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Abstract: Coherent resonant soft X-ray scattering was utilized to examine the magnetic textures in
a thin plate of the cubic B20 compound FeGe. Small-angle scattering patterns were measured with
controlled temperatures and magnetic fields exhibiting magnetic scattering from a helical texture
and skyrmion lattice. By measuring the scattering pattern in a saturation magnetic field, magnetic
and charge scattering were distinguished and an iterative phase retrieval algorithm was applied
to reconstruct the magnetic texture in the real-space. Results of the real-space reconstruction of
magnetic texture from two independently measured datasets were used to compare the reliability of
the retrieval.
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1. Introduction

Lensless imaging with coherent hard and soft X-rays is a rapidly developing technique, which
has been successfully performed in various studies in the fields of nanotechnology, biology, and
condensed matter physics [1]. The method is extremely useful for the structural examination of
non-crystalline specimens [1–4], and can be applied for the determination of the exact positions
of individual scattering objects and the mapping of defects in periodically ordered structures [5,6].
One of the promising applications of coherent soft X-rays is the imaging of the local magnetization of
magnetic specimens [7]. In the soft X-ray regime, by exciting electrons from the 2p state to the 3d state of
transition-metal atoms, it is possible to study the magnetic ordering in wide-angle diffraction [8–10] or
small-angle scattering geometry [11–15]. Moreover, a topological winding number of the magnetically
ordered system can be directly determined from the polarization-dependent (or dichroic) soft X-ray
diffraction pattern alone [16]. Dichroic resonant soft X-ray scattering can be successfully combined
with coherent diffraction approaches such as iterative phase retrieval [17–19], Fourier transform
holography-based methods [20–23], and ptychography [24,25] for the lensless real-space imaging
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of local magnetic moment at the scale from a few tens of nanometers to a few microns. Lensless
approaches allow the use of various sample environments, which confers a significant advantage
compared to zone-plate-based magnetic transmission X-ray microscopy. Coherent diffraction allows
the solution of classical crystallographic inverse problems of phase retrieval by using the iterative
reconstruction algorithms applied to diffraction intensities, which are proportional only to the modulus
of the complex Fourier transform of the scattering function. In principle, the resolution of an image
obtained by means of the phase retrieval algorithm is limited only by the highest spatial frequency
contained in the diffraction pattern. However, noise, instabilities of the sample and experimental setup,
radiation damage, missing pixels due to a beamstop shadow, etc. can possibly limit the achievable
contrast and spatial resolution [3,26,27]. In order to find a unique solution to the phase problem, phase
retrieval algorithms need a priori knowledge, such as a fixed region around the sample characterized
by zero scattering (known support), positivity, and reality constraints [28,29]. For example, Fienup’s
hybrid input–output (HIO) [30] is one of the most effective algorithms for coherent X-ray diffraction
imaging which employs measured diffraction pattern and guess of the sample shape to iteratively
reconstruct the sample real-space image [29]. The Shrinkwrap algorithm can be used when the tight
support is unknown to determine the sample shape directly from the Patterson function [31].

