced soil liquefaction (EISL) can cause significant damage to structures,
facilities, and vital urban arteries. Thus, the accurate prediction of EISL is a challenge for geotechnical
engineers in mitigating irreparable loss to buildings and human lives. This research aims to propose
a binary classification model based on the hybrid method of a wavelet neural network (WNN) and
particle swarm optimization (PSO) to predict EISL based on cone penetration test (CPT) results. To
this end, a well-known dataset consisting of 109 datapoints has been used. The developed WNN-PSO
model can predict liquefaction with an overall accuracy of 99.09% based on seven input variables,
including total vertical stress (σv), effective vertical stress (σ′v), mean grain size (D50), normalized
peak horizontal acceleration at ground surface (αmax), cone resistance (qc), cyclic stress ratio (CSR),
and earthquake magnitude (Mw). The results show that the proposed WNN-PSO model has superior
performance against other computational intelligence models. The results of sensitivity analysis using
the neighborhood component analysis (NCA) method reveal that among the seven input variables, qc

has the highest degree of importance and Mw has the lowest degree of importance in predicting EISL.

Keywords: liquefaction; prediction; wavelet neural network (WNN); particle swarm optimization
(PSO); cone penetration test (CPT)

1. Introduction

Natural disasters, such as earthquakes, have long been associated with risks to human
life and environmental degradation. Earthquake-induced soil liquefaction (EISL) is one of
the most important geotechnical phenomena, and occurs in loose, saturated, and non-dense
sandy soils during an earthquake. This phenomenon causes the pore water pressure to
increase due to the soil’s tendency to decrease in volume, and as a result, it reduces the
effective stress in the soil. In this case, the shear resistance of the soil is greatly reduced and
approaches almost zero, and finally, the granular materials in the soil transform from solid
to liquid [1,2]. Several factors can affect the occurrence of EISL, including the intensity and
magnitude of the earthquake, the type and mechanical characteristics of local soil, unit
weights, relative density, fine content, mean particle diameters, the void ratio, and the initial
confining pressure during the earthquake [1,3–6]. The EISL can cause significant damage to
structures, facilities, and vital urban arteries. It can also cause loss of life and geographical
disasters, such as the rising of underground facilities, subsidence of buildings, landslides,
and loss of life [7]. Therefore, predicting the EISL potential is a basic and essential step in
designing structures to reduce earthquake damage. Although the phenomenon of EISL has
been known for a long time, it has been widely studied by geotechnical engineers due to
the massive destruction of several strong earthquakes such as the Niigata 1964, Kocaeli
1999, Chi-Chi 1999, Baja California 2010, Tohoku 2011, and Bushehr 2013 [1,8–13].
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In general, the prediction of liquefaction is a difficult and complicated task due to
the complicated mechanism of soil liquefaction and its relationship with numerous influ-
encing factors. Therefore, many researchers have proposed several methods in the last
three decades. Traditional techniques for estimating the liquefaction resistance of soils
include statistical methods and laboratory tests, including the cyclic simple shear test,
the cyclic triaxial test, and the cyclic torsional test, which are not only expensive and
time-consuming [14], but also have several limitations [15]. For example, the insufficient
accuracy of statistical methods [16] and the dependence of laboratory methods on sampling
and testing methods have led to unreliability [17].

Recently, field test methods based on the cone penetration test (CPT) [7,9,18–24],
standard penetration test (SPT) [6,7,14,17,25–30], and shear wave velocity (VS) [17,31] test
have become the most widely used approaches to predict EISL. SPT has limitations in
cohesive soils and coarse-grained soils, and it provides discrete datapoints rather than
continuous profiling. The shear wave test involves sending shear waves into the ground
and measuring their travel time and velocity. This test requires specialized equipment
and expertise and is typically conducted in conjunction with other site investigations.
In summary, while both CPT and SPT can provide valuable information for assessing
liquefaction potential, CPT is generally considered the more accurate and reliable due
to its continuous profiling and direct measurement of soil resistance. The shear wave
test provides additional insights into the dynamic properties of soils and can be used in
conjunction with other tests for a comprehensive liquefaction assessment. However, the
CPT has attracted more attention from many geotechnical researchers in the last 20 years
since it is consistent, faster, and repeatable [7,9,19–24].

