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Abstract: Residual stress can be easily generated during material processing and affect the performance
of structural components. Phase stress distribution in austenitic-ferritic duplex stainless steels (DSSs)
is complicated due to the different material properties between the two phases. In this study, residual
phase stress distribution along the thickness direction of centrifugally cast DSS hollow cylinder was
measured by pulsed neutron diffraction with the time-of-flight (TOF) method. The triaxial phase
stress distribution along the thickness direction shows that the phase stress of austenitic phase is
generally in tension and higher than that of ferrite phase. From the outer surface to the inner surface,
the macro-stress distributes from −400 MPa to 200 MPa. The mechanism of macro-stress formation
was deduced by taking into consideration the thermal shrinkage behavior during the cooling process
of water quench after the solution heat treatment. Furthermore, the lattice strain and phase stress
evolution under the uniaxial tensile loading was evaluated by in-situ neutron diffraction measurement.
The results indicated that the magnitude of phase stress could be affected by plastic working as well.
All these measurements were conducted at Japan Proton Accelerator Research Complex (J-PARC).

Keywords: duplex stainless steel; phase stress; neutron diffraction; Z-Rietveld; time-of-flight (TOF)
method; J-PARC

1. Introduction

Austenitic-ferritic duplex stainless steels (DSSs) are widely applied to the seawater equipment and
line pipes due to their high corrosion resistance and high mechanical properties. However, because of
different coefficients of thermal expansion and elastic moduli [1] between the two phases, residual phase
stresses occur when the material experiences a thermal history, such as casting, forging or annealing.
The tensile residual stress may degrade the material properties, such as fatigue strength. Therefore,
clarifying the formation of stress formation is considered as the key point to the countermeasures
against this technical issue. According to the analysis of thermal elastic-plastic stress and strain
in an austenitic-ferritic DSS with equal phase volume fractions by using the finite element method
(FEM) [2,3], during the cooling process after solution treatment, tensile residual stress forms in austenitic
(γ) phase and compressive residual stress forms in ferrite (α) phase. Besides the numerical analysis,
the measurement of residual stress is also required.

As a powerful tool for material characterization, neutron diffraction is an ideal approach for
the residual stress research of crystalline materials [4,5]. As for the multi-phase materials, Albertini
et al. have revealed high tensile stress in the γ phase and high compressive stress in the α phase
in a centrifugal bowl of duplex steel [6]. Harjo et al. have discussed the thermal residual elastic
strains in ferrite-austenite Fe–Cr–Ni alloys with different phase volume fractions and found that the
thermal residual stress of γ phase tended to increase with its decreasing phase volume fraction [7,8].
They have also discovered that the partitioned plastic strain in γ phase is larger than that in α phase
under tensile loading according to the dislocation density analysis [9]. In addition, the combination of
numerical analysis and the measurement results can provide a better understanding on the mechanism
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of phase stress distribution in dual phase materials. Johansson et al. have successfully developed a
three-dimensional elastoplastic FEM model of triaxial stress analysis for DSS [10]. The micro-stresses
predicted by the FEM simulations were comparable with the in-situ X-ray measurement. Daymond et
al. have reported a good qualitive agreement between the self-consistent model and the experimental
data of lattice strain behavior under tensile loading in both Fe/FeC3 ferrite steel and austenitic-ferritic
DSS [11]. However, the effect of thermal history on phase stresses due to material processing such as
casting has not been sufficiently discussed yet.

In this study, neutron diffraction was utilized to clarify the mechanism of residual stress formation
in centrifugally cast DSS. The neutron diffraction measurements were conducted with an instrument
for materials engineering called TAKUMI at Beam Line 19 of Materials and Life Science Experimental
Facility (MLF) in Japan Proton Accelerator Research Complex (J-PARC) at an output power of 200 kW.
The phase stresses of cast DSS were measured by pulsed white neutron with the time-of-flight
(TOF) method [12]. Based on the measurement results, the mechanism of stress development during
centrifugal casting was deduced. Furthermore, the lattice strain and phase stress evolution were
evaluated by in-situ neutron diffraction under the uniaxial tensile loading