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Abstract: Road networks play a significant role in each country’s economy, especially in countries such
as Afghanistan, which is strategically located in the international transit path from Europe to East Asia.
In such a country, pavement performance models are fundamental for the pavement maintenance
planning that provides high-quality infrastructure for transporting goods and travelers. However,
due to the lack of a budget for pavement monitoring and maintenance in Afghanistan, transportation
networks and pavement condition data have not been widely acquired for the development of a
pavement performance model. The main aim of this study is to use a machine learning technique
to, for the first time, develop a pavement performance model for Afghanistan that uses simple,
cost-effective, and fairly accurate data—collected via smartphones—and that is based on a case study
of over 550 km of Afghanistan’s highways. First, the current condition of Afghanistan’s road network
is investigated using a smartphone. Then, collected data are prepared and analyzed so as to estimate
the pavement condition index (PCI). Finally, a pavement performance model for PCI is developed
using pavement age with an adequate coefficient of determination of 0.70 and successfully validated.
It is concluded that the proposed approach is efficient and effective when developing a performance
model in other developing countries encountering such data and budget limitations.

Keywords: pavement performance models; machine learning; regression modelling; smartphones

1. Introduction

Transportation networks play important roles in each country’s economy because they
transfer passengers and commodities from their origins to their destinations; as a result,
road authorities attempt to maintain these networks at a high level of service. For this
purpose, the concept of pavement management has been developed and implemented by
road authorities. From the lens of agency and user costs, researchers have attempted to
scrutinize the advantages of deploying a pavement management system (PMS) in order to
optimize the life cycle cost of road pavement [1].

A PMS is a primary need of each road authority. Various countries around the globe
have tried to build their PMS according to their requirements, technologies, budgets, etc.
Among these, different countries, e.g., the United States [2], Canada [3], India [4,5],
Egypt [6], Saudi Arabia [7], Chile, Paraguay [8], Poland [9], Portugal [10], and Mexico [11],
have developed tailor-made PMSs for their countries.

A PMS starts with pavement material and design, continues with construction, im-
plementation, and maintenance, and finally ends with pavement end-of-life and recycling.
The main objective of a PMS is to conduct maintenance planning in an optimal manner that
both maintains the road at a high level of service and minimizes the associated costs. For
this purpose, the vital requirement is a pavement performance model which can predict
pavement conditions. Using the performance model, road authorities can determine when
a suitable time would be for maintenance actions on the pavement before it drastically
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deteriorates. Several countries have developed pavement performance models, though
developing countries have been rarely successful in building such models due to bud-
get constraints. There has not been any pavement performance model developed for
Afghanistan’s road network to date due to the lack of historical data and the unavailability
of affordable pavement condition data collection tools with which to monitor the current
condition of pavement. This study proposes a simple, applicable approach to fill this gap.

The objective of this paper is to develop a pavement performance model that is
cost-effective and simple to implement while offering an adequate level of accuracy
that can be applied for pavement maintenance planning and life cycle cost analysis for
developing countries.

The scope of this research was to develop an asphalt pavement performance model for
different families of pavement with almost the same pavement structure, traffic loads, and
weather conditions, focusing on the national highways and provincial roads of Afghanistan.
The pavement condition index (PCI) was applied to develop a performance model for
pavement age through the application of images taken by a smartphone mounted on a
probe vehicle. For this purpose, pavement distress was detected through images via a semi-
automated technique, i.e., pavement distress type, severity, and density were determined
to compute the PCI for monitored pavement sections. Finally, having applied univariate
linear and non-linear regression techniques, a set of pavement performance models was
developed, and the best-fitted model was introduced and successfully validated.

2. Literature Review
2.1. Pavement Performance Model Types

There are different pavement performance model types applied by researchers to
express the condition of pavement, and these can be categorized into four types: subjective,
deterministic, stochastic, and Bayesian. The subjective models subjectively evaluate pave-
ment conditions using expert panels [12–14], while the deterministic models objectively
describe pavement conditions in the future [15–17]. Moreover, stochastic models assign a
probability distribution function to inputs, instead of a specific value, and arrive at such
a function as an output [18–20]. Finally, the combination of initial qualitative data with
quantitative data (i.e., captured from field or labs) results in increased accuracy of data via
Bayesian models [21]. Generally speaking, regarding the amount of pavement condition
data accessible, two strategies can be applied to develop pavement performance models.
The first strategy needs limited data (short term), while the other requires much data (long
term). The former strategy can build a performance model either with limited data, such
as a regression technique or with at least two-time section data, such as the Markov chain
method; these are deterministic and stochastic modeling techniques, respectively. The latter
strategy, which includes neural networks, is a deterministic modeling technique that needs
multi-year pavement condition data to model pavement performance [22,23].

2.2. Modeling Techniques

In order to develop an appropriate model, a number of principles should be considered,
including model type and specification/simplicity, evaluation metrics, generalization
and validation, engineering credibility, and model assumptions. The model type and
specifications are closely related to the correlation between the dependent and independent
variables. If the correlation is linear, a linear model is suggested; otherwise, a non-linear
model is preferred. The correlation between dependent and independent variables can
easily be recognized using the correlation coefficient (r) for linear correlation and a simple
scatter plot to distinguish non-linear patterns. The simpler the model, the better and
more applicable the model is, especially in the case of real usage by road authorities in
developing countries.