With the development of soft computing techniques, many scholars have tried to
develop these models for solving science and engineering problems [2,32–45]. These
techniques such as artificial neural networks (ANN), fuzzy neural inference system (Neuro-
Fuzzy), and the support vector machine (SVM) have also been proposed to predict EISL
using in situ test data. Goh investigated the feasibility of using various ANN models
such as a backpropagation (BP) neural network and probabilistic neural network (PNN)
to assess the liquefaction potential based on historical cases [46,47]. A general regression
neural network (GRNN) model has been developed by Hanna et al. [16] to determine the
occurrence of EISL using the field test data from the earthquakes in Taiwan and Turkey.
Rezania et al. [24] presented an evolutionary polynomial regression (EPR) to estimate the
EISL potential of sands based on the CPT data. Kayadelen developed two models based
on genetic expression programming (GEP) and adaptive neuro-fuzzy inference system
(ANFIS) to estimate the safety factor for the liquefaction of soils using the data from the
earthquakes in Turkey and Taiwan [48]. Muduli and Das proposed a classification approach
based on multi-gene genetic programming (MGGP) to evaluate soil liquefaction using a
large CPT dataset [22]. Samui developed an SVM model to predict the EISL based on actual
CPT data from the 1999 Chi-Chi earthquake [19]. Ardakani and Kohestani investigated the
potential of the decision tree (C4.5) algorithm for estimating EISL using CPT test results [23].
Xue and Xiao developed two hybrid SVM classifiers based on the genetic algorithm (GA)
and grid search (GS) to estimate the potential of soil liquefaction based on the CPT data
from five significant earthquakes [9]. Xue and Liu used two optimization algorithms,
namely particle swarm optimization (PSO) and GA, to select the optimal parameters and
prediction accuracy of the backpropagation (BP) neural network model using the CPT
data from eight earthquakes between 1964 and 1983 to forecast the EISL susceptibility of
soil [21]. Kurnaz and Kaya predicted the potential of soil liquefaction using an ensemble
model based on a group method of data handling neural network based on CPT data [14].
Rahbarzadeh and Azadi used a fuzzy support vector machine (FSVM) classification method
optimized with a hybrid PSO and GA to improve the prediction of soil liquefaction using
CPT data [20]. Mahmood et al. proposed a hybrid approach based on a Bayesian belief
network (BBN) to predict the potential of EISL using CPT data [49]. Zhang and Wang
presented a hybrid classifier ensemble by integrating different base classifiers including
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BP, SVM, RF, multiple linear regression (MLR), naive Bayes (NB), k-nearest neighborhoods
(KNN), and logistic regression (LR) to improve the prediction accuracy of soil liquefaction.
GA was also applied to tune the hyperparameters and weights of all classifiers [7]. Cai et al.
developed a least squares support vector machine (LSSVM) and a radial basis function
neural network (RBFNN) optimized by differential evolution (DE), GA, and grey wolf
optimization (GWO) to assess the liquefaction potential based on CPT test results [50]. The
results showed that LSSVM-GWO and RBFNN-GWO outperformed the other classifiers.

Examining computational intelligence models developed to predict EISL shows that
some of these models have not reached sufficient accuracy and have been under-fitted or
over-fitted in the training process. On the other hand, regarding developing computational
intelligence models for predicting EISL, due to the complexity of the developed models,
the final model or computer code for predicting EISL using CPT test results has not been
provided. The lack of clear presentation of these models renders these methods unusable in
practice for engineers. Therefore, it seems necessary to develop a computational intelligence
method that, in addition to high accuracy, can be expressed and implemented in a simple
and straightforward manner, in order to predict EISL via CPT test results.

This study proposed a hybrid intelligent method based on WNN and PSO to predict
the potential of EISL based on the CPT results. PSO is employed to train WNN to increase
its accuracy in predicting the liquefaction potential. The developed WNN-PSO model’s
accuracy was compared to other computational intelligence methods (e.g., ANN and SVM).
To the best of the authors’ knowledge, this is the first time that WNN architecture is used
to predict EISL based on CPT test data. Based on the discussion above, the application of
the WNN-PSO model may be more accurate in estimating EISL. Additionally, in this study,
the MATLAB function for the simulation of the optimized WNN model is provided, which
renders geotechnical engineers or researchers able to estimate EISL via CPT results.

2. Methods
2.1. Wavelet Neural Networks

ANNs are statistical methods based on the structure of the brain to determine com-
plicated relationships between inputs and outputs [16]. One of the primary merits of
ANNs over traditional statistical approaches is that they can learn with no prior knowledge
about the relationships between independent and dependent variables [51]. ANNs have
successfully been employed to solve several geotechnical problems [14,16,47,50,52–54].

The WNN, proposed in 1992 by Zhang and Benveniste [55], is an advanced hybrid
version of the ANN and wavelet transform [56], which employs the wavelet function as
the activation function, as a substitute for the sigmoid activation function.

