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Abstract: Synchrotron radiation computed micro-tomography (SR-µCT) is a non-destructive
characterization method in materials science, which provides the quantitative reconstruction of
a three-dimension (3D) volume image with spatial resolution of sub-micrometer level. The recent
progress in brilliance and flux of synchrotron radiation source has enabled the fast investigation of
the inner microstructure of metal matrix composites without complex sample preparation. The 3D
reconstruction can quantitatively describe the phase distribution as well as voids/cracks formation
and propagation in structural metals, which provides a powerful tool to investigate the deformation
and fracture processes. Here, we present an overview of recent work using SR-µCT, on the applications
in structural metals.

Keywords: computed microtomography; synchrotron radiation; fracture behavior; laminated
structural metals

1. Introduction

Better understanding of the fracture behavior is required for the high-performance design and
safe operation of metallic structural materials [1,2]. To reveal the crack nucleation and propagation
processes as precisely as possible, scanning electron microscopy (SEM) and surface-based fractography
are always utilized to establish the relationships between the fracture behavior and the mechanical
properties of metallic structural materials [3,4]. Although these two-dimensional (2D) observations
contribute to the achievements made in revealing the fracture behavior to some extent, the effect of
the internal microstructure under the 2D surface of the samples on the crack regime was neglected.
Actually, stress state of the crack on the surface differs greatly from that in the interior of the samples [5]
and the cracking always occurs within the interior of the samples. Therefore, it is necessary to analyze
the fracture behavior using three-dimensional (3D) characterization methods.

X-ray computed tomography (CT) as a 3D imaging technique provides an opportunity to solve
the aforementioned problems. It is well known that the X-ray beam attenuates, which is caused by the
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absorption when penetrating an object [6]. For a given incident intensity (I0), the transmitted intensity
I(x) of the X-rays is calculated by the equation [7]:

I(x) = I0e−µx

where µ is the local linear attenuation/absorption coefficient, which correlates with incoherent
scattering, coherent scattering and photoelectric effect, etc., and x is the distance of the object
transmitted by the X-rays. When the X-rays penetrate an object with multiple constituents, I(x)
of the X-rays changes with the variable absorption coefficients of the constituents. Accordingly,
absorption-contrast is obtained and the inner constituents of the object can be distinguished from
each other, which is the imaging principle of CT [8–10]. Figure 1 shows the schematic diagram of
the CT imaging principle in detail. Firstly, hundreds of 2D projection radiographs are taken from the
object at various angles, and secondly, they are mathematically reconstructed to a series of quantitative
2D slices with absorption-contrast. Finally, 3D morphology of the object can be reconstructed using
this series of 2D slices. Since the X-ray absorption coefficient is determined by the density and
elemental composition of the object, the image absorption-contrast directly reflects the microstructure
of the material. Therefore, CT should be a powerful tool to unveil the relationship between fracture
behavior such as crack nucleation and propagation process, and the internal constituents of the metallic
structural materials. Conventional X-ray CT using electron-impact X-ray source has been widely used
for flaw detection of the industrial components, while its applications for scientific research are
restricted due to the technical limitations such as low penetration depth and poor efficiency.
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Figure 1. Schematic diagram of imaging principle of X-ray computed tomography.

