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Abstract: This paper is focused on the evaluation of the liquefaction hazard for different sites in
Romania. To this aim, a database of 139 ground motions recorded during Vrancea intermediate-depth
earthquakes having moment magnitudes MW ≥ 6.0 is employed for the evaluation of the equivalent
number of cycles for this seismic source. Several functional forms for the empirical evaluation of the
equivalent number of cycles considering various seismological or engineering parameters are tested
and evaluated. The regression analysis shows smaller uncertainties for the empirical models based on
ground motion engineering parameters. Considering the lack of information in terms of engineering
parameters, a simpler empirical model which accounts for the earthquake magnitude, source–site
distance and soil conditions is selected for the liquefaction hazard analysis. Based on the proposed
empirical model, specific magnitude scaling factors for Vrancea intermediate-depth earthquakes are
proposed for the first time as well. The liquefaction hazard analysis is performed for sites whose
seismic hazard is generated by either the Vrancea intermediate-depth seismic source or by local
shallow crustal seismic sources. In the case of some of the selected sites, liquefaction phenomena were
observed during past large-magnitude earthquakes. Unlike previous studies dealing with liquefaction
analyses for sites in Romania, in this research, the hazard assessment is performed for various ground
motion levels evaluated based on probabilistic seismic hazard assessment. Liquefaction hazard
curves are constructed for each analyzed site. The results of the liquefaction hazard analysis show
that this phenomenon is more likely to occur in the areas exposed to Vrancea intermediate-depth
earthquakes, compared to the areas affected by local shallow earthquakes. In the case of the analyzed
soil profiles from Bucharest, Craiova and Ianca, the minimum liquefaction safety factors less than one
even for seismic hazard levels having mean return periods of 100 years and less.

Keywords: seismic hazard; soil classes; empirical models; engineering parameters; seismological
parameters; liquefaction safety factor

1. Introduction

Liquefaction represents one of the most important primary hazards generated by
earthquake ground shaking. Significant damage to both buildings and lifelines has been
observed during earthquakes occurring in various places [1]. Liquefaction case histories
and empirical relations of earthquake magnitude versus source–site distance at which
liquefaction can occur based on data in the Aegean Sea region have been proposed by
Papathanassiou et al. [2]. In the same context, the study of Meisina et al. [3] presents a
history of occurrences of liquefaction phenomena in Europe. The liquefaction occurrences
during the Canterbury 2010–2011 earthquake sequence are documented by Green et al. [4].
Case histories of liquefaction phenomena in Italy during historic earthquakes were docu-
mented by Berardi et al. [5]. An in-depth geological and geotechnical analysis of the whole
area affected by liquefaction as a result of the 2012 Emilia earthquakes is shown in the
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study of Minarelli et al. [6]. Liquefaction case histories observed during the 2001 Nisqually
(Washington) earthquake are presented by Rasanen et al. [7]. Other earthquakes during
which such phenomena were observed occurred in Japan [8,9], Chile [10], Turkey [11] or
Ecuador (gravelly soil liquefaction phenomena) [12]. Other liquefaction case histories of
gravelly soils have been documented by Hu et al. [13]. Analytical assessments of liquefac-
tion potential, as well as studies related to liquefaction risk were performed in a significant
number of studies in the literature (e.g., [14–26]).

It has to be emphasized that although liquefaction phenomena occurred in Romania
during large-magnitude earthquakes, the number of studies focusing on this topic is
extremely limited. Thus, in the case of Romania, liquefaction phenomena have been
observed during the major Vrancea intermediate-depth earthquakes of November 1940 [27]
and March 1977 [28,29], in some cases at significant distances from the epicenter of the
earthquake (more than 300 km in the case of Craiova and other sites situated nearby).
The report on the Vrancea 1977 earthquake of the Japanese International Cooperation
Agency [30] mentions liquefaction phenomena in Bucharest, Giurgiu, Bragadiru, Craiova,
Faurei and Buda, all sites situated in the southern part of Romania on quaternary deposits
near riverbeds. Some damage to rural buildings was observed at several sites during the
1977 event. It has to be highlighted that one of the first studies in the literature which deals
with the liquefaction phenomena was published in 1962 [31] (in Romanian language). In
the previously mentioned study, a liquefaction analysis is performed for a site situated
on the Black Sea coast of Romania, a site which is also analyzed in the final section of
this study.