In the present paper, we employed a phase retrieval algorithm to reconstruct the lensless
images of the magnetic textures from the coherent small-angle resonant soft X-ray scattering (RSXS)
patterns measured from the magnetically ordered compound FeGe. The magnetic phase diagram of
B20-type non-centrosymmetric cubic FeGe has been extensively studied for bulk crystals [32,33],
thin plates [14,34], and epitaxial films [35–40]. Helical magnetic ordering appears in FeGe at
zero field near room temperature (Tc = 280 K) due to the interplay between exchange interaction,
Dzyaloshinskii–Moriya interaction, and anisotropy [41]. By application of the moderate magnetic
field in a range between B = 50 and 100 mT, the helical structure can be transformed to the
ordered lattice of topologically protected vortex-like spin configurations, a magnetic skyrmion crystal
(SkX) [33,34]. Similar to the Abrikosov vortices in type-II superconductors, SkX tends to form a (single-
or multi-domain) triangular lattice. In the past decade, SkX has been observed in bulk crystals of
chiral B20 compounds by means of small-angle neutron scattering [33,42,43]. Alternatively, Lorentz
transmission electron microscopy (LTEM) has been employed for the real-space imaging of SkX in
thin plates [34,44]. On the other hand, recent developments of the synchrotron radiation sources
and X-ray free-electron laser facilities provide several advantages to X-ray methods over the neutron
scattering and electron microscopy: high brilliance of the X-ray sources, wide energy range, spatial
coherence, and short time length of the pulses. The typical characteristic lengthscale of the skyrmion
lattice in B20 compounds ranges from a few tens to hundreds of nanometers, which corresponds to
the small-angle scattering region for the soft X-rays with energies matching the L2,3 absorption edges
of transition metals. Furthermore, soft X-ray imaging is a complementary technique to LTEM which
is sensitive to the in-plane magnetic flux inside the sample and produces no contrast in the case of
Néel-type skyrmions [45–47], which has been recently observed in magnetic ultra-thin films [48–50]
and bulk polar magnets [51–54].

2. Materials and Methods

2.1. Simulation of the Noise and Beamstop Effect on the Phase Retrieval Reliability

Experiments on the small-angle X-ray scattering in transmission geometry often require the
introduction of a beamstop to protect the detector from the transmitted direct beam. Moreover, for soft
X-rays, the complication of the all-vacuum environment is lifted, and it is not always possible to
control the dynamical range of the measured diffraction intensity by changing the sample-detector
and beamstop-detector distances. Therefore, in order to evaluate the possibility of the real-space
reconstruction from the coherent small-angle diffraction pattern in the case when a certain amount
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of central pixels are missing due to the beamstop shadow, a simulation with an artificial dataset was
first performed.

A problem for accurate reconstruction occurs when the measured scattering pattern contains
regions with missing data, even when the oversampling condition is satisfied and tight support is
known. As has been shown previously[26,27,55] by numerical simulations, the incorrect support
and the missing area at the center of the diffraction pattern can drastically reduce the real-space
reconstruction quality. However, the effect of a beamstop can be potentially reduced in cases where the
scattering signal from a periodic structure of the sample is isolated in a limited region of Fourier space
(it may also be called reciprocal- or q-space). We numerically investigated the robustness of the HIO
algorithm on missing pixels in this case. The real-space image of 650× 650 pixels (px) used for the
test was a scanning electron microscopy (SEM) photograph of the ordered monolayer of metallic
nanoparticles (Figure 1a) with a chosen asymmetric mask. Gaussian background noise of a magnitude
comparable to the second-order Bragg reflections was added to the Fourier transform modulus of the
original image. To simulate the subtraction of the charge scattering from the RSXS data, the contour
of the asymmetric mask in the original image was isolated and the corresponding Fourier transform
was subtracted from the scattering pattern. Furthermore, a circular “beamstop” with radius of R = 10,
20, 30, 40, or 50 pixels was introduced to remove the central pixels (Figure 1e). The resultant intensity
distribution was employed for the iterative phase retrieval using the HIO algorithm with enforced
reality and positivity constraints, known support, and the feedback parameter β = 0.9. The algorithm
was stagnating to the local minima after 200 iterations; 100 individual trials were averaged. Results
of the reconstructions with the beamstops of R = 0, 20, and 50 pixels are shown in Figure 1b–d,
respectively. The two-dimensional hexagonal lattice in the original image contains a few packing
defects (Figure 1a), which can be clearly reproduced only when the beamstop radius is smaller than
four pixels, while for R ≥ 4 px these defects are almost vanished. Fourier ring correlation (FRC)
analysis has been used to summarize the influence of the missing central pixels on the reconstruction
quality [56,57] (Figure 1f). The FRC measures the spatial frequency dependence of the cross-correlation
of the Fourier transform intensity from two independently reconstructed datasets. The resolution is
calculated at the point where the FRC curves irreversibly cross the 1/2 threshold [56]. The resultant
real-space resolution of a reconstructed image decreases from 4 px to 6 px as the missing area radius
increases from R = 10 px to R = 50 px; in the latter case, the resolution is comparable with the average
radius of nanoparticles shown in the original image. The overall contrast is drastically reduced as
the pixels at the center are removed. Nevertheless, the positions of the scatterers in the lattice are
determined correctly, while sizes and shapes of individual nanoparticles are lost.