Synchrotron radiation (SR) is known for high-energy X-ray beam emitted by high-speed electrons
when they travel along a circular trajectory under the action of an electromagnetic field [11].
The utilization of SR as the X-ray source for CT has revolutionized X-ray imaging technology, which
promotes the development and applications of SR computed microtomography (SR-µCT). Firstly, the
energy of X-ray source influences the attenuation capability of materials. Figure 2 shows a relationship
between X-ray attenuation length and energy through various metals [7]. Here, the X-ray attenuation
length is defined as the distance through which 37% of the X-ray intensity will penetrate. Generally,
high energy of SR is more suitable for observation of large samples or high atomic number materials.
If the X-ray energy is too high then insufficient absorption contrast is obtained, whereas if the energy is
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too low then enough image intensity cannot be obtained. Therefore, tuning energy of SR can maximize
the absorption-contrast of materials to improve the contrast between different phases in the materials.
For SR-µCT imaging of structural metals such as layered Ti/Al metal composites and Mg alloys, typical
X-ray energies of 20–40 keV are always used [12,13]. Moreover, good monochromaticity and high
spatial coherence of the synchrotron X-rays used for SR-µCT reduce the radiation hardening effect and
benefit the phase contrast imaging. It should be emphasized that in addition to the intrinsic advantages
of SR, image quality can be further improved only by adjusting the contrast-to-noise ratio (CNR) of the
different phases in the materials when processing the SR-µCT images. Secondly, the imaging principle
of SR-µCT is essentially same to the conventional CT systems. The optimum spatial resolution of
the conventional CT for industrial application is approximately 100 µm, whereas that of the SR-µCT
ranges from tens of nanometers to micron scales. Especially, the 3rd-generation synchrotron sources
at Petra-III and ESRF enable nano-tomography with a resolution of <200 nm [14,15]. Although
an advanced lab-µCT can also achieve similar spatial resolutions (~50 nm), much longer time is
required for acquiring all the projections due to its low brilliance [14]. Accordingly, the SR-µCT has
been increasingly applied to non-destructively characterize the crack nucleation and growth from 3D
vision [16–18].
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The high penetrating capability of the synchrotron X-rays enables the SR-µCT technique to inspect
the constituents around the cracks in the samples, such as defects, precipitates, second phases and
inclusions [19,20]. The constituents surrounding the cracks influence the crack path during the damage
process, and play key roles in determining the fracture behavior of the samples [21] and, hence,
a 3D characterization of the interactions between the constituents and cracks using µCT technique is
required to reveal the fracture mechanisms [22]. Furthermore, the high brilliance of the X-ray beam
used in the SR facilities means that SR-µCT has high efficiency and high temporal resolution, that is,
the events occurred over short timescales can be captured. As a result, it permits the performance
of high-speed X-ray radiography during loading and it is possible to capture a dynamic process of
crack propagation inside the sample. Therefore, the imaging beamlines for SR-µCT at SR facilities have
generally equipped with in-situ tensile and/or compressive rigs to trace internal crack growth during
loading at ambient and elevated temperatures, which facilitates the investigations of the fracture
behavior and some new fracture mechanisms have been proposed [23–27]. For example, the scan time
for in-situ SR-µCT characterization of cracking in AA2124 matrix composites during tensile test is only
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1 min [27]. In comparison with the SR-µCT, a lab-µCT using electron-impact X-ray source requires
much longer time to acquire all the projections [7].

In this paper, we review the progress made in some research groups on the 3D characterization
using SR-µCT, to study the fracture behavior of metal matrix composites (MMCs), such as the
laminated metal composites, aluminum matrix composites and multimodal magnesium alloys.
Finally, a new expanded technology, diffraction contrast tomography (DCT) for 3D grain mapping,
is also briefly reviewed, which contributes to the understanding of fracture mechanisms of metallic
structural materials.

2. 3D Characterization of Fracture Behavior for Metal Matrix Composites Using SR-µCT

The excellent mechanical properties of composites are attributed to their heterogeneities,
which make it possible to achieve the advantages of each composite constituent. However, the research
on the relationship between the microstructure and their fracture behavior is insufficient, which is to
some extent due to the lack of effective characterization technology. High photon flux and high-speed
camera utilized at third-generation synchrotron X-ray sources mean that SR-µCT should be a powerful
tool and provides a promising way to clarify the fracture behavior of the composites. The past decade
has seen the progress in our understanding of MMC damage process [28–30]. Advances achieved in
SR-µCT characterization technologies of materials, such as X-ray energy, and high spatial and temporal
resolutions, largely benefit the MMC research.