In this research, an evaluation of the liquefaction hazard is performed for a number of
sites in Romania. To this aim, considering the characteristics of the Vrancea intermediate-
depth seismic source (influencing the seismic hazard of a large part of the Romanian
territory), an empirical assessment of the number of equivalent cycles is performed using
various models based on both seismological and engineering parameters. Based on a
proposed empirical model, specific magnitude scaling factors to be used in liquefaction
hazard analyses for sites affected by Vrancea intermediate-depth earthquakes are proposed
for the first time. Finally, a liquefaction hazard assessment is performed for sites in Romania
affected by either Vrancea intermediate-depth earthquakes or local shallow earthquakes.
It has to be mentioned that some of the sites were selected based on past liquefaction
occurrence during Vrancea intermediate-depth earthquakes. Moreover, the liquefaction
hazard analysis is performed using ground motion amplitudes obtained from probabilistic
seismic hazard assessment, unlike previous research dealing also with liquefaction hazard,
which employed single scenarios and ground motion amplitudes. Finally, based on the
results of the analyses, liquefaction hazard curves are developed for the analyzed sites.

2. Research Methodology

The research methodology applied in this study is described in this section. The
methodology involves an empirical evaluation of the equivalent number of cycles for
ground motions recorded during Vrancea intermediate-depth earthquakes. The empirical
evaluation is used subsequently in order to evaluate the magnitude scaling factors for
liquefaction hazard analysis, since no such factors are available in the literature for Vrancea
intermediate-depth seismic source. A liquefaction hazard assessment is performed for a
number of sites in Romania, affected by either Vrancea intermediate-depth earthquakes
or crustal local earthquakes. The liquefaction safety factor is computed for ground mo-
tion amplitudes having various exceedance probabilities, which were determined from a
probabilistic seismic hazard assessment. Finally, the liquefaction hazard curves allow for a
rapid evaluation of the occurrence probabilities of this phenomenon. All these steps of the
research methodology are summarized in Table 1.
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Table 1. Flowchart of the research methodology applied in this study.

Step No. Description Sites Affected by
Crustal Seismic Sources

Sites Affected by Vrancea
Seismic Sources

1
Evaluation of the

equivalent number
of cycles

Not necessary
Computed using a ground

motion database from
Vrancea earthquakes

2
Empirical models for

the equivalent
number of cycles

Not necessary Developed based on the
results from step (1)

3
Evaluation of

magnitude
scaling factors

Not necessary Developed based on the
results from step (2)

4 Evaluation of site
seismic hazard

Evaluated based on probabilistic seismic hazard
assessment from a previous study

5 Liquefaction
hazard assessment Evaluated based on SPT data for the selected sites

6 Liquefaction
hazard curves Evaluated for all the ground motion amplitudes

3. Evaluation of the Number of Equivalent Cycles

In order to perform the liquefaction hazard analysis for the selected sites in Ro-
mania, the equivalent number of cycles for ground motions recorded during Vrancea
intermediate-depth earthquakes has to be evaluated, since no such model exists in the liter-
ature. A ground motion database of recordings from five Vrancea intermediate-depth earth-
quakes having moment magnitudes MW ≥ 6.0 is compiled for this analysis. The database
is a part of the larger ground motion database used in the past studies of Yaghmaei-Sabegh
et al. [32] and Pavel and Yaghmaei-Sabegh [33], which deal with the evaluation of the mean
period TM and of the control period TC for intermediate-depth earthquakes. Only ground
motion recordings having a minimum peak ground acceleration (PGA) of 0.05 g [34] are
selected for the analysis. The total number of ground motion recordings used for the evalua-
tion of the number of equivalent cycles is 139. Some characteristics of the earthquakes in the
database are given in Table 2. Smaller-magnitude Vrancea earthquakes were not considered
in the analysis because of the low levels of ground shakings they produce (leading to small
macrosiesmic intensities). In this study, the procedure of Seed et al. [35], described also in
the study of Castiglia and Santucci de Magistris [34], is employed for the evaluation of the
equivalent number of cycles for the ground motion recordings in the database.

Table 2. Characteristics of the earthquakes used in this study.

Date Moment
Magnitude MW

Focal
Depth (km)

No. of Ground
Motion Recordings

PGA
Range (g)

4 March 1977 7.4 94 2 0.10–0.20
30 August 1986 7.1 131 33 0.05–0.30

30 May 1990 6.9 91 47 0.05–0.26
31 May 1990 6.4 87 19 0.05–0.12

27 October 2004 6.0 105 38 0.05–0.21

The distribution of the equivalent number of cycles as a function of the hypocentral
distance R and peak ground acceleration is shown in Figure 1. It can be observed from
Figure 1 that the number of ground motions recorded at distances larger than 300 km
is rather limited, as is the number of ground motion recordings having peak ground
accelerations larger than 0.2 g.
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Figure 1. Distribution of the equivalent number of cycles as a function of: (a) hypocentral distance R;
(b) peak ground acceleration.