Three types of layers, including the input layer, the hidden layer, and the output layer,
construct the architecture of WNN. Figure 1 shows the topology of the wavelet neural
network in this study.

In Figure 1, X = [x1, x2, . . . , xn]
T is the vector of the input variables, y is the predicted

value (output), wij(i = 1, . . . , n; j = 1, . . . , m) is the weight of hidden layer, wj(j = 1, . . . , m)

is the weight of output layer, and ψdj ,τj(j = 1, . . . , m) is the daughter wavelet function.
In order to compute the output value of WNN, for each hidden neuron (e.g., jth

neuron) the connecting weights W =
[
w1j, w2j, . . . , wnj

]
between the inputs and the jth

wavelet neuron are firstly multiplied (dot product) by the vector of neuron inputs X =

[x1, x2, . . . , xn]
T to represent the importance of the inputs and then all of the weighted

inputs are algebraically added by the summation block to compute the input value of the
jth neuron in the hidden layer (i.e., netj). After that, the output of the jth neuron in the
hidden layer is calculated as follows [57]:

ψdj ,τj
(
netj

)
= ψ

(
netj − τj

dj

)
(1)
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where ψ is the wavelet function, dj is the value of dilation for neuron j, and τj is the value
of translation for neuron j in the hidden layer. The most common wavelet functions are
listed in Table 1.
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Table 1. Wavelet function used in the WNN.

Wavelet Function Equation

Morlet ψ(t) = cos(1.75t)exp
(
− t2

2

)
Meyer

(approximate formula) ψ(t) = 35t4 − 84t5 + 70t6 − 20t7

Gaussian ψ(t) = 1√
2π

exp
(
− t2

2

)
Mexican hat ψ(t) = c

(
1− t2)exp

(
− t2

2

)
, c = 2√

3
π
−1
4

Shannon ψ(t) =
sinπ(t− 1

2 )−sin2π(t− 1
2 )

π(t− 1
2 )

GGW
ψ(t) = sin(3t) + sin(0.3t) + sin(0.03t)

The output y in the output layer is then calculated as Equation (2):

y = Heaviside

(
m

∑
j=1

wjψ
dj ,τj

(
netj

))
(2)

where Heaviside is represented in Figure 2. The Heaviside step function used to transfer
the output y to either 0 or 1. In this study, 1 indicates the occurrence of EISL and 0 indicates
the non-occurrence of EISL.
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2.2. Particle Swarm Optimization

PSO was proposed by Eberhart and Kennedy and is one of several nature-inspired algo-
rithms [58]. It has been successfully applied in many realistic and scientific problems. PSO
was inspired by the observation of swarm behaviors. Each solution in PSO is only one parti-
cle in the search space. All particles have two vectors, i.e., position vector and velocity vec-
tor, which represent the particle’s state in the search space. Each particle i has a position in
the d-dimensional space of the problem, which is represented by Xi =

[
x1

i , x2
i , . . . , xD

i
]
. The

velocity vector of the ith particle is represented by Vi =
[
v1

i , v2
i , . . . , vD

i
]
. In each iteration t,

the position and velocity vectors of the ith particle are updated by Equations (3) and (4):

Vi(t + 1) = w.Vi(t) + c1r1(pbesti(t)− Xi(t)) + c2r2(gbest(t)− Xi(t)) (3)

Xi(t + 1) = Xi(t) + Vi(t + 1) (4)

where pbesti is the personal best position experienced by the particle, and gbest is the global
best position (best-so-far) of all particles in the whole swarm. r1 and r2 are two random
numbers in the range [0, 1]. c1 and c2 are acceleration coefficients which control the tradeoff
between exploration and exploitation. w is the inertia weight. Shi and Eberhart showed
that a higher w helps exploration while a smaller w helps exploitation [59]. The flowchart
of PSO is illustrated in Figure 3.
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2.3. Hybridization of WNN with PSO

In this section, a hybrid model of WNN and PSO is described. In the present study,
the PSO algorithm was used to train the WNN and select optimal input weights, dilations,
and transformations of the hidden neurons, and the input weights of the output neuron.
The objective function used to select these parameters is the accuracy of the WNN. The
accuracy is calculated by Equation (5):

Accuracy (%) =

(
Number o f Corrected Predictions

Total Data

)
× 100 (5)