2.1. Particle-Reinforced Aluminum Matrix Composites

Hard particles have long been used to enhance the mechanical properties of aluminum matrix
composites. However, materials scientists have found that, when the hard particles content increases
to a certain level, the performance of aluminum matrix composites decreases sharply. It is difficult to
determine the failure mechanism from the observation of 2D surface or fracture. However, 3D imaging
technology based on SR presents an effective non-destructive characterization way which can in-situ
reveal the interaction mechanism between internal hard particles and the matrix.

The researchers fabricated two aluminum matrix composites as model composites, which were
reinforced by 4 vol.% of ZrO2/SiO2 particles [27]. Two kinds of matrix were used, namely hard
aluminum alloy matrix (AA-2124) and soft pure aluminum matrix, respectively. The size of reinforced
particles ranged from 40 µm to 60 µm. Then, the fracture behavior of two model composites with
hard and soft matrix was investigated using time-lapse SR-µCT. Time-lapse SR-µCT can provide 3D
insights to reveal the tendency of cracks nucleation, crack morphologies and crack paths as they
propagate. Moreover, the high spatial resolution with micron scales is needed due to the small size of
the cracks. Figure 3 shows reconstructed tomographic slices of same region at different tensile strain
levels in two model composites observed by in-situ SR-µCT [27]. It is evident that, for the composite
with soft aluminum matrix, the failure of the composite mainly derives from decohesion between
the soft matrix and the hard particles. On the other hand, for the composite with harder aluminum
alloy matrix, the failure of the composite originates from cracking of the particles. Generally, cracks
preferentially nucleate at the site of stress concentration. The dispersion of the hard ceramic particles
or fibers within the ductile metal matrix results in an increase in the flow stress of the metal, through
load-transfer across the interface from the matrix to the reinforcement. When the aluminum matrix
starts to deform plastically, the ceramic reinforcements can constrain the plastic deformation of the
matrix, causing a large local compressive stress in the matrix. However, the soft aluminum matrix
enhances the load-transfer by the reinforcement, and the harder aluminum alloy matrix reduces the
flow stress, thus leading to a stress concentration, which may cause premature damages, such as the
internal particle breakage and interfacial debonding.
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Figure 3. Reconstructed tomographic slices of same region at different strain levels in two model
composites (aluminum matrix composites reinforced by 4 vol.% of ZrO2/SiO2) observed by in-situ
SR-µCT. The tensile direction is parallel to the horizontal direction. Fracture behavior of composite
made of soft pure-aluminum matrix is mainly derived from decohesion along the particle/matrix
interface. When hard aluminum alloy matrix is used, the damage of the composite initiate from particle
fracture [27].