Figure 2 illustrates the distribution of the equivalent number of cycles with the earth-
quake magnitude. It can be observed that there is a significant increase in the equivalent
number of cycles with the earthquake magnitude, especially for events having MW ≥ 7.0.
A fitted exponential trendline is also shown in the plot. The value of the coefficient of
determination R2 for the exponential fit is rather small.
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Figure 2. Distribution of the equivalent number of cycles as a function of earthquake magnitude. The
fitted exponential trendline is shown with the black dashed line.

Subsequently, the correlation of the equivalent number of cycles with various engi-
neering parameters is studied. The peak ground velocity of the ground motion recordings
in the database is in the range 1.5–70 cm/s (the latter value corresponding to a ground
motion recorded in Bucharest during the Vrancea earthquake of 1977).

The computed correlation coefficients are reported in Table 2. Among the selected
engineering parameters, besides the peak ground acceleration (PGA), the peak ground
velocity (PGV), the mean period TM [36], Arias Intensity [37] and the significant ground
motion duration D5-95 [38] are selected as well. It can be observed from Table 3 that the
largest correlation coefficients for the equivalent number of cycles are obtained with the
earthquake magnitude MW, hypocentral distance R and significant ground motion duration
D5-95. The same observation holds true also for the logarithm of the equivalent number of
cycles, albeit the values of the correlation coefficients can differ substantially for the same
considered parameter.
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Table 3. Correlation coefficients between the equivalent number of cycles and other parameters.

Parameter MW R PGA PGV TM IA D5-95

Neq 0.352 0.288 −0.165 −0.049 0.064 −0.033 0.286
ln Neq 0.368 0.281 −0.196 −0.084 0.049 −0.044 0.230

4. Empirical Models for the Number of Equivalent Cycles

Empirical models for the evaluation of the equivalent number of cycles have been
proposed in various studies in the literature [34,35,39–45]. Initially, the empirical relations
employed only the magnitude as a dependent parameter, while the more recent models
consider other parameters as well (source–site distance, soil conditions, faulting mechanism,
other ground motion parameters, etc.). A review of some of the empirical models mentioned
above can be found in the study of Lasley et al. [43], as well as in the study of Castiglia and
Santucci de Magistris [34].

In this study, a total number of 10 empirical models are proposed for the evaluation
of the equivalent number of cycles using the available parameters (both seismological
and engineering). The soil conditions for each seismic station are evaluated using the
criteria from the proposed Eurocode 8 draft [46] and are taken from the study of Pavel
and Yaghmaei-Sabegh [33]. Due to the limited number of ground motions recorded on
site classes A, D and E, the recordings from soil classes A and B are grouped into a single
category. The same grouping is applied for the recordings obtained on soil classes C, D and
E, while the recordings from soil class F sites remain as such. The following seismological
parameters are employed in the empirical models: (1) earthquake moment magnitude;
(2) hypocentral distance and (3) site class. The engineering parameters employed for the
development of the empirical models are: (1) PGA; (2) PGV; (3) IA; (4) TM and (5) D5-95.

The functional forms of the proposed empirical models based on previous models
available in the literature and using both seismological and engineering parameters are
given below:

ln Neq = c1 + c2·MW + σ (1)

ln Neq = c1 + c2·MW + c3·lnR + σ (2)

ln Neq = c1 + c2·MW + c3·lnR + c4·SCDE + c5·SF + σ (3)

ln Neq = d1 + d2·lnPGA + d3·lnPGV + σ (4)

ln Neq = d1 + d2·lnPGA + d3·lnPGV + d4·lnIA + σ (5)

ln Neq = d1 + d2·lnPGA + d3·lnPGV + d4·lnIA + d5·lnTM + σ (6)

ln Neq = d1 + d2·lnPGA + d3·lnPGV + d4·lnIA + d5·lnTM + d6·lnD5-95 + σ (7)

ln Neq = e1 + e2·MW + e3·lnD5-95 + σ (8)

ln Neq = e1 + e2·MW + e3·lnD5-95 + e4·lnR + σ (9)

ln Neq = e1 + e2·MW + e3·lnD5-95 + e4·lnR + e5·SCDE + e6·SF + σ (10)
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For each proposed empirical model, the regression coefficients (c1–c5), (d1–d7) and
(e1–e5) and the model standard deviation are reported in Tables 4–6. In Equations (4)–(8),
PGA is measured in g and the PGV is in m/s.