Evaluation metrics are applied to measure the performance of the model. Generally
speaking, these metrics indicate how well the model fits the data. To find the best fit, the
error/residual (difference between actual data/ground truth and model prediction) should
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be minimized. The most common metrics in a linear regression model are the root mean
squared error (RMSE) and the determination coefficient (R2). If model metrics are low, that
could be a sign of model misspecification or a lack of significant independent variables
in the model.

The model generalization is considered to ensure that the model can predict well
the test (unseen) data. If a model overfits the train (seen) data, it could perfectly predict
the train data but poorly perform on the test data. In a machine learning (ML) context, it
is noted that this model memorizes the train data and cannot predict other data. Again,
the model misspecification (e.g., using higher order in the polynomial model) could be
the reason. On the contrary, model misspecification would happen in a case where a
lower order of polynomial or less than enough independent variables is employed in the
modeling which is called underfitting. The validation process that compares the predicted
versus actual data can be utilized through plotting or conducting a two-sample t-test.

The model, in addition, should make engineering sense. Not only should it follow the
related literature, but it should also express logical sense in positive or negative correlations
between dependent and independent variables. For instance, pavement loading as an
independent variable should have a negative correlation (i.e., the negative sign in the
model) with pavement condition as a dependent variable, i.e., the higher the pavement
loading, the lower the pavement condition would be.

Finally, model assumptions should be checked after model development. For instance,
in linear regression modeling, residual diagnostics, multicollinearity, heteroscedasticity, and
autocorrelation should be scrutinized. In short, the model residuals should, respectively,
follow the normal distribution, independent variables should not highly correlate with
each other, the variance of the dependent variable (or errors) should be constant, and errors
should not be autocorrelated over time.

2.3. Pavement Performance Modeling Procedure

According to the model selection principles mentioned above and regarding the re-
lated literature, the regression model is one of the most appropriate and simple techniques
employed for pavement performance modeling, especially in the case of limited avail-
able pavement condition data. In developing countries, a major challenge to be handled
when modelling pavement performance is the conducting of affordable and adequately
accurate pavement condition data collection when dealing with no or limited historical
pavement data.

First, to develop a pavement performance model, a pavement index should be selected,
such as the international roughness index (IRI) or the pavement condition index (PCI). The
performance model would predict such an index over time. The index selection is mainly
dependent on which characteristics of pavement are studied. For instance, if pavement
surface defects are researched, the PCI would be a proper index, while IRI would be more
appropriate for investigating the smoothness of pavement. Although PCI represents a
measure of pavement surface conditions that considers various pavement distresses, it has
been acknowledged that the IRI exhibits a stronger correlation with important pavement
aspects such as quality of ride, road safety, and fuel consumption. Recent studies have
extensively explored the impact of the IRI on these aspects. These studies involve the
development of vehicle dynamic models, specifically a 3D car model and a 3D truck model,
to predict road IRI and assess its influence on vehicle rolling resistance [24,25].

Second, the pavement condition data should be acquired. Such data can be collected
manually or automatically. The former has been rarely employed by developed countries,
e.g., in the United States less than 2% of states apply a manual approach to pavement
data collection [26]. This approach is conducted by experts filling out forms by walking
on pavements and investigating distress and is costly, dangerous, labor intensive, and
time-consuming. However, the automated approach, which is carried out using automated
data collection vehicles, would overcome the above-mentioned drawbacks. Operating
such an approach is not, however, affordable for developing countries, due to the high
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cost of purchasing, operating, and maintaining such vehicles. Recently, with the advent of
new technologies, novel methods have been deployed to assess the condition of pavement
by applying packages of sensors [27] or smartphones [28]. Smartphones may be the only
available tools that, not only do not need extra infrastructure, but also have useful and
adequately accurate embedded sensors, e.g., an accelerometer, camera, gyroscope, and
geographical positioning system (GPS) with which to monitor the ambient condition.
This is also affordable, attainable, and user-friendly without special training, which is
especially useful for developing countries. For instance, a smartphone’s camera can capture
images that are deployed to detect surface distress. Furthermore, they may provide more
information about the pavement condition, such as the signs of structural inadequacy (by
observing pothole, alligator cracking, or rutting), safety (by detecting bleeding, raveling, or
weathering), and roughness (by monitoring shoving, corrugation, depression, bump and
sags or swells) [29].

Third, a performance model should be developed using the selected index and a
modeling technique. Several studies have been conducted around the globe to develop
a pavement performance model for regions, cities, and countries [30] that can predict
pavement condition rating based on pavement type, thickness, pavement age, traffic, and
the current pavement condition rating. Other researchers have developed an empirical–
mechanistic-based prediction model for IRI using asphalt layer thickness, environmental
conditions, subgrade strength, and the structural number [31]. Ref. [32] employed the
same index to develop a performance model using an artificial neural network (ANN)
and regression techniques based on the primary IRI, standard deviation of the rutting,
transverse, and alligator cracks. Some investigators have applied a massive database such
as that of the Long-Term Pavement Performance (LTPP) program, to build up a pavement
performance model [33]. They developed six performance models specifically for wet and
dry non-freeze climatic zones for single indicators of distress such as alligator, longitudinal,
and transverse cracking, raveling, bleeding, and rut depth. Younos et al. utilized the PCI
as an index to develop a performance model based on pavement age, pavement cracks,
traffic loading, and maintenance effects using LTTP data through artificial intelligence and
Markov chain techniques [34]. Gao et al. investigated the effect of the ambient environment,
i.e., variations of weather, along with seasonal and annual changes on the pavement
performance at a network level [35].