2.2. Layered α2-Ti3Al/α-Ti Composite

For brittle MMCs, once micro-cracks occur, the cracks easily propagate and develop into unstable
main cracks, eventually leading to fracture of the composites. Generally, the crack opening distance
(COD) in brittle composites is small so that higher resolution (submicron scales) SR-µCT observation
is required. We designed a brittle/ductile multilayered composite composed of brittle α2-Ti3Al
constituents rendering high strength and soft α-Ti phase imparting the ductility [31]. Such a composite
was prepared by diffusion reaction of alternatively stacked Ti foils and Al foils (Figure 4), and the
detailed synthesis process was described in our previous work [32,33]. Compositional linear profile
analysis shows the diffusion-induced composition gradient, progressively changes from the α-Ti side
across the interface to the oppositeα2-Ti3Al side, which may effectively stabilize the plastic straining
and provide extraordinary mechanical responses [34–36]. Besides, a dual-phase layer consisting of
α-Ti(Al) and fine α2-Ti3Al precipitates should exist between α-Ti(Al) layers and α2-Ti3Al layers based
on Ti-Al binary phase diagram. These three layers, namely the α-Ti(Al) layer, the α2-Ti3Al layer and
the α + α2 dual-phase layer, can be distinguished depending on their Al contents and are 130 µm,
15 µm, and 35 µm, respectively, in thickness.
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Figure 4. Microstructure evolution of Ti-Al layered composites during fabrication process [31].
(a–f) SEM micrographs and energy dispersive X-ray spectroscopy (EDX) line scan (along white lines
in (a–c), from left to right) of the samples annealed at 1100 ◦C for: (a,d) 1 h; (b,e) 2 h; and (c,f) 3 h.
The samples were initially heated treated at 700 ◦C for 1 h before high temperature annealing. (g) Kikuchi
band contrast map retrieved from the electron backscattered diffraction (EBSD) results. The spatial
coordinate system is represented by rolling (RD), normal (ND), and transverse (TD) directions.
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The composition gradient in the laminated composites changes the fracture behaviors of those
three layers, in such a way that the yield strength of α + α2 dual-phase layers should lie between
hard α2-Ti3Al layers and soft α-Ti(Al) layers. The spatial distribution of cracks and underlying
microstructures of fractured samples were characterized using 3D SR-µCT, where the beam energy
(36 keV), pixel size (0.65 µm/pixel) and exposure time per projection (550 ms) were used in this
experiment. It should be noted that the pixel size was selected according to the magnification of the
charge coupled device (CCD) at the BL13W imaging station of SSRF; for example, the CCD with 10×
zoom corresponds to the pixel size of 0.65 µm/pixel Besides, two projections of the background were
captured after collection of every 30 sample projections so that 1600 projections were collected from
0◦ to 180◦ with a step size of 0.12◦. We found that: (i) the cracking of brittle α2-Ti3Al layer and shear
fracture of ductile α-Ti(Al) layer were clearly observed on the RD-ND plane of the fractured sample,
as shown in Figure 5a; (ii) most micro-cracks seemed to nucleate in the brittle α2-Ti3Al layers, but their
tips were immediately blunted via plastic deformation of neighboring α+α2 dual-phase components
(Figure 5b), implying an elevated damage tolerance of laminated composites; and (iii) quantitative
measurements of the volume density of cracks indicated plenty of small arrested cracks (Figure 5c).
The crack growth was effectively restricted and these cracks had no potential to cause the unstable
cracking for the current applied stress state. Furthermore, these cracks significantly relived the stress
accumulated in the brittle α2-Ti3Al layers and accommodated the strain to some extent.
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Figure 5. 3D characterizations of the fracture behavior in layered α2-Ti3Al /α-Ti composite [31]:
(a) reconstructed slices and crack distribution observed along TD; (b) morphologies of the cracks
abstracted from (a); and (c) quantitative results of the volume density of cracks plotted as a function of
distance to fracture surface. Ten reconstructed volume for calculation (containing 80 slices, i.e., 52 µm
in thickness along RD) are also given in the right side.
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2.3. Layered Ti/Al Metal Composites

For ductile MMCs, the initial nucleation sites and propagation paths of cracks are concerned.
The in-situ observation of the crack propagation is conducive to investigate its fracture behavior.
This requires rapid imaging capability of SR during the experiment, but which cannot be performed
using lab-µCT. In our research works, layered Ti-Al metal composite (LMC) as a model material
was prepared by hot-pressing and hot-rolling of pure Ti and Al foils, exhibiting an extraordinarily
high ductility without sacrificing the strength [37]. Digital image correlation (DIC) was performed
to investigate the deformation behaviors, and strain delocalization was found to be responsible for
extraordinary tensile ductility [12]. The initiation and evolution of crack were also inspected using
SR-µCT, which is critical to understanding the damage mechanisms of LMC. In this experiment,
the beam energy (32 keV), pixel size (0.65 µm/pixel) and exposure time per projection (1.5 s) were
used, and 920 projections were recorded from 0◦ to 180◦ with a step size of 0.2◦. Figure 6 shows the 3D
morphologies of the cracks near the fracture surfaces of the LMC and abstracted Ti. Equivalent strain
εeq was introduced by evaluating the change of gauge section area to characterize the accumulation
of damage. It was found that to some extent the crack propagation can be constrained by layered
structure, which is important for retaining high ductility. Once the constraint effect of layered structure
is locally weakened due to the delamination of Ti/Al interface, rapid necking of the LMC occurs,
which leads to the sudden local fracture.
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To reveal the fracture behavior of LMC, SR-µCT experiment was carried out during the in-situ
tensile test [38]. Figure 7 shows the 3D renderings of the cracks in the LMC when tensioned to macro
strains of 0%, 3%, 5%, 10% and 20%, which clearly reveals the nucleation and accumulation of the
cracks in the LMC during the tensile deformation. Because of the strong interface bonding, there is
no visible initial void or crack in the LMC before the tensile test (~0%). Then, most micro cracks
were found to preferentially nucleate at the Ti/Al interfaces (before ~3%), but their propagation are
constrained by layered structure (3–10%). Moreover, many micro-cracks were observed in the Al
layers, which offset the tensile strain to some extent to improve the deformation compatibility between
Ti and Al layers. Meanwhile, the stress of Al layer is relieved, which further enhances the ductility of
Al layers in LMC. The reconstructed 2D slices of the LMC sample tensioned to 10% and 20% clearly
reveal that local fracture of Ti layer results in the fracture of the LMC.
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2.4. Al/Al18B4O33 Composites

Aluminum metal matrix composites (AMCs) are promising structural materials for weight
reductions due to their high strength and low density [39,40]. Some efforts have been made to get
thorough understanding of the relationship between microstructure and mechanical properties, only
then can we design the AMCs with desirable properties. In general, the reinforcement addition
deteriorates the ductility of AMCs. Moreover, the agglomeration of reinforcements results in the drastic
drop of ductility and even a sharp decline of strength due to the premature fracture [41–43]. Enlightened
by structural architecture such as layered structure mentioned in Sections 2.1 and 2.2 [12,31,37,44,45],
the band-like aluminum matrix composites (BAMCs) were prepared and the high elongation was
achieved [46].

The BAMCs were fabricated by hot-pressing sintering, extrusion and annealing of the mixture of
pure aluminum powder with diameter of 48 µm and the Al18B4O33 whisker (ABO) with diameter of
1.7 µm [46]. The volume fractions (Vw) of the ABOs used in this study are 3 vol.%, 5 vol.% and 10 vol.%
and the corresponding BAMCs samples donated as 3ABO, 5ABO and 10ABO, respectively. The SEM
micrographs of the BAMCs samples are shown in Figure 8a–c. It can be seen that the majority of ABO
(white contrast) agglomerate to form the ABO-rich bands. Moreover, the ABO-rich bands distribute in
the ABO-poor region and spread along the extrusion direction (ED). The width of ABO-rich bands and
the distance between each ABO-rich bands decreases with the increasing Vw.
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Figure 8. SEM micrographs of the as-annealed: (a) 3ABO composite; (b) 5ABO composite;
and (c) 10ABO composite [46].

3D crack distribution in the fractured BAMCs tensile samples was characterized using SR-µCT on
the beamline BL13W1 at Shanghai Synchrotron Radiation Facility (SSRF). The beam energy (18 keV),
pixel size (0.65 µm/pixel) and exposure time per projection (2 s) were used for this experiment, and 1600
projections were collected from 0◦ to 180◦ with a step size of 0.12◦. Figure 9a–c shows the morphologies
and distributions of the cracks inside the fractured samples, revealing the negative correlation between
crack size and Vw. It is reported that the conventional ABO reinforced AMCs prefer to generate a major
crack in the ABO-rich band, and then the crack penetrates the whole sample quickly when possessing
high ABO content. Accordingly, the damage zone should be confined to the limited volume near the
fracture surface [47]. In contrast, the ABO-rich bands in the BAMCs fabricated in our work facilitate
the nucleation of a quantity of small cracks and they distribute homogenously inside the ABO-rich
bands. Accordingly, the band-like structure is supposed to restrict the propagation of cracks. Figure 9e
shows the relationships between the crack volume fraction and the distance away from the fracture
surface in the samples. The results quantitatively confirm the homogenous distribution of cracks along
the loading direction and the slight increment of crack volume fraction increases with the increasing
Vw. The constrained crack propagation and smaller crack size alleviate the strain localization and
contribute to the superior ductility of the BAMCs than those AMCs reported previously.
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2.5. Long Period Stacking Ordered (LPSO) Phase Containing Mg Alloy

The requirement for the weight reduction of the vehicles to reduce the CO2 emissions promotes the
development of high strength Mg alloys, especially wrought Mg-Zn-rare earth (RE) alloys containing
long period stacking ordered (LPSO) phases due to their comparable mechanical performance and
lower density compared with Al alloys [13,48–51]. The as-extruded LPSO phase-containing Mg alloys
always exhibit multimodal microstructure consist of block-shaped LPSO phases stretched along
the ED, fine dynamically recrystallized (DRXed) grains and coarse worked grains, as shown in
Figure 10 [13]. Since the (0001)<1120> basal slip dominates plastic deformation of LPSO phases,
the block-shaped LPSO phases exhibit strong anisotropy and act as reinforcements of the as-extruded
LPSO phase-containing alloys, and, accordingly, they deform as laminated metal composites
aforementioned [13]. For example, a high-performance Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt.%) alloy
containing LPSO phase was fabricated by hot extrusion, the microstructure was modified via slow
cooling and fast forced-air cooling processes, and then an artificial aging treatment was performed [13].
The slow and fast cooled samples are denoted as A450+A and F450+A, respectively. Both have typical
multimodal microstructure, as shown in Figure 10, and the significant difference between them is that
F450+A sample has higher volume fraction of coarse worked grains.
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SR-µCT was used to characterize the crack distributions inside the fractured tensile samples and
the 3D morphologies of cracks and block-shaped LPSO phases in the fractured A450+A and F450+A
samples are illustrated in Figure 11a–c. In this experiment, the beam energy (24 keV) and pixel size
(0.65 µm/pixel) were used, and 920 projections were collected from 0◦ to 180◦ with a step size of
0.2◦. The F450+A sample has higher density of cracks, while the two samples have similar crack
sizes. Besides, the crack volume fraction almost keeps constant for the A450+A sample, but increases
rapidly with decreasing distance to the fracture surface of F450+A sample, suggesting that the fracture
behavior is different for the two samples having different volume fractions of coarse worked grains.
The slices adjacent to the fracture surface of the tensile fractured F450+A sample indicates that the
bended LPSO phases facilitates the crack nucleation, and then the propagation and emergence of
the cracks result in the fracture of the sample, which agrees well with the SEM observation shown
in Figure 11d. In contrast, it seems that the cracks distribute homogeneously in the A450+A sample,
while the cracks propagate rapidly and throughout the sample at the position of necking, which leads
to a sudden fracture of the sample. Therefore, the A450+A sample with higher volume fraction of
coarse worked grains has higher tolerance for cracking than A450+A sample.
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Figure 11. Microstructure of the fractured tensile samples [13]. 3D distributions of the cracks and
LPSO phases in the fractured (a) A450+A and (b) F450+A samples using SR-µCT. (c) Curves of crack
volume fractions plotted as a function of distance to the fracture surface of two fractured samples.
The slices obtained from the F450+A sample for calculation are numbered 1–6 and shown on the right
side. (d) SEM image taken from the F450+A sample adjacent to the fracture surface and the cracks are
indicated by red arrowheads.

2.6. Grain Mapping with Diffraction Contrast Tomography (DCT)

The SR-µCT with the absorption-contrast imaging is not sensitive to the grain boundaries or
the orientations of the grains. This means that it is impossible to correlate the microstructure of the
materials with the crystallographic orientations using SR-µCT. EBSD has been widely used to reveal
the crystallographic microstructure of the materials with great spatial resolutions, but which only
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gives 2D surface information of the samples and so that only four of five parameters required for
describing a full grain boundary are provided [52], which limits the investigation on the effect of
the grain boundaries and crystallographic orientations on the fracture behavior of polycrystalline
structural materials. In combination of EBSD and focused ion beam (FIB), EBSD can be extended into
3D-EBSD, while which has to serially section the sample by FIB for 3D reconstruction. Since 3D-EBSD
is a destructive way and thus time-dependent observations, such as in-situ observation of the sample
becomes impossible. In recent years, a wonderful technique called diffraction contrast tomography
(DCT) was developed at SR beamlines to non-destructively characterize the 3D grain structures,
which is carried out just by detection and analysis of the diffraction signals rather than the absorption
signals [53]. Therefore, by using DCT, it is possible to unveil the fracture behavior of the structural
materials by considering the crack nucleation and propagation influenced by grain boundaries and
crystallographic orientations in 3D.

Intergranular stress corrosion cracking (IGSCC) is the nucleation and propagation of cracks
by local corrosion along the grain boundaries, which is a critical fracture mechanism for structural
metals. The IGSCC is influenced by some factors, such as susceptible materials, critical environment,
and sufficient driving force. Generally, sensitization increases the local corrosion of grain boundaries,
and the sensitization resistance is influenced by its grain boundary structure, but the relationship
between local corrosion and grain boundary structure is still not clear. How to characterize the grain
boundaries in 3D is critical to investigate this relationship between them. DCT provides an opportunity
to resolve this issue in terms of 3D grain shapes and crystallographic orientations, and simultaneously
absorption contrast image of the cracks can be obtained by collection of the absorption intensity signals.
King et al. prepared a sample of austenitic stainless steel with a fully recrystallized microstructure
(mean grain size of ~50 µm), and analyzed the effect of grain boundary structure on the IGSCC using
DCT [54]. Figure 12 shows a 3D map of the grain size, shapes and their crystal orientations. The grain
boundaries can be described by the relative crystal lattice misorientation between the adjacent grains.
As a result, several sensitization-resistant crack-bridging boundaries are identified. In combination
with in-situ SR-µCT characterization in corrosive environment, it is found that a specific range of grain
boundaries have special properties and which directly correlate with the crack bridging development.
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Figure 12. The 3D grain map of austenitic stainless steel obtained by DCT, including 169 grains (a total of
362 grains were measured) [54]: (a) grain crystallographic orientation using an RBG scale; and (b) grain
boundaries using colors. Different colors represent the different coincident site lattice (CSL).

For metastable β titanium alloy Tiβ21S, its fatigue life is of special interest. Since the short crack
stage can take over more than 90% of fatigue life, short fatigue cracks (SFCs) are the focus of research
in fatigue performance. Generally, the growth of SFC shows a large scatter, which is associated with
the orientation and shape of the local grains surrounding the SFC. In other words, these local grains
influence the direction and growth rate of SFC by changing their local stress state. Therefore, a detailed
analysis of SFC requires the information on shape, size and orientation of these grains. Herbig et al.
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performed heat treatment on the metastable β titanium alloy Tiβ21S to decorate grain boundaries
with alpha precipitates [55]. Time-lapse DCT combined with phase contrast tomography were used
to correlate crystallographic orientations of the grains and the grain boundaries with local crack
propagation during fatigue test. Figure 13 shows the distribution of SFC and grain boundaries, and the
relationship between them [55]. It is apparent that the shape and orientation of grains around the SFC
changes the growth rate of fatigue crack. This approach has been developed to analyze the growth rate
of fatigue crack and crystallographic orientation of the fracture surface from a view of 3D visualization.
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3. Summary and Future Prospects 

The high flux, temporal and spatial resolutions of the synchrotron X-ray sources enable the 4D, 
namely the time-resolved in-situ 3D, non-destructive characterization of fracture behavior using the 
SR-μCT. By setting up various environmental or mechanical loading stages, it is possible to 
characterize the crack nucleation and growth in the materials under extreme environmental and/or 
loading conditions, to investigate the fracture behavior of the materials under the service conditions. 
Furthermore, it is a trend to utilize the X-ray CT coupling with other technologies, such as diffraction 
contrast tomography (DCT), diffraction, fluorescence and small angle scattering, to build up the 3D 
multifaceted information of materials (microstructure, orientation, precipitated phase, etc.), which 
definitely attracts much more academic attention to promote the understanding of the fracture 
behavior of the materials. 
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