In order to be compatible and to be able to compare the results of WNN-PSO with
soft computing methods implemented in previous researches, 74 datapoints from 109 total
data were considered as the training set (68%) and 35 datapoints from 109 datapoints
were considered as the testing set (32%). The previous research also considered these two
fractions for training and testing sets. In the next step, the PSO parameters including the
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number of populations, inertia weight, acceleration coefficients, the maximum iteration,
and the lower and upper bound of design variables (wij, wj, d, τ) are set for the training
procedure. Then, the values of the weights, dilations, and translations of the WNN are
randomly initialized. The WNN is trained by these values and the accuracy of the WNN is
computed by Equation (5). In the PSO loop, PSO tries to find and update the optimal values
of weights, dilations, and translations. These steps continue until the maximum iteration is
reached. The procedure for developing the proposed WNN-PSO model to predict the EISL
potential is depicted in Figure 4.
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3. Dataset Description

The dataset used in this study was obtained from Goh [47]. It includes 109 CPT
datapoints with a broad range of parameters from five extreme earthquakes between 1964
to 1983. The majority of these records come from locations that have flat terrain and consist
of sand or silty sand deposits. The CPT data include 79 case records from China based
on the Tangshan earthquake, 16 from Japan based on the Niigata and Nihonkaichubu
earthquakes, nine from the USA based on the Imperial Valley earthquake, and five from
Romania based on the Vrancea earthquake. Out of 109 records, the occurrence of EISL
is reported in 74 records, and the non-occurrence of EISL is reported in 35 records. The
dataset has been provided in Appendix A. Sensitivity to EISL depends on seismic and soil
parameters. Based on the previous research, the evaluating indices, including total vertical
stress (σv), mean grain size (D50), effective vertical stress (σ′v), cone resistance (qc), cyclic
stress ratio (CSR), normalized peak horizontal acceleration at ground surface (αmax), and
earthquake magnitude (Mw) have been considered for the assessment of the EISL potential.
Table 2 indicates the seismic and soil properties of the desired dataset.

Table 2. Seismic and soil properties of the desired dataset.

Description Symbol Range

Cone resistance (MPa) qc [1, 31.4]
Effective vertical stress (kPa) σ′v [6, 122]

Total vertical stress (kPa) σv [17, 249]
Average grain size (mm) D50 [0.06, 0.67]
Earthquake magnitude Mw [6.6, 7.8]

Cyclic Stress Ratio CSR [0.11, 0.64]
Normalized peak horizontal acceleration at ground surface αmax [0.1, 0.8]

Table 3 shows the statistical descriptions of the data, including the minimum, maxi-
mum, mean, median, and standard deviation (SD) of each input variable for the training
set, the testing set, and the overall data. A frequency histogram for input variables has
been depicted in Figure 5.

Table 3. Statistical descriptions of the training, the testing, and the overall sets.

Variables
Min Max Mean Median SD

The Training Set

qc 1 31.40 7.11 5.55 6.08
σv 6 122 59.68 54 28.69
σ′v 17 249 99.05 88 61.68

D50 0.06 0.67 0.23 0.17 0.17
Mw 6.6 7.8 7.63 7.8 0.35
CSR 0.06 0.90 0.29 0.23 0.16
amax 0.10 0.80 0.32 0.23 0.21

The Testing Set

qc 1.03 18.94 6.02 4.24 4.63
σv 22 102 57.46 57 18.39
σ′v 23 162 79.60 76 32.75

D50 0.13 0.32 0.20 0.19 0.05
Mw 7.20 7.80 7.71 7.80 0.21
CSR 0.09 0.41 0.18 0.16 0.05
amax 0.20 0.22 0.20 0.20 0.01

The Overall

qc 1 31.40 6.76 5 5.66
σv 6 122 58.96 55 25.77
σ′v 17 249 92.81 76 54.70

D50 0.06 0.67 0.22 0.17 0.14
Mw 6.60 7.80 7.64 7.80 0.35
CSR 0.06 0.90 0.25 0.21 0.15
amax 0.10 0.80 0.28 0.20 0.18
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Before training, the data were normalized as follows:

u =
v− vmin

vmax − vmin
(6)

where v is the original value of the input parameter, and vmin and vmax are the minimum
and the maximum values of the input parameter.
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4. Developing WNN-PSO Model for the Assessment of Liquefaction

In this study, a program was developed in the MATLAB environment to train and test
the WNN-PSO model.

4.1. The Parameter Settings

In the proposed model, the control parameters affecting the wavelet neural network
training using the PSO algorithm are the number of the initial population, inertia weight,
acceleration coefficients, the lower and upper bounds of the design variables, and the stop
criterion, which is the maximum allowable iterations. Table 4 reported the settings of the
control parameters of the WNN-PSO model.

Table 4. The parameter setting of the WNN-PSO model.