However, such an attempt has rarely been conducted for developing countries with
little or no historical and current pavement condition data. The lack of performance models
for such countries has resulted in an inadequacy of information for proactive pavement
maintenance planning. Most of the time, developing countries evaluate the current condi-
tion of pavement and employ this evaluation for reactive maintenance planning, such as
in the cases of the evaluation of the PCI in Yaman [36], monitoring of pavement condition
in Kabul, Afghanistan [37], assessing road roughness in India [38], and investigation of
the IRI in New Mexico [39]. Nonetheless, few developing countries have attempted to
develop performance models for their cities or countries. For instance, Semnarshad et al.
developed a pavement performance model using the weighted summation of the PCI,
IRI, and central deflection of falling weight deflectometer via analytical hierarchy analysis
for Iran [40]. Ahmed et al., deployed pavement surface distress data, including cracking,
pothole, bleeding, rutting, patching, and depression, from 1100 sections in Baghdad, Iraq
to develop a pavement performance model using the stepwise regression technique [41].
Tchemou et al. developed a degradation model for Cameron based on rutting depth mea-
sured in the field. They employed a finite element program to model the degradation using
permanent stress and deformation causing the rutting [42]. All mentioned research studies
tried to predict a pavement index based on single or multiple variables via a modeling
technique defined based on available data, budget constraints, and a pavement index that
they aimed to assess.

To sum up, with around 19,327 km of Afghanistan’s national highways, provincial,
and district roads (Table 1), and a variety of weather conditions [43], no specific pavement
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performance models have been built for Afghanistan’s roads. Only few pavement condi-
tion monitoring attempts have, to date, been carried out to prescribe reactive pavement
maintenance actions for road conditions in Afghanistan [44]. Thus, the main research
objective was to apply a cost-effective data collection tool to develop a performance model
of Afghanistan’s road network through the application of the PCI and employing an
appropriate regression modeling technique.

Table 1. Selected list of Afghanistan’s road network.

Road Class
Asphalt Gravel Earthen Total

km % km % km % km %

National highways 4598 59 2042 20 214 20 6854 35
Provincial Roads 813 10 464 4 117 11 1394 7
District Roads 2482 31 7853 76 744 69 11,079 58
Total 7893 40 10,359 54 1075 6 19,327 100

3. Research Methodology

After a thorough literature review, a pavement condition index, data type, and sensor
selection were carried out. Then, the design of an experiment was conducted for pave-
ment condition data collection. After data collection, data preparation was performed to
clean the data. Afterward, the data were analyzed (i.e., pavement distress was detected
and measured) to estimate the PCI. Then, various models were developed via different
regression techniques to predict PCI based on pavement age. Finally, the best model was
determined and validated to ensure that the model was perfectly generalized. The research
methodology is elaborated in Figure 1.
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3.1. Data Selection

The pavement index which was selected in this research was the PCI because it can not
only capture the pavement surface distress, but also reflects structural adequacy, pavement
roughness, and road safety. In terms of structural adequacy, some defects, such as alligator
cracking or rutting, would alarm the structural inadequacy. Moreover, vertical deformation
distresses such as corrugation, bumps and sags, shoving, and swell would reflect pavement
roughness. Finally, potholes, raveling, weathering, and bleeding may represent a lower
level of road safety.
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The data type that was applied herein to compute the PCI was images captured from
the pavement. Through the application of images, according to ASTM 6433, all 20 asphalt
pavement distress types were detected, and their severity and density were introduced [45].
Other sources of data, such as the pavement profile or macro-texture (using laser or lidar),
could enhance the quality of the data; however, these were not applied herein due to
budget constraints.

The sensor that was deployed in the data collection process was a smartphone camera.
The camera could acquire pavement images continuously and with a high quality. There
are other embedded sensors in the smartphone that were utilized in the data collection
in this study along with the camera. For instance, there was an image stabilizer sensor
which assisted in capturing clearer images. Additionally, the GPS was applied to geo-
referenced all captured images. The other available sensor embedded in smartphones is an
accelerometer that can capture the vehicle vibration, a so-called a vibration-based method,
leading to the estimation of road roughness. Although such a sensor can provide some
information about road roughness, it suffers from some shortcomings, i.e., the outcome of
the smartphone’s accelerometer highly depends on the data collection specifications, such
as the accuracy of the smartphone’s accelerometer (data collection frequency), the position
of the smartphone in the vehicle and how it is affixed in the vehicle, the vehicle’s suspension
system, the vehicle speed, and the smartphone model. However, the smartphone image-
based data collection method does not depend on these specifications. The only concern
is to fix the smartphone in the vehicle in a position where it can capture the pavement
defect clearly, which can be achieved with a holder mounted on the top of the windshield.
Due to the advantages of the image-based smartphone data collection method over the
vibration-based method, the former approach was applied in this research.

3.2. Data Collection

For the design of the experiment, a route of about 558.7 km, mostly located in the
southern part of the Afghanistan ring road, was selected given the fact that it encompassed
all pavement families (discussed below) with approximately equal lengths, as depicted
in Figure 2.
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The data, which comprised pavement videos, were captured via a built-in applica-
tion using a smartphone (Samsung Galaxy M32) mounted inside of a car on the wind-
shield behind the mirror as shown in Figure 3a. The data collection was conducted
one time by an individual driver using a sedan car mostly, driving at constant speed
between 50 and 70 km/h (speed variety did not cause any error) according to the pavement
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condition, over three days in February 2021 in mornings and afternoons with enough sun-
light, i.e., one hour after and before sunrise and sunset, respectively, in dry conditions.
Before data collection, several dry runs were conducted to ensure the best location for
mounting the smartphone in the car, its setting, and the quality and validity of captured
videos. The videos were split into images at a constant distance of 5 m to ensure that more
than 50% overlap existed between two consecutive images so as to capture all pavement
distresses. Different pavement distresses were detected from the images, including alligator
cracking, weathering, rutting, raveling, corrugation, and potholes, as shown in Figure 3b–f.