Table 4. Regression coefficients for empirical models (1)–(3).

Model c1 c2 c3 c4 c5 σ

(1) −1.342 0.465 - - - 0.52
(2) −2.821 0.405 0.367 - - 0.51
(3) −2.294 0.395 0.329 −0.214 −0.412 0.49

Table 5. Regression coefficients for empirical models (4)–(7).

Model d1 d2 d3 d4 d5 d6 σ

(4) 1.133 −0.403 0.133 - - - 0.55
(5) −0.626 −1.440 −0.424 0.942 - - 0.38
(6) −0.933 −1.907 0.094 0.926 −0.633 - 0.36
(7) −0.703 −1.972 −0.001 0.990 −0.524 −0.138 0.35

Table 6. Regression coefficients for empirical models (8)–(10).

Model e1 e2 e3 e4 e5 e6 σ

(9) −1.651 0.447 0.149 - - - 0.52
(10) −3.107 0.388 0.146 0.362 - - 0.51
(11) −0.595 0.384 0.128 0.324 −0.169 −0.381 0.49

From the proposed empirical models, it can be observed that, as expected, the smallest
uncertainty is obtained for the model considering all the engineering parameters. It can
be observed that as the number of engineering parameters introduced in the regression
increases, the regression coefficient associated with the peak ground velocity decreases and
approaches 0. The introduction of the significant ground motion duration as a parameter
of the empirical model does not improve the overall uncertainty of the models. Another
important observation made based on the values of the regression coefficients is that the
equivalent number of cycles decreases from soil classes A and B to soil class F (deep
soft sites).

Considering the lack of such information for liquefaction hazard analysis, the empirical
model (3) is selected in this study to be used in the subsequent section. In the absence of
reliable data, empirical models for the estimation of the engineering parameter may be
used, but the level of uncertainty in the estimations would become considerable.

The variation of the predicted equivalent number of cycles as a function of the earth-
quake magnitude and soil class for three hypocentral distances, R = 100 km, R = 200 km
and R = 300 km, is shown in Figure 3. In Figure 3, the values obtained using the relation
of Seed et al. [35] are also shown for comparison purposes. It can be observed that the
equivalent number of cycles computed using the relation proposed by Seed et al. [35]
is larger than the one obtained using the empirical model from this study, whereby the
difference decreases with the hypocentral distance.

The distribution of the residuals (difference between observed and estimated values
using the proposed empirical model) is shown in Figure 4. No bias can be observed in
the distribution of the residuals with respect to both the earthquake magnitude and the
hypocentral distance as the slopes of the fitted trendlines are practically zero.
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Figure 4. Distribution of the residuals as a function of: (a) earthquake magnitude; (b) hypocentral
distance R. The fitted linear trendlines are shown with black dashed line.

The histograms of the residuals as a function of the soil class for the recording seismic
station are presented in Figure 5. It can be observed from Figure 5 that there is a certain
degree of asymmetry in the distribution of the residuals for all soil classes.

The mean, median, standard deviation and skewness of the residuals as a function
of the soil class are reported in Table 7. It can be observed that the largest skewness is
obtained for the recordings obtained on soil classes C, D and E. The mean and the median
values in all cases are close to zero. The largest skewness is obtained for soil classes C, D
and E, which is also observed from the distributions shown in Figure 5.
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Table 7. Statistical indicators of the residuals as a function of the soil class.

Soil Class Mean Median Standard
Deviation Skewness

Soil classes A and B 0.000 0.028 0.416 −0.464
Soil classes C, D and E 0.000 0.061 0.520 −0.824

Soil class F 0.000 −0.034 0.484 0.082
All soil classes 0.000 0.008 0.489 −0.428

5. Liquefaction Hazard Analysis for Selected Sites

Liquefaction studies for sites in Bucharest have been performed in other studies
available in the literature (e.g., [47–50]). It has to be mentioned that these studies have
used as input a single earthquake scenario characterized by a peak ground acceleration of
approximately 0.30 g, which represents the elastic peak ground acceleration for Bucharest
in the current Romanian seismic design code P100-1/2013 [51]. The soil liquefaction
susceptibility performed for Europe within the LIQUEFACT project [3] assigns a high or
very high susceptibility for such a phenomenon for the sites situated in the southern part
of Romania.

The following sites have been selected based on the available information (soil profiles,
liquefaction during past earthquakes, seismic hazard, etc.) for the liquefaction hazard as-
sessment: Bucharest (three sites), Timisoara, Craiova (two sites), Constanta, Arad, Giurgiu,
Medias, Ianca, Caracal and Sighisoara. The sites can be divided into two categories from
the point of view of the seismic hazard [52]: (i) sites for which the seismic hazard is gener-
ated by the Vrancea intermediate-depth seismic source—Bucharest, Craiova, Constanta,
Giurgiu, Caracal and Ianca; (ii) sites for which the seismic hazard is generated by local
crustal seismic sources—Timisoara, Arad, Oradea, Medias and Sighisoara. The soil profiles
for the Bucharest sites were taken from Calarasu [50]. The soil profiles for Timisoara and
Arad were taken from Mihu [53]. A more detailed seismic hazard analysis of some of the
sites analyzed in this study can be found in the paper of Pavel and Vacareanu [54]. In
the case of Bucharest, detailed hazard analyses and evaluations of the site-specific seismic
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response were performed in the studies of Pavel [55] and Pavel et al. [56]. The positions of
the analyzed sites are shown in Figure 6.
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The seismic hazard curves for peak ground acceleration for the analyzed sites are
illustrated in Figure 7 [52]. It can be observed that the slope of the seismic hazard curve
is different in the case of sites affected by the Vrancea intermediate-depth seismic source,
as compared to sites affected by local shallow crustal seismic sources. The main reason
for this difference is related to the seismicity parameters used in the probabilistic seismic
hazard assessment of Romania [52], in the sense that seismic rates have larger uncertainties
in the case of the crustal seismic sources, as compared to the Vrancea intermediate-depth
seismic source. While the seismic activity of the Vrancea intermediate-depth seismic source
is rather constant, with medium- and large-magnitude events occurring regularly in each
century, the seismic activity of the majority of the crustal seismic sources in Romania shows
rather long periods of inactivity followed by earthquake swarms lasting some months.
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A description of the analyzed sandy soil profiles for which the liquefaction hazard
analysis is performed is shown in Table 8.
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Table 8. Characteristics of the soil profiles used for liquefaction hazard analysis.

No. Site Layer Name Layer
Depth (m)

Layer
Thickness

(m)

Average
NSPT

Water
Table

Depth (m)

1 Bucharest medium sand 4.5–9.5 5.0 10 4.5
2 Bucharest medium sand 6.0–8.5 2.5 11 5.5
3 Bucharest medium sand 6.5–10.5 4.0 16 5.2
4 Craiova clayey sand 0.6–3.4 2.8 9 2.0
5 Craiova fine sand 1.9–8.5 6.6 13 2.0
6 Caracal fine sand 0.8–6.0 5.2 16 3.5
7 Giurgiu fine sand 1.9–4.0 2.1 14 1.5
8 Constanta medium sand 0.3–8.5 8.2 17 1.5
9 Ianca fine sand 3.7–8.0 5.3 16 5.2

10 Timisoara medium sand 0.3–2.6 2.3 12 0.8
11 Timisoara medium sand 1.0–3.1 2.1 9 1.1
12 Arad fine sand 0.5–5.1 4.6 15 1.0
13 Oradea fine sand 0.7–2.5 1.8 18 1
14 Medias fine sand 0.2–3.2 3.0 9 1.8
15 Sighisoara clayey sand 0.9–4.3 3.4 8 2.0

A plot of the minimum and maximum particle size distribution curves for 177 samples
of sands, which liquefied during the Vrancea 1977 earthquake, is shown in Figure 8 [29].
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The Standard Penetration Test (SPT) results are used in this study for evaluating
the liquefaction resistance of the soil layers. The cyclic shear ratio (CSR) is obtained
using the classic relation of Seed and Idriss [57]. The cyclic resistance ratio (CRR) is
evaluated using the relation proposed by Youd et al. [58]. Finally, the factor of safety
against liquefaction (FS) is the magnitude adjusted ratio between the cyclic resistance
ratio for magnitude 7.5 earthquakes and the cyclic shear ratio [59]. For each analyzed
site, the equivalent number of cycles corresponding to a given peak ground acceleration
having a specific exceedance probability is evaluated by considering the seismic hazard
disaggregation results.

The magnitude scaling factor (MSF) used in the liquefaction hazard analysis for the
sites under the influence of the sites under the influence of the Vrancea intermediate-
depth seismic source is evaluated following the procedure given in the work of Boulanger
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and Idriss [60]. The number of equivalent cycles is evaluated using the empirical model
developed in the previous section. The magnitude scaling factor is computed as [60]:

MSF =

(
Neq M=7.5

Neq

)b
(11)

In rel. (11), b is taken as 0.34 [34]. The resulting magnitude scaling factor for Vrancea
intermediate-depth earthquakes is illustrated in Figure 9. Other magnitude scaling factors
proposed in the literature (e.g., [61–63]) are also shown for comparison purposes. It can
be observed that the proposed model provides the lowest magnitude scaling factors for
earthquake magnitudes MW ≤ 7.5. In addition, the proposed magnitude scaling factors are
close to the ones proposed by Seed and Idriss [61].
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In the case of the sites affected by crustal earthquakes, the magnitude scaling factor
relation proposed by Idriss [62] and given below is employed:

MSF = 6.9·e(−
M
4 ) − 0.058 (12)

When considering the site selection for this study, the criteria from Eurocodes 8–5 [64]
were considered. The previously mentioned document allows for the neglection of the
liquefaction analysis in the following conditions:

• The saturated sand deposits are situated at depths larger than 15 m;
• The site design peak ground acceleration is less than 0.15 g, coupled with some other

requirements related to the clay or silt content of the sands and the SPT blow count
value normalized for overburden effects, and for the energy ratio, N1(60) is more than
20 or 30.

The liquefaction hazard analysis is performed by considering the peak ground accel-
erations having mean return periods of 20, 50, 100, 225, 475 and 975 years for each site
determined by a probabilistic seismic hazard assessment of Romania [52]. The resulting
curves are shown in Figure 10. It can be observed that there are a number of sites (e.g.,
Craiova, Bucharest, Ianca and Constanta) for which the minimum value of the liquefaction
safety factor is less than one even for seismic hazard levels corresponding to mean return
periods of less than 100 years (in the first three cases). For the other sites, the minimum
safety factor against liquefaction decreases below one only for seismic hazard levels having
mean return periods larger than 1000 years (except for Giurgiu and one site in Timisoara).
These results show that the liquefaction phenomenon appears more likely in the areas
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exposed to Vrancea intermediate-depth earthquakes, compared to the areas affected by
local shallow earthquakes.
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6. Conclusions

This study is focused on the liquefaction hazard analysis for sites in Romania. Em-
pirical models are used for the computation of the equivalent number of cycles of ground
motions recorded during Vrancea intermediate-depth earthquakes. A database consist-
ing of 139 ground motions recorded during five intermediate-depth Vrancea earthquakes
having moment magnitudes MW ≥ 6.0 is employed in this study for the development of
the empirical models. Several empirical models having various dependent parameters are
proposed in the study. Specific magnitude scaling factors for liquefaction are proposed for
the Vrancea intermediate-depth earthquakes. Subsequently, liquefaction hazard curves
are developed for the analyzed sites considering the ground motion input obtained from
probabilistic seismic hazard assessment. The most important observations of the study are
summarized below:

• The largest correlation coefficients for the equivalent number of cycles are obtained
with the earthquake magnitude MW, hypocentral distance R and significant ground
motion duration D5-95;

• It was observed that the smallest uncertainty of the proposed empirical models is
obtained for the model considering all the engineering parameters;

• The equivalent number of cycles computed using the relation proposed by Seed
et al. [35] is larger than the ones obtained using the empirical model from this study,
but the difference between the two empirical models decreases with the hypocen-
tral distance;

• The regression coefficients show that the equivalent number of cycles decreases from
soil classes A and B to soil class F (deep soft sites);

• Specific magnitude scaling factors for Vrancea intermediate-depth earthquakes are
proposed for the fist time using the procedure from Boulanger and Idriss [60]. The
resulting factors are close to the ones proposed by Seed and Idriss [61];

• The analyzed soil profiles for Bucharest, Craiova and Ianca show minimum liquefac-
tion safety factors less than one even for seismic hazard levels having mean return
periods of 100 years and less;

• The results of the liquefaction hazard analysis show that this phenomenon appears
more likely in the areas exposed to Vrancea intermediate-depth earthquakes, compared
to the areas affected by local shallow earthquakes.

Author Contributions: Conceptualization, F.P.; methodology, F.P. and R.V.; investigation, F.P.; data cu-
ration, R.V.; writing—original draft preparation, F.P.; writing—review and editing, R.V.; visualization,
R.V. All authors have read and agreed to the published version of the manuscript.
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