If the background noise is higher than the intensity of the second-order Bragg peaks, the smooth
brightness variation on the scale of an individual object in the original picture is eventually replaced
by a sharp drop of brightness intensity at the center of each nanoparticle. A similar effect can be
observed if the intensity in the q-space region outside the six first-order Bragg peaks is removed. In this
situation, the form factor of the object in the lattice is sampled by only a few points in reciprocal space
(at the structural Bragg peaks positions) and modulates the intensities of the corresponding peaks.
Experimentally, similar results have been unambiguously demonstrated in [5], where exclusion of the
higher-order harmonics from the input Fourier-space pattern resulted in the loss of information about
the individual shape and size of the nanograins in the photonic crystal superlattice. Therefore, when
the measured diffraction pattern is limited in q-space by first-order Bragg peaks, only reconstruction
of the pinhole shape and particle positions can be retrieved. To summarize, our present simulation
suggests that if the support is known, the information about the coordinates of the scatterers in the
ordered lattice can be retrieved from the coherent small-angle scattering data—even in the case when
almost all central pixels between the first-order Bragg peaks are missing. In order to get rid of the data
contamination by the beamstop shadow, one should consider the use of multiple expositions taken with
different beamstop positions to increase the effective dynamic range [58], employ a semi-transparent
beamstop [59], or substitute missing pixels with the intensity measured near the transmitted beam
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with the absorption filter [60]. Unfortunately, none of these methods could be applied in the present
experimental setup.

Figure 1. Numerical investigation of the robustness of the hybrid input–output (HIO) algorithm:
(a) original image; reconstructions obtained from the square root of the modulus of the Fourier
transform of the original image when central area with radius (b) R = 0; (c) R = 20; (d) R = 50 pixels
(px) were removed. (e) Fourier transform of the original image (a); dashed white lines indicate the
beamstop area. (f) Fourier ring correlation (FRC) analysis of the reconstructed images.

2.2. Experiment

The RSXS experiment was carried out at the soft X-ray undulator beamline BL-16A, Photon Factory,
KEK, Tsukuba, Japan. The setup is equipped with a high-vacuum chamber with a background pressure
of 10−8 Torr. The scattered intensity was collected by an in-vacuum charge coupled device (CCD)
detector (512× 512 pixels, lPrinceton Instruments, Trenton, NJ, USA)protected from the transmitted
X-ray beam by a tungsten beamstop with a size of∼0.2–0.3 mm situated at the fixed distance in front of
the CCD matrix. A magnetic field B produced by a Helmholtz coil up to 400 mT was applied parallel
to the incident X-ray and perpendicular to the sample plane. A He-flow-type refrigerator was used to
control the sample temperature. The cryostat is equipped with a heater for temperature control in the
range from 15 K to 320 K [61].

The experiment was performed with a single-crystalline thin plate of FeGe using soft X-rays
at the resonant energy E = 707 eV corresponding to the L3 absorption edge of iron. Since the X-ray
attenuation length for FeGe at this edge is la ≈ 120 nm, a plate with a thickness of l = 200 nm was
prepared by focused ion beam (FIB) milling and fixed to a Si3N4 membrane by a tungsten contact.
The back side of the membrane was coated with a ∼4 µm Au absorbing layer to protect the detector
from the transmitted X-ray beam. An SEM image of the sample aperture produced in the gold mask
by FIB is shown in Figure 2a from the front (silicon nitride) side. The asymmetric shape of the pinhole
was chosen to provide better stagnation and verify the reliability of the phase retrieval algorithm [28].
The aperture size was chosen based on the longitudinal coherence length of the X-ray beam (10 µm)
to satisfy the oversampling condition. The dark-gray area around the aperture shown in Figure 2a
is the remaining silicon nitride layer, which was not removed completely by the etching routine,
but nevertheless was almost transparent to the incoming X-rays. To prevent the contamination of the
specimen by Ga+ ions during the FIB milling process, the thin plate of FeGe was attached to the back
side of the membrane after fabrication of the sample aperture (Figure 2b).
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The X-ray scattering factor for resonant magnetic scattering can be expressed by the equation:

f = (e · e’)fc + i(e× e’) ·Mf1
m + (e ·M)(e’ ·M)f2

m, (1)

where e and e’ are polarization vectors of the incident and scattered photons, respectively; fc is the
transition matrix element corresponding to the charge scattering; M is the magnetization; f1

m and f2
m are

attributed to the magnetic scattering. The second term i(e× e’) ·Mf1
m changes sign for incident photons

with opposite (right circular (RC) and left circular (LC)) polarizations. The third term containing f2
m is

quadratic in the magnetization and much smaller compared to the first two terms in case of the L2,3

edge of transition metals [62]. The experimentally measured intensity Im is equal to the squared Fourier
transform of the complex scattering factor f and consists of charge scattering, magnetic scattering, and
their interference.

Two-dimensional RSXS datasets obtained with circularly polarized X-rays at temperature
T = 280 K and applied magnetic fields B = 0 mT, B = 50 mT, and B = 220 mT are shown in Figure 3.
The data acquisition time was 1 s, and a series of 100 frames was summed to maximize the scattering
signal for each field condition. The “golf club”-shaped region at the center of the diffraction patterns is
the beamstop shadow. The parasite scattering signal arising from imperfections of gold coating and
sample aperture is manifested as the intense rays diverging from the center of the pattern in Figure 3a–c.
This background scattering was isolated by measurement of the RSXS pattern in the field-polarized
(spin-collinear) state of FeGe at the applied field of B = 220 mT (Figure 3c). Alternatively, the charge
scattering alone can be measured in off-resonance condition by tuning the incident X-rays’ energy and
subtracting from the pattern after appropriate normalization.

Small-angle scattering from a helical magnetic structure can be clearly observed at zero magnetic
field (Figure 3a) as two symmetric Bragg peaks corresponding to the single-domain helical state with
real-space periodicity λh = 73 nm. A similar periodicity of magnetic structure λSkX = 73 nm can be
observed for SkX state (Figure 3b) when a magnetic field of B = 50 mT is applied. We can suggest that
the inequality between the skyrmion and the helical texture periodicities in FeGe samples reported in
a previous resonant soft X-ray scattering experiment (λh = 68 nm while λSkX = 73 nm) [14] has been
induced by the tensile strain due to the tungsten contacts that were used to attach the specimen to
the Si3N4 substrate [63]. In the present setup, we used a strain-free sample which was fixed to the
membrane by only one tungsten contact (Figure 2b). Thus, the resultant periodicity of the helical and
skyrmion textures λh = λSkX = 73 nm match each other and the previously reported values for the
thin FeGe plates [34]. For the higher fields (B > 120 mT), the magnetic small-angle scattering was not
observed (Figure 3c) in the present q range due to the field-polarized state of FeGe.

Figure 2. (a) Scanning electron microscopy (SEM) image of the sample aperture; (b) FeGe thin plate
fixed on the opposite side of Si3N4 membrane by a tungsten contact.
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Figure 3. Resonant soft X-ray scattering (RSXS) patterns measured at T = 280 K and (a) B = 0 mT
corresponding to the helical phase of FeGe; (b) B = 50 mT corresponding to the skyrmion crystal (SkX)
phase; and (c) field-polarized state at B = 220 mT.