Figure 3. Data collection. (a) Smartphone setup, (b) alligator cracking, (c) raveling, (d) rutting,
(e) corrugation, and (f) pothole.

3.3. Data Preparation

After data collection, data preparation was executed which consisted of checking
data consistency, completeness, and accuracy. Two main errors would usually happen in
the data collection process, including systematic and non-systematic errors. The former
is adjustable, but the latter is inherent in any data collection. Systematic errors would
occur in the data collection or evaluation process, including data collection malfunction or
misclassifications of a pavement distress type. Data preparation is of significant importance
as researchers have claimed that, as these errors are addressed, the number of pavement
sections that need rehabilitation actions decrease by 83% and that an additional 22% of
pavement sections are identified that do not require maintenance [46].

One inconsistency that could happen in the data collection process is the inexact
determination of the location of a segment in different surveys over the life cycle of the
pavement. There would be two reasons for this inconsistency: (1) the surveyors, data collec-
tion method, and tools might be changed in various surveys or (2) the geo-referenced tool
(GPS or encoder) might be inaccurate. Both of these are inevitable, especially in developing
countries. Therefore, it was decided to combine shorter segments with similar conditions
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to build up a longer segment and average their pavement condition. Furthermore, out-
liers would be a typical issue, due to missing data or inaccurate values. For instance, if
pavement condition is improved over time without maintenance or rehabilitation actions,
this could be a sign of unreasonable data. This unusual improvement could occur due to
either missing data, i.e., treatment was executed but not reported, or inaccurate values, i.e.,
tools or expert errors in objective (distress density) or subjective (distress type and severity)
indication, respectively. The outliers can be easily detected by a trigger level (e.g., three
standard deviations from the mean) and removed from modeling. Data preparation actions
conducted in this research are as follows:

• The subsection length with minimum pavement condition variability was considered
to be ten meters. Nevertheless, to tackle the problem of the inaccurate location of
collected data, ten adjacent subsections were combined to build a section (100 m long)
with the average condition of the subsections.

• The outliers were not detected in the dataset i.e., the PCI value is not out of the range
of three times the standard deviation from the mean PCI.

• The data set did not contain the missing pavement age data. Therefore, removing the
missing data was not applied in the modeling process.

• There was no need for data scaling as the order of magnitude of the variables in the
model, i.e., PCI and pavement age, would not have a significant difference.

After data preparation, the entire database was again thoroughly controlled to check
data consistency, completeness, and accuracy. There were no missing data, and inconsistent
and inaccurate values existed in the dataset.

3.4. Data Analysis

For data analysis, distress type, severity, and density were determined utilizing cap-
tured images from the right of way of the pavement surface. According to ASTM 6433,
20 pavement distresses (i.e., type, density, and severity) were recognized so as to be able
to estimate the PCI. According to this standard, the asphalt pavement distress types that
were monitored and detected in this research included alligator cracking, bleeding, block
cracking, corrugation, depression, bump and sags, lane shoulder drop-off, joint reflection
cracking, longitudinal and transverse cracking, edge cracking, patching and utility cut
patch, pothole, polished aggregate, raveling, weathering, rutting, shoving, railroad crossing,
slippage cracking, and swells. Each distress type was labeled with a severity level including
low, medium, and high. The definitions of these severity levels are provided in ASTM 6433,
subjectively and objectively, along with the associated images. The density of different
distress severities was defined as a ratio of distress length/area to the sample area.

In this study, the distress evaluation was performed in a semi-automated manner.
First, a panel of experts determined the distress type and severity by looking at pavement
images. If distress was not clear in one image, the panel could find that distress in the
later or former images due to the image overlap. For instance, one expert distinguished
an alligator crack with medium severity. Then, that expert employed software to measure
the distress density (e.g., the area of the alligator crack). For this purpose, the images
were inserted in software which is able to rigorously indicate the dimension of associated
distresses. The software had been calibrated before image distress quantification with a
premeasured 2 × 2 (m) square pattern to make sure that the measurements were accurate.

The data quality can be checked in terms of certain tasks: (1) the calibration of soft-
ware, (2) the provision of a standard with which the experts evaluate the pavement, and
(3) a cross-random pavement sample check (comparison of image and field inspections) [1].
All of these tasks were conducted in this research to ensure data quality. First, the software
calibration was carried out as explained above. Second, ASTM 6433 was applied by the ex-
perts as a standard by which to detect and measure pavement distress. Third, some sample
sections were selected to compare defects detected via images versus field observations.
It should be noted that the accuracy of detecting pavement distresses through pavement
images was almost the same as field inspections. Thus, it was anticipated that the level of
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reliability of pavement defect detection was not significantly different between image and
field distress detection.

Although the automated pavement distress type and severity detection could have
been extracted automatically for some pavement distresses via computer vision techniques,
such techniques were not applied herein as they would not fit the research objective of this
research. This research aimed to develop a pavement performance model based on the
PCI. To compute PCI, all 20 asphalt pavement distresses should be detected and measured.
In spite of the fact that few simple-pattern distresses, such as alligator, block, transverse
and longitudinal cracking and potholes, have been already detected via deep learning [47],
some of the complicated pattern pavement distress, such as bumps and sags, depression,
and corrugation, have not been recognized in a fully automated approach via computer
vision techniques. Thus, it would not be feasible to compute the PCI with full automation.
Therefore, we decided to detect all pavement distress (i.e., type and severity) manually in
order to treat all pavement distress consistently.