Control Parameters Symbol Value

Number of initial populations nPop 200
Maximum iteration MaxIt 1000

Inertia weight w 0.1
Acceleration coefficient c1 0.25
Acceleration coefficient c2 0.25

Lower bound of variables VarMin −10
Upper bound of variables VarMax +10

4.2. The Optimal Architecture of WNN-PSO

In this study, the WNN model with one hidden layer has sufficient accuracy. The
number of hidden neurons is determined by trial-and-error process. To this end, various
architectures with different numbers of hidden neurons from 1 to 20 were used to train and
test the networks. The most optimal structure of the WNN was determined to be 7-2-1,
which indicates seven input neurons, two hidden neurons, and one output neuron.

Moreover, six different wavelet functions including Shannon, GGW, Gaussian, Mexi-
can hat, Meyer, and Morlet were examined as the wavelet function in the hidden layer. The
optimal architecture of the WNN-PSO model with these wavelet functions was tested to
choose the best wavelet function for the model. Each model using each wavelet activation
function was run 10 times separately, and the best model for each wavelet function was
selected as the candidate model.

The performance accuracy (%) of each wavelet function for the training set, the testing
set, and the overall data are presented in Table 5. According to the results, the Morlet
wavelet function has the highest accuracy of 98.68%, 100%, and 99.09% for the training set,
the testing set, and the overall, respectively. Therefore, the Morlet function was selected
as the wavelet function in the optimal model. The MATLAB function for simulating the
optimal WNN model has been represented in the Appendix B.

Table 5. The performance accuracy of each wavelet function in the WNN-PSO.

Wavelet Function
Accuracy (%)

Train Test Overall

Shannon 97.37 100 98.16
GGW 97.37 96.97 97.25

Gaussian 97.37 100 98.16
Mexican Hat 97.37 96.97 97.25

Meyer 97.37 96.97 97.25
Morlet 98.68 100 99.09
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4.3. Performance of WNN-PSO Model

This section discussed the performance of the optimal WNN model and the effec-
tiveness of the WNN-PSO model for the assessment of EISL. The best WNN model was
obtained with the architecture of 7-2-1 and the Morlet wavelet function.

Figure 6 depicts the confusion matrix to test the performance of the optimal WNN
model. A confusion matrix, widely used in binary classification, is a performance measure-
ment consisting of four different combinations of predicted and actual values, which are
true positive (TP), false positive (FP), true negative (TN), and false negative (FN). Here, TP
represents that EISL has occurred and was correctly estimated. FP denotes that non-EISL
is incorrectly estimated as EISL. TN means that non-EISL has not occurred and it was
correctly estimated. FN denotes that EISL is incorrectly estimated as non-EISL.
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The performance of the WNN-PSO model was evaluated by several performance
metrics, such as accuracy, precision, sensitivity, and specificity derived from the confusion
matrix. These performance metrics are the most widely used metrics for binary classifica-
tion [60]. Table 6 shows the formulas for these evaluation metrics.

Table 6. The performance metrics with formulas.

Metrics Formulation

Precision TP
TP+FP

Sensitivity TP
TP+FN

Specificity TP
TN+FP

Accuracy TP+TN
TP+TN+FP+FN

Figure 7 illustrates the confusion matrix of the optimal WNN model for the training
and testing sets using the CPT data. From the 74 records in the training set (Figure 7a),
73 records were correctly predicted (TP = 51 and TN = 22), and 1 record was wrongly
predicted (FN = 1 and FP = 0). As shown in Figure 7b, all 35 records in the testing set
were correctly predicted (TP = 23 and TN = 12). Moreover, the performance metrics of the
proposed WNN-PSO model for the training, the testing, and all data are represented in
Table 7.
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Table 7. The performance metrics of the proposed WNN-PSO model.

Performance Metrics Train Test Overall

Precision 100 100 100
Sensitivity 98.08 100 98.67
Specificity 96 100 97.14
Accuracy 98.68 100 99.09

5. Comparison with Other Soft Computing Models

The performance accuracy of the optimal WNN model was compared with other
models to evaluate the capabilities of the hybrid WNN-PSO method. To this end, six
available models, including ANN [47], decision trees [23], PSO-SVM [18], GS-SVM and
GA-SVM [9], and PSO-GA-SVM [20] were employed. These models also used 67% of the
data (74 values) for the training set and 33% of data (35 values) for the testing set.