3. Results and Discussion

The real-space image of the sample aperture has been retrieved by a Shrinkwrap algorithm [31]
from RSXS patterns measured in the field-polarized state (Figure 3c). The obtained pinhole size,
shape, and orientation delivered by the reconstruction were in good agreement with SEM images.
The shape of the reconstructed aperture suggests that the dark-gray area around the hole (Figure 2a)
is transparent to the X-rays, indicating that the thickness of the remaining silicon nitride layer is
negligible. Further, the sample shape shown in Figure 4a was used as the object-plane support
domain constraint for the phase-retrieval algorithm applied to the data measured at B = 0 mT and
B = 50 mT. Due to the large difference between the spatial frequencies and overall decay of small-angle
scattering intensity functions, we considered that the interference between magnetic and charge
scattering is negligible [64]. Furthermore, the charge scattering was subtracted from the datasets taken
at B = 0 mT, B = 50 mT in order to isolate the magnetic contributions. The residual diffraction pattern
intensity is proportional to the absolute square of Fourier transform of the magnetization density.
Therefore, the square root of the measured intensity

√
Im was used as real part of the Fourier-space

constraint for the phase retrieval algorithm. The central pixels that were hidden by the beamstop
shadow (|q| < 0.08 Å−1) were allowed to vary freely. The resultant magnetic RSXS patterns were
employed for the phase retrieval. We used the HIO algorithm with improved noise tolerance [65] and
did not assume positivity nor reality constraints. Reconstructed images obtained by 1000 individual
runs of the algorithm with random initial phases were averaged. The bi-cubic interpolation was
applied to the resultant images.

Figure 4. (a) Real-space support used for iterative phase retrieval; (b) Imaginary part of the
reconstruction of the magnetic texture of FeGe at B = 0 mT (helical phase) and (c) B = 50 mT (SkX
phase). The grayscale bar is given in arbitrary units. The black rectangle in panel (c) indicates the
magnification area shown in Figure 5.
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The binary image of the sample support is shown in Figure 4a. Imaginary parts of the
reconstructed complex-valued images of the helical texture and skyrmion lattice shown in Figure 4b,c
are obtained from RSXS patterns (Figure 3a,b) measured at B = 0 mT and B = 50 mT, respectively, by the
algorithm described above. The magnetic scattering intensity was maximized at the energy E = 707 eV,
providing maximal contrast for the real part of the transmission function, which is proportional to the
local spin density. Considering the subtraction of the charge scattering from the diffraction patterns,
the real-space contrast in Figure 4b,c is directly proportional to the projection of the magnetization
along the field direction. Fluctuations of the brightness represented as white blur in Figure 4b,c
can be ascribed to the residual charge scattering from the specimen roughness, random low-frequency
modulation due to the missing speckles, charge and magnetic scattering interference, and other
experimental or calculation issues. As discussed in Section 2.1, since only the first-order Bragg peaks
are present in the diffraction pattern, the real-space reconstruction of the particles’ positions but not
the form-factor can be retrieved. We attribute the appearance of the black and white dot variation
seen in Figure 4c only to the deformation of the particles’ shape, since it does not break the periodic
function delivered by the structure factor.

The magnification of the area highlighted in the black box in Figure 4c is shown in Figure 5.
Figure 5a,b corresponds to the real-space images independently reconstructed from the datasets
measured with LC (Figure 5a) and RC (Figure 5b) polarizations. Note, that in this case the full patterns
containing the charge and parasitic scattering were used as an input intensities. The images obtained
by phase retrieval are unclear; nevertheless, a hexagonally-ordered array of spots is visible. Moreover,
the contrast inverts at the spots positions between the opposite polarizations, indicating their magnetic
origin. However, the quality of the images is poor. We suggest that reconstructions of full scattering
patterns do not deliver clear contrast due to the contribution of the parasitic charge scattering, making
the images unreproducible between the different runs of the algorithm and therefore cannot be assigned
to the real charge modulations, such as a roughness of the thin plate. Especially in the RC polarization
case, the contrast in the reconstructed images is more blurred compared to the LC. We attribute this
effect to the small shift of the photon energy and position of the RC-polarized beam compared to LC,
resulting in the reduced signal-to-noise ratio. Consequently, the isolation of magnetic scattering was
performed by subtracting the diffraction pattern measured at the field-polarized state (B = 220 mT)
from the patterns measured at B = 0 and B = 50 mT. Simulation (Section 2.1) suggests that ordered
texture determination is not significantly affected by this routine. By subtracting the charge scattering
in the reciprocal space, the quality of the reconstruction can be improved drastically (Figure 5c,d).
Meanwhile the real-space difference pattern between RC and LC reconstructions contain the magnetic
real-space contrast; the sum, in principle, should provide a charge density distribution [25]. However,
subtraction of the charge scattering from the Fourier-space patterns excludes this possibility. Therefore,
to enhance the magnetic contrast, the difference between two reconstructions from datasets measured
with LC- and RC-polarized photons were taken (Figure 5e,f). Indeed, by comparing the positions of
skyrmions in the lattice and magnetization direction of the cores and the outer parts of skyrmions
for the images reconstructed from the data taken with opposite polarizations, one can conclude
the reliability of the real-space image. When the helicity of the X-ray beam is changed from left to
right, the sign of the term i(e× e’) ·Mf1

m in Equation (1) and real-space magnetic contrast invert.
Consequently, we can observe a clear magnetic texture in the difference patterns resulted from the
subtraction of two real-space images retrieved from the datasets taken with LC and RC polarizations
(Figure 5e,f).

The resolution threshold of the reconstruction is determined by the highest measured Fourier
harmonics, and can be improved by measuring higher-order Bragg reflections. We did not apply
any commonly used phase-retrieval transfer function or the Fourier ring correlation analysis due to
the a priori known limited q-range of magnetic scattering. Alternatively, the reliability of the single
reconstructed magnetic pattern can be examined by means of a Gabor transform, as has been proposed
by Flewett et al. [18]. In the present study, we used real-space textures reconstructed from the RSXS
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patterns taken with RC- and LC-polarized photons at the same sample conditions to qualitatively
evaluate the reliability. We can determine the position of each skyrmion by the template-matching
method via normalized cross-correlation function (CCF) [66]. The matching pixels of the template and
the tested image would be identified by a peak in the CCF. Therefore, the coordinates of each skyrmion
particle at the reconstructed pattern can be identified and compared for both reconstructions. Thus by
using one skyrmion as the template and comparing the coordinates of templates for each real-space
pattern, we can conclude that the real-space error (displacement of the individual skyrmions) does
not exceed 40 nm. Therefore, we can assign this unit cell displacement as a real-space resolution of
the reconstructed image. This number can be improved by measuring the higher-order scattering
harmonics with a good statistics what will allow a form factor of the individual vortices to be obtained.

Figure 5. Magnification of the real-space image of the skyrmion lattice obtained by the iterative phase
retrieval. Patterns shown in panels (a,b) are reconstructed from the square root of the original RSXS
data obtained with left circular (LC) and right circular (RC) soft X-ray polarizations, respectively;
(c) Real-space reconstruction of the LC and (d) RC datasets were processed as described in Section 2.2;
(e) Difference of left and right polarized reconstructed images (LC-RC) and (f) right and left (RC-LC)
reconstructions showing the contrast inversion for opposite polarizations. The axis values are given in
pixels for the convenient determination of the positions of the vortices.

4. Conclusions

In conclusion, we have probed the magnetic texture of FeGe by means of coherent small-angle
scattering with circularly polarized soft X-rays. We have performed the first to our knowledge lensless
imaging of an ordered magnetic texture with in-situ controlled temperature and magnetic field using
an iterative phase retrieval approach. The method can be used with both circularly and linearly
polarized soft X-ray beams, and does not require any focusing X-ray optics to perform magnetic
imaging with a resolution of a few tens of nanometers, and therefore allows the use of various sample
environments. Coherent small-angle resonant soft X-ray scattering can be applied to a wide range of
further experiments, including the investigation of Néel-type skyrmion compounds and time-resolved
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studies of skyrmion textures in both Fourier and real-space. Moreover, phase retrieval can be employed
as a supplementary technique for resonant small-angle scattering and Bragg diffraction; for example,
it can improve the scanning-based technique of mapping skyrmion domains in continuous samples [10]
by masking the incoming X-ray beam by a pinhole.
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