Table 2 shows the distress types, severity, and density which were detected in surveyed
sections. The last column in this table depicts the sum of the length/area of associated
pavement distress at a specific severity level. The green, yellow, and red colors illustrate the
magnitude of the associated distress, i.e., the higher values become red, while the medium
and lower values appear in yellow and green, respectively. Figure 4 illuminates the density
of distresses captured on the surveyed sections. This figure shows that weathering and
rutting are the major distresses in the monitored sections. It also shows that 46%, 17%, and
37% of distress severities are high, medium, and low, respectively.

Table 2. Distress type, severity, and density.

Distress Type Severity
Density (sqm or m)

Mean Std Min Max Sum

Alligator Cracking
Low 1311 1869 0 6108 20,969

Medium 1383 1383 59 5983 22,121
High 552 552 25 2364 8835

Bleeding
Low 6 6 0 47 96

Medium 5 5 0 27 77
High 2 2 0 26 26

Block Cracking
Low 21 21 0 236 338

Medium 157 157 0 1604 2507
High 34 34 0 325 551

Corrugation
Low 0 0 0 0 0

Medium 0 0 0 0 0
High 0 0 0 0 0

Depression
Low 0 0 0 0 0

Medium 5 5 0 39 78
High 0 0 0 0 0

Bumps and Sags
Low 196 196 0 1537 3139

Medium 269 269 0 1517 4298
High 284 284 0 1863 4538

Lane/Shoulder Drop-off
Low 0 0 0 0 0

Medium 3 3 0 40 40
High 0 0 0 0 0

Joint Reflection Cracking
Low 0 0 0 0 0

Medium 0 0 0 0 0
High 9 9 0 92 149

Longitudinal & Transverse Cracking
Low 429 429 0 1671 6871

Medium 1383 1383 41 5348 22,126
High 258 258 0 792 4121

Edge Cracking
Low 80 80 0 654 1277

Medium 67 67 0 405 1070
High 129 129 0 628 2064
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Table 2. Cont.

Distress Type Severity
Density (sqm or m)

Mean Std Min Max Sum

Patching & Utility Cut Patch
Low 122 122 0 1002 1945

Medium 7 7 0 38 119
High 1 1 0 20 20

Potholes
Low 0 0 0 0 0

Medium 3 3 0 50 50
High 1738 1738 0 8240 27,800

Polished Aggregate
Low 36 36 0 210 580

Medium 81 81 0 400 1300
High 65 65 0 270 1032

Ravelling
Low 13 13 0 140 200

Medium 3 3 0 35 49
High 3837 3837 0 53,066 61,391

Weathering (Surface Wear)
Low 17,097 17,097 0 147,669 273,558

Medium 2362 2362 685 4765 37,798
High 912 912 26 3795 14,588

Rutting
Low 1321 1321 0 5590 21,138

Medium 2723 2723 0 10,619 43,560
High 16,165 16,165 0 137,726 258,641

Shoving
Low 555 555 0 4100 8887

Medium 802 802 0 3724 12,837
High 446 446 0 2772 7142

Railroad Crossing
Low 0 0 0 0 0

Medium 0 0 0 0 0
High 0 0 0 0 0

Slippage Cracking
Low 0 0 0 0 0

Medium 0 0 0 8 8
High 0 0 0 0 0

Swell
Low 0 0 0 0 0

Medium 0 0 0 0 0
High 0 0 0 6 6
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Ultimately, using distress type, severity, and density, the PCI was calculated according
to ASTM 6433 via a written code in MATLAB. Table 3 depicts the average and standard
deviation of the PCI and pavement age for different sections along with their length
and family number (obtained from the experts from the Road Ministry of Afghanistan).
Table 3 clearly shows that, as pavement age increases, the average PCI decreases, and the
standard deviation of the PCI increases. In the last two columns of this table, the lower
values of the average PCI and the higher values of the PCI standard deviation become
red, while the higher value of the average PCI and the lower value of the PCI standard
deviation appear green. The medium values are shown in yellow and orange. Figure 5
elaborates that the highest number of sections’ PCI was in the “Fair” condition, in the
range between 40 and 55 according to the following PCI condition ranges: Good (100–85),
Satisfactory (85–70), Fair (70–55), Poor (55–40), Very Poor (40–25), Serious (25–10), and
Failed (10–0) [45].

Table 3. PCI and pavement specifications for different surveyed sections.

Section
ID Start End Length

(km) Family # # of
Section Major Distress Pavement

Age (yr) PCI_Avg PCI_Std

NH01 Gelan Moqor 21.7 1 217 Weathering 19.6 48.56 20.76
NH02 Shahjoy Gelan 38.6 1 386 Weathering 19.6 31.01 19.33
NH03 Moqor Shamali 34 2 340 Weathering 19.7 56.54 21.00
NH04 Shamali Qarabagh 36.2 2 362 Aligator Crack 19.9 60.35 28.23
NH05 Deh Tut Kaj Ab 32.9 3 329 Weathering 15.8 82.74 16.38
NH06 Kaj Ab Farah 22.6 3 226 Weathering 15.6 86.37 14.41
NH07 Washer Delaram 33.6 4 336 Weathering 16.6 83.42 13.56
NH08 Karwangah Washer 33.7 4 337 Weathering 16.8 86.73 13.51
NH09 Qarabagh Sufra 32.1 5 321 Long & Tran Crack 20.0 47.11 17.11
NH10 Sufra Ghazni 36.2 5 362 Long & Tran Crack 20.0 66.54 23.85
NH11 Gereshk Shorawak 33.6 6 336 Rutting 17.1 77.41 20.24
NH12 Shorawak Karwangah 33.6 6 336 Rutting 17.0 85.32 16.29
NH13 Herat Shakiban 45.1 7 451 Rutting 7.0 90.76 8.53
NH14 Shakiban Islam Qala 54.6 7 546 Weathering 6.7 94.17 7.07
NH15 Delaram Golistan 33.8 8 338 Rutting 16.0 84.72 14.48
NH16 Golistan Deh Tut 38.5 8 385 Raveling 15.9 85.38 11.07
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3.5. Data Modeling
3.5.1. Model Development

The pavement condition of a transportation network changes widely across a geo-
graphic area. This spatial variation is due to variability in the pavement structure, traffic
load, and weather conditions of pavement over the network. This variability can be ad-
dressed by homogenous segmentation, i.e., by dividing the network into segments with
almost consistent pavement conditions.
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Comprehensive pavement historical data were not available for the Afghanistan road
network, i.e., the exact objective amount of pavement criteria encompassing pavement
structure and layer thickness, weather conditions, and traffic loading of different segments
were unavailable. Therefore, each one of these criteria was subjectively divided into
two levels to be assigned to each family. For this purpose, pavement structure, weather
conditions, and traffic loading were divided into thick (pavement thickness ≥ 150 mm)
and thin (pavement thickness < 150 mm), harsh (annual freeze-thaw cycles ≥ 15), and mild
(annual freeze-thaw cycles < 15), and heavy (AADT ≥ 12,000) and low (AADT < 12,000),
respectively. As each one of these three criteria had two levels, the full factorial experimental
design, comprising a total of 23 (i.e., 8) families, was defined and is presented in Table 4
for performance model development. The number of levels for each criterion could have
been more than two, e.g., defining three groups for traffic load (i.e., heavy, medium, and
low) instead of two. However, for two reasons, two levels for each criterion were selected:
(1) lack of data made it hard to find enough samples for each family to build up a model
and (2) no significant difference would be distinguished between performance models
of the extra created families. It could be anticipated, from an engineering sense, that
Family 2, with a thick pavement structure, low traffic load, and mild weather conditions,
would perform better than Family 7, with a thin pavement structure, high traffic load, and
harsh weather conditions. This would be confirmed later via the pavement performance
model development.

Table 4. Pavement family characteristics.

Family Number Pavement Structure Traffic Load Weather Condition

1 Thick Low Harsh
2 Thick Low Mild
3 Thick Heavy Harsh
4 Thick Heavy Mild
5 Thin Low Harsh
6 Thin Low Mild
7 Thin Heavy Harsh
8 Thin Heavy Mild

For developing models for pavement families, a univariate regression model was
employed to ensure it was easy and clear enough (not a black box, such as with meta-
heuristic models) to implement in developing countries. As mentioned earlier, the total
pavement length that was surveyed was 558.7 km. The total pavement length was divided
into 100 m sections, resulting in 5587 sections. Due to the similarity of adjacent pavement
sections in each family, almost every 5 km of adjacent sections was defined as a segment
leading to 112 segments. For the sake of modeling, the dataset, including 112 segments, was
randomly divided into subsets of train and test with the dataset portions of 80% and 20%,
respectively. An attempt was made to randomly select samples from different pavement
conditions in the train and test datasets. This sampling technique would avoid sampling
bias. Sampling bias would result in signs of underfitting or overfitting. In the end, the
RMSE and R2 of the model were calculated and reported as the model’s metrics. The
error was defined as the difference between the predicted (by the model) and actual values
of the PCI.

To develop a model for PCI, based on pavement age for different families, the average
PCI of pavement segments was plotted against pavement age. In Figure 6, the empty blue
circles show the mean PCI for each segment. The primary aim was to develop a model for
each family. An attempt was made to build a model for each family, as depicted in this
figure and which are represented by solid lines with filled start and end points. However,
the models were not meaningful due to the limited range of pavement age of each family
(mostly between 1 and 3 years) that was in turn due to the limited amount of data accessible
for each family. Therefore, we decided to treat all PCI data as a single family, meaning
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that only one pavement performance model was developed. Thus, herein, the average
PCI of all the segments was employed to construct a performance model, the solid back
curve (so-called master curve), combining all families. Generally speaking, this curve
would represent the performance of the entire families; however, it missed some detailed
information about each family as it was all combined in a single performance model. As
more information will be collected from each family, a single comprehensive model can be
developed for each family which would represent its performance more accurately.
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Figure 6. Fitted lines to families versus all together.

Using the univariate linear and non-linear regression techniques, different models, i.e.,
simple, second-, third-, and fourth-order polynomial, exponential, power, and logarithmic
models, were built and fitted to the train data (80% of the total gathered data). The
best model was shown to be the third-order polynomial model concerning model errors
(RMSE), coefficient of determination (R2), engineering sense (ES), related literature (RL),
and underfitness/overfitness (UO) presented in Table 5. As can be seen in this table, the
best model in terms of R2 and RMSE is the fourth-order polynomial; however, it does
not match with engineering sense (ES) and related literature (RL). It also suffers from
overfitting (UO). Thus, the best-performing model after this is the third-order polynomial
model, which matches engineering sense (ES), coincides with related literature (RL), and
does not overfit and underfit.

Table 5. Model specifications.

Type Equation R2 RMSE ES RL UO

First-order polynomial y = −2.90x + 120.30 0.4411 14.54 Yes No Yes

Second-order polynomial y = −0.60x2 + 12.95x + 32.25 0.6993 10.67 No No Yes

Third-order polynomial y = −0.03x3 + 0.85x2 − 6.31x + 106.68 0.7003 10.65 Yes Yes No

Fourth-order polynomial y = 0.0362x4 − 2.0892x3 + 42.96x2 − 370.84x + 1207.7 0.7189 10.34 No No Yes

Exponential y = 143.48e−0.045x 0.3876 15.93 No No No

Power y = 254.8x−0.474 0.3202 16.54 No No No

Logarithmic y = −31.24ln(x) + 158.69 0.3549 15.63 No No No

As can be seen in Figure 7a, the simple or first-order polynomial model not only
expresses low fitness but also cannot represent the variation in the pavement degradation
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rates. Moreover, the second-order polynomial model does not make engineering sense as it
shows a significant increase/upgrade in the PCI in the initial stages which would not be
feasible (in the case of not conducting maintenance actions). The third-order polynomial
model, from years 7 to 11, shows a small increase of about 2%, going up from 93% to 95%.
This increase, which is an error, is negligible on a scale of 100. The fourth-order polynomial
model clearly expresses sharp decrease and increase, which do not make engineering
sense. Regarding the pattern of data, the order one and two polynomial models suffer from
underfitting, while order four indicates clear overfitting. Figure 7a also depicts that, as
pavement age increases, the standard deviation of the PCI increases. Figure 7b illuminates
the PCI histogram for the entire segments, which represents a slight positive skewness,
in turn meaning that the bulk of the data are located at the medium and higher PCI, and
that there are few very low PCI values. Moreover, Figure 7c expresses how the non-linear
regression models, i.e., exponential, power, and logarithmic, fitted to the data. These did not
only not fit well to the data (show high RMSE and low R2) but also did not have engineering
sense, as they present a sharp decrease in the initial years after construction. This does not
match with reality as the PCI should have decreased slightly over primary ages.
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Figure 7. Models fitted to the data. (a) Linear regression models, (b) histogram of segments’ PCI, and
(c) non-linear regression models.
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It is concluded that, as clearly shown in Table 5 and Figure 8a, the best-fitted model
is the third-order polynomial model. The significant finding from this model is its dete-
rioration rate which is higher in the pavement age range of 15 to 20 years than in initial
ages (i.e., 0 to 15). This could be a vital warning for road authorities to run pavement
preventive maintenance action before this range, so as to prohibit the sharp degradation in
road conditions which leads to much higher corrective maintenance cost as compared with
proactive maintenance.
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The implications of this methodology are that, in the case of a country or city with
no or limited pavement condition data, it would be possible, first, to collect data with a
cost-effective and adequately accurate tool, i.e., a smartphone, and, second, to build up
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a primary pavement performance model by which to represent the deterioration rate of
pavement in the pavement age range of the monitored sample sections.

Such a pavement performance model may encounter some errors and would perform
with a higher accuracy if these errors can be decreased. For instance, the sparse sample
segments’ pavement age causes errors in model development, i.e., if the sample segments’
age covered a wider range and was not scattered, the model errors would be decreased.

Moreover, in the case of regular pavement condition data collection, more data would
enrich the model. More data collection can be executed in three ways. Firstly, each segment
can be monitored repeatedly over its lifespan. Therefore, each segment can be compared
with itself over different time sections which could help in developing stage-based models
such as Markov chain models. Secondly, more segments in each family can be investigated
with a wider range of pavement ages, so as to be able to develop a performance model for
each family. Finally, more pavement criteria can be acquired. This would, furthermore,
result in the development of a more precise model if the exact pavement criteria of inventory
data, traffic loading data, and weather condition data would be gathered. In such a case,
these data can also be applied as independent variables in the process of modeling, to build
up multiple regression models and leading to enhancement of the models’ performance.

Because there have been no pavement performance models developed for Afghanistan,
there is no possibility to compare the results of this study with similar previous work in
the same country; however, they can be generally compared with similar attempts in other
countries to ensure that the trend of the PCI deterioration over time would be approximately
the same as previous work. As compared with the related literature, it was concluded that
the pavement performance model that was developed in this study also perfectly expressed
the same trend as other researchers have claimed [48–50]. The similarities between the
developed model and the previous work are twofold. First, the pavement degradation
rate is lower over the initial ages after construction than later ages. Such performance
models generally degrade sharply after 75% of their life cycle, which can be clearly noticed
in the developed model in this study in Figure 8a. Secondly, the most common pavement
performance model curve shape in the related literature is an S shape, which is similar to
the developed model herein. The S shape curve would fit best to the pavement performance
model, as it can represent two different degradation rates (i.e., lower and higher). The
third-order polynomial model proposed in this study exactly follows the same S shape
introduced by previous researchers.

3.5.2. Model Assumptions

After developing regression performance models, regression assumptions were stud-
ied. For this purpose, the model should be scrutinized for residual diagnostics, multi-
collinearity, heteroscedasticity, and autocorrelation. First, for residual diagnostics, resid-
uals/errors were plotted against dependent and independent variables. The histogram
of residuals is illuminated in Figure 8a. As observed in this figure, the residuals follow a
normal distribution. Additionally, the Shapiro–Wilk test approved the normality of the
residuals and the model was, therefore, well-specified. Nevertheless, as can be seen in
Figure 8b,c, there is evidence of a correlation that is distinguished between residuals and
PCI and pavement age. This acts as a warning of heteroscedasticity that is discussed below.
Second, to check the multicollinearity of the independent variables, a variation inflation
factor (VIF) test and correlation matrix should be carried out. Because there was only
one independent variable (i.e., pavement age) applied in this model, no multicollinear-
ity could exist. Third, the heteroscedasticity was tested using the Goldfeld–Quandt and
Breusch–Pagan tests. The former test showed a calculated F-value equal to 17.97, which is
more than the critical F-value of 1.56 (at the 95% confidence level), resulting in evidence of
heteroscedasticity. The later test showed a calculated p-value of 0.0033, which is less than
the critical p-value of 0.05 (at the 95% confidence level), confirming the former test result. It
should be noted that, as can be seen in Figure 8a, it is a common issue that, because the
uncertainty is enhanced, as pavement age increases the standard deviation of PCI values



Infrastructures 2024, 9, 9 17 of 20

also increases. Especially in cases such as this study, where valid historical data are lacking,
the reliability of data, specifically for older pavement, drastically decreases. Finally, the
autocorrelation of the model was checked through the application of the Durbin Watson
(DW = 0.63 showing positive autocorrelation) and autocorrelation function (AFC) tests,
which both showed perfectly that the model had autocorrelation as expected because it
represents the correlation of PCI over time (pavement age).

3.5.3. Model Validation

As explained above, the model generalization was controlled using test data. The
test data, which were not used in the modeling process, were employed to compare the
predicted and actual data. For this purpose, a scatter plot was drawn to show how predicted
and actual PCI on the test data are coincident, as depicted in Figure 9. This coincidence
can be clearly understood from this figure. Figure 9 shows that the line fitted to the data
closely follows the Y = X line, with a determination coefficient of 0.97, which means the
predicted PCI is almost identical to the actual PCI according to the test dataset. Moreover,
a two-sample t-test was applied at a 95% confidence level to ensure that two subsets of
data (predicted and actual) under the test dataset were not significantly different from each
other, as expressed in Table 6. As elaborated in this table, the calculated p-value of the
difference between predicted and actual PCI is 0.92, which is more than the critical p-value
of 5%, leading to the 95% confidence level in their similarity. This is the null hypothesis,
which states that the equality of the mean of the predicted and actual PCI of the test dataset
cannot be rejected. Therefore, the model was perfectly validated.
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Table 6. Model validation.

Metrics Actual PCI Predicted PCI

Mean 73.68485 74.2665
Variance 530.5308 280.558

Observations 22 22
Pooled variance 405.5444 NA

Hypothesized mean difference 0 NA
df 42 NA

t Stat −0.09579 NA
P (T ≤ t) two-tail 0.924139 NA
t Critical two-tail 2.018082 NA

It is concluded that the model is simple to use, cost-effective to build, easy to imple-
ment, and clear to understand. It furthermore has high-performance metrics and can be
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successfully validated with unseen data. Although this model was built using pavement
data collected from the Afghanistan road network, it can be easily implemented in other
developing countries following the same methodology as presented herein.

4. Conclusions

A pavement performance model is of significant importance for pavement mainte-
nance planning, especially in a developing country such as Afghanistan, whose economy
relies heavily on freight and people transit across its road network from neighboring coun-
tries. To date, there has been no performance model developed for this county. The main
objective of this research was to develop a pavement performance model for Afghanistan’s
arterial road network which is cost-effective, easy to implement, and simple to understand,
using an inexpensive data collection procedure via a smartphone. A performance model
was developed and validated using a univariate regression method covering over 550 km
of roads in Afghanistan expressing the PCI over the pavement age with a third-order
polynomial model. The following findings have been achieved in this research study.

(1) Pavement performance model development was not feasible for each pavement family
due to the limited range of pavement age and lack of sample data.

(2) Simple linear, polynomial, and non-linear regression models were fitted to the pave-
ment condition data (PCI) to find the best performance. The best-performing model
was the third-order polynomial model.

(3) The third-order polynomial model’s coefficient of determination and root mean
squared error were 0.70 and 10.5, respectively.

(4) The model regression assumptions were successfully checked, including uniformity
of residuals, homoscedasticity, no multicollinearity, and no autocorrelation.

(5) The model was successfully validated with unseen or test data (20% of the total
dataset) via the checking of a two-sample t-test and a high correlation between the
predicted and actual PCI.

(6) Other developing countries with limited budgets and a lack of sophisticated auto-
mated pavement data collection tools can apply the proposed systematic approach in
this research.

(7) The limitation of this study was the lack and sparsity of sample data over the lifespan
of asphalt pavement, which resulted in the development of a primary pavement
performance model. The model can only predict the PCI in the range of data fed into
it between 6 and 20 years.

(8) The other limitation is that the model presents a general pavement deterioration trend
over all pavement conditions, regardless of pavement criteria such as pavement struc-
ture, traffic loading, and weather conditions. The model cannot specifically predict
the future condition of pavement for a region with a specific pavement criterion.

(9) It is suggested that other indices, such as the IRI, can be captured via embedded
smartphone sensors such as an accelerometer and gyroscope. The combination of PCI
and IRI can be utilized for pavement maintenance planning.

(10) It is suggested that the primary model (prior probability), such as that developed
in this study, can be combined with more future field investigation data, resulting
in increasing model accuracy (posterior probability) via a technique such as the
Bayesian model.
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