The performance accuracy of using the optimal WNN model based on the CPT data
to predict the EISL was compared with the models mentioned in Table 8. Prediction results
show that the classification accuracy of the proposed WNN-PSO method surpasses that of
the other methods. As shown in Table 8, the accuracy of the WNN-PSO for the training set
is 98.68%, which is higher than the success rates of GS-SVM (91.89%), GA-SVM (97.29%),
ANN (98.60%), and the C4.5 decision tree (95.90%). The classification accuracy of the WNN-
PSO for the testing set (100%) is also higher than those of the GS-SVM (94.29%), GA-SVM
(97.14%), ANN (94.30%), and the C4.5 decision tree (97.10%). These results showed that the
proposed WNN-PSO outperformed the other methods in the training and testing phases.
Moreover, the overall accuracy of WNN-PSO for the whole CPT dataset is 99.09%, which
is better than those of GS-SVM (92.66%), GA-SVM (97.25%), ANN (97.20%), and the C4.5
decision tree (96.30%). Although the overall accuracy of the WNN-PSO is equal to that
of the PSO-GA-SVM (99.09%), the WNN-PSO method provides a simpler model due to
the low number of neurons in the hidden layer. It is worth noting that the PSO-GA-SVM
model has not been provided by researchers [20] and so it cannot be employed for further
predictions. On the other hand, in this research the MATLAB code for predicting EISL is
represented, which can be used by geotechnical engineers in practice.
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Table 8. The accuracy comparison of the WNN-PSO model with the other methods.

Method
Performance Accuracy (%)

Train Test Overall

ANN [47] 100.00 85.70 95.41
C4.5 [23] 95.90 97.10 96.30

GA-SVM [9] 97.29 97.14 97.25
GS-SVM [9] 91.89 94.29 92.66

PSO-SVM [18] - - 96.50
PSO-GA-SVM [20] - - 99.09

WNN-PSO (This study) 98.68 100 99.09

6. Sensitivity Analysis

After developing the soft computing model, it is possible to determine the degree
of importance of each of the input variables on the output of the model by means of
sensitivity analysis. It is essential to carry out different analyses on the proposed model
to validate and test the robustness of the model for unknown data. Sensitivity analysis
determines the degree of importance of the input variables on the output of the model. In
this study, the neighborhood component analysis (NCA) [61] algorithm was utilized to
determine the degree of importance of input variables on the prediction of EISL potential.
Let S =

{(
xi, yj

)
, i = 1, . . . , n; j = 0, 1

}
as the training set with n records for two-class

classification problem, where xi ∈ Rp are the feature vectors and yj are the labels of classes.
The objective of NCA is to train a classifier f : Rp → {0, 1} which obtains a feature vector
and predicts the proper label y for x. Build a randomized classifier which (1) selects
randomly a reference point for x as Re f (x), and (2) labels x based on the label of Re f (x). A
possibility exists that an input variable xi in the NCA algorithms is related to the class yj.
The distance between two records is obtained by Equation (7):

dw =
p

∑
r=1

w2
r
∣∣xir − xjr

∣∣ (7)

where wr is the weight of the input variable.
The reference points (x) in the input vector are obtained by Equation (8):

P(Re f (x) = xi|S ) =
k(dw(x, xi))

∑N
j=1 k(dw(x, xi))

(8)

The probability of selecting xj as the reference point for xi is obtained by Equation (9):

pij = P
(

Re f (xi) = xj|S
)
=

k
(
dw
(
xi, xj

))
∑N

j=1 j 6=i k
(
dw
(

xi, xj
)) (9)

Herein, k corresponds to the kernel function (k(z) = exp
(
− z

σ

)
) and σ is the width of

kernel function whereas the correct classification possibility of the real class is calculated
by Equation (10).

pi = ∑
j

yij pij (10)

where yij = 1 if and only if yi = yj, otherwise yij = 0.
The results of the sensitivity analysis using NCA is illustrated in Figure 8.
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The results of sensitivity analysis using the NCA method reveals that among the
seven input variables, the cone resistance (qc) has the highest degree of importance and
earthquake magnitude (Mw) has the lowest degree of importance in predicting EISL. Other
input variables in terms of importance to predicting the EISL based on the CPT results after
qc include mean grain size (D50), total vertical stress (σv), cyclic stress ratio (CSR), effective
vertical stress (σ′v), and normalized peak horizontal acceleration at ground surface (αmax),
respectively.

7. Limitations and Future Studies

One of the limitations of the computational intelligence model developed in this
research and other research related to predicting EISL via CPT data is the use of a limited
dataset for training and testing the model. It should also be noted that most computational
intelligence models have appropriate accuracy and reliability only in the range of inputs
used for training the model, and if the input data are not within the range of training data,
the developed model should not be used for extrapolation.

For future research, it is suggested that first the dataset related to EISL prediction based
on CPT data be expanded and then the method proposed in this research be employed
to provide a model with higher generalizability for practical applications. Additionally,
the hybrid WNN-PSO method which is proposed in this research can be used to predict
liquefaction based on the results of other field tests (e.g., SPT or shear wave velocity).

8. Conclusions

Because of the numerous damages and disasters caused by earthquakes, predicting
seismic liquefaction is an important task in geotechnical engineering. In this paper, a hybrid
WNN-PSO was developed to predict the occurrence of liquefaction based on the seven
input variables, including total vertical stress (σv), effective vertical stress (σ′v), normalized
peak horizontal acceleration at ground surface (αmax), cone resistance (qc), mean grain size
(D50), cyclic stress ratio (CSR), and earthquake magnitude (Mw). In the developed model,
the PSO algorithm was used to train the wavelet neural network and find the optimal
values of weights, dilation, and translation parameters. A reliable CPT dataset including
109 datapoints was employed for the training of the WNN. In order to find the optimal
wavelet neural network topology to predict seismic liquefaction, different numbers of
neurons in the hidden layer as well as different wavelet functions (e.g., Morlet, Gaussian,
Mexican hat, GGW, Meyer, Shannon) in the hidden layer were investigated. The optimal
architecture of the WNN was determined as 7-2-1, which shows that the optimal WNN has
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seven neurons in the input layer, two neurons in the hidden layer with the Morlet wavelet
function and one neuron in the output layer with a Heaviside transfer function. Several
performance indicators for binary classification models, including accuracy, precision,
sensitivity, and specificity, were used to evaluate the performance of the WNN-PSO model.
These indices are equal to 98.68%, 100%, 99.08%, and 96% for the training set, equal to 100%,
100%, 100%, and 100% for the testing set; and also equal to 99.09%, 100%, 98.67%, and
97.14% for the total data, respectively. A comparison of the results obtained by the proposed
WNN-PSO model with those obtained by the other methods (e.g., ANN, SVM, and C4.5)
showed that the proposed model has superior classification performance in predicting
the nonlinear relationship between the seismic and soil parameters and the liquefaction
potential. The results of sensitivity analysis using the NCA method showed that the qc
has the highest degree of importance and Mw has the lowest degree of importance in
predicting EISL.
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Appendix A

Table A1. Dataset for developing WNN-PSO model (where 1 = liquefaction, 0 = no liquefaction).

Mw σ’
v σv qc (MPa) αmax CSR D50 (mm) Liquefaction

Niigata (1964)

7.5 36 53 3.20 0.16 0.15 0.33 1
7.5 52 87 1.60 0.16 0.16 0.33 1
7.5 58 99 7.20 0.16 0.17 0.33 1
7.5 83 152 5.60 0.16 0.17 0.33 1
7.5 63 91 5.45 0.16 0.14 0.33 1
7.5 80 127 8.84 0.16 0.15 0.33 1
7.5 120 211 9.70 0.16 0.15 0.33 1
7.5 46 86 8.00 0.16 0.19 0.30 0
7.5 50 95 14.55 0.16 0.18 0.30 0

Nihonkaichubu (1983)

7.7 48 58 10.00 0.23 0.18 0.32 0
7.7 54 73 16.00 0.23 0.2 0.32 0
7.7 65 96 15.38 0.23 0.21 0.32 0
7.7 46 54 1.79 0.23 0.17 0.32 1
7.7 52 64 4.10 0.23 0.19 0.32 1
7.7 67 96 7.96 0.23 0.21 0.32 1
7.7 75 114 8.97 0.23 0.22 0.32 1

Tangshan (1976)

7.8 69 114 1.70 0.4 0.35 0.06 1
7.8 69 114 9.40 0.4 0.41 0.25 1
7.8 85 148 5.70 0.4 0.42 0.25 1
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Table A1. Cont.

Mw σ’
v σv qc (MPa) αmax CSR D50 (mm) Liquefaction

7.8 92 162 7.60 0.4 0.42 0.30 1
7.8 17 17 1.50 0.4 0.27 0.17 1
7.8 21 25 1.00 0.4 0.32 0.17 1
7.8 25 34 5.00 0.4 0.36 0.17 1
7.8 34 38 2.50 0.4 0.29 0.14 1
7.8 43 57 2.60 0.4 0.34 0.14 1
7.8 52 76 3.20 0.4 0.37 0.16 1
7.8 58 89 5.80 0.4 0.39 0.16 1
7.8 74 122 3.50 0.4 0.4 0.16 1
7.8 102 181 8.40 0.4 0.41 0.16 1
7.8 29 38 1.70 0.4 0.35 0.12 1
7.8 29 40 3.50 0.4 0.36 0.12 1
7.8 35 51 4.10 0.4 0.38 0.12 1
7.8 27 29 5.50 0.4 0.29 0.17 1
7.8 40 57 9.00 0.4 0.37 0.32 1
7.8 21 23 7.00 0.4 0.29 0.48 1
7.8 26 34 1.18 0.4 0.35 0.48 1
7.8 33 48 4.24 0.4 0.38 0.48 1
7.8 71 76 11.47 0.4 0.27 0.16 0
7.8 111 160 15.76 0.4 0.34 0.20 0
7.8 56 59 11.39 0.2 0.14 0.21 0
7.8 65 78 12.12 0.2 0.15 0.21 0
7.8 75 99 17.76 0.2 0.17 0.14 0
7.8 49 74 2.65 0.2 0.19 0.14 1
7.8 35 53 4.40 0.2 0.2 0.16 1
7.8 39 61 3.00 0.2 0.2 0.16 1
7.8 81 156 9.00 0.2 0.23 0.08 1
7.8 55 99 2.00 0.1 0.11 0.14 1
7.8 52 95 1.10 0.2 0.23 0.07 1
7.8 106 209 15.50 0.1 0.11 0.08 0
7.8 110 217 6.50 0.1 0.11 0.08 0
7.8 53 91 9.00 0.1 0.11 0.10 0
7.8 58 101 2.50 0.1 0.11 0.10 0
7.8 63 112 16.50 0.1 0.11 0.10 0
7.8 68 91 13.65 0.1 0.06 0.25 0
7.8 58 114 8.47 0.2 0.24 0.062 0
7.8 112 228 4.55 0.2 0.23 0.067 0
7.8 122 249 5.79 0.2 0.22 0.067 0
7.8 55 121 2.48 0.2 0.25 0.062 1
7.8 56 114 1.57 0.2 0.25 0.062 1
7.8 103 213 1.45 0.2 0.23 0.67 1
7.8 106 220 2.15 0.2 0.23 0.67 1
7.8 111 230 2.60 0.2 0.23 0.67 1
7.8 103 213 2.73 0.2 0.23 0.67 1
7.8 106 219 1.78 0.2 0.23 0.67 1
7.8 108 211 7.64 0.2 0.22 0.67 0

Imperial Valley (1979)

6.6 29 29 25.60 0.8 0.44 0.11 0
6.6 36 48 24.70 0.8 0.57 0.11 0
6.6 42 64 31.40 0.8 0.64 0.11 0
6.6 29 29 1.43 0.8 0.44 0.11 1
6.6 42 64 2.48 0.8 0.64 0.11 1
6.6 54 96 4.03 0.8 0.72 0.11 1
6.6 29 29 3.30 0.8 0.44 0.06 0
6.6 36 48 8.80 0.8 0.57 0.06 0
6.6 42 64 6.70 0.8 0.64 0.06 0
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Appendix B

%============================================================
% Function for prediction of liquefaction Potential based on WNN and CPT results
%============================================================
% Inputs: The normalized input matrix with size of m*7
% m: number of records
% Inputs(i,1) = Mw for record i
% Inputs(i,2) = effective vertical stress (sigma’) for record i
% Inputs(i,3) = total vertical stress (sigma) for record i
% Inputs(i,4) = qc for record i
% Inputs(i,5) = a_max for record i
% Inputs(i,6) = CSR for record i
% Inputs(i,7) = D50 for record i
% Input variables must be normalized according to Equation 6.
% LP = 1 indicates the occurrence of liquefaction
% LP = 0 indicates the nonoccurrence of liquefaction

function [LP] = LiquiPoten(Inputs)
[m,~] = size(Inputs);

% Input Wights of Hidden Neurons (WNN)
W = [-0.448717437603079,1.78953847529287,-2.10338723360478,9.99973782460099,...
0.971421106035106,-5.14789077310041,-5.76243838624847;-9.41250119346368,...
-9.87613281466865,9.99424914045257,9.99298530356109,-9.99999609937242,...
-9.99953656016918,-7.91390160448998];

% Translation Values of Hidden Neurons (WNN)
t = [-5.66258019499440,-9.94108203941175];

% 1/Dilation Values of Hidden Neurons (WNN)
d = [-0.193607067688092,-9.99944173142203];

% Weights of Output neuron (WNN)
Wo = [10,9.84065282838905];

%%--------------- Start of WNN Simulation
X = W*Inputs’;
% Applying Translation
x = bsxfun(@minus, x, t’*ones(1,m));
% Applying Dilations
x = bsxfun(@times, x, d’*ones(1,m));

% Morlet Wavelet Function
H = cos(1.75*x).*exp(-x.ˆ2/2);
% output of WNN
O = Wo*H;
% Hard limit activation function
LP = hardlim(O’);
%%---------------- End of WNN Simulation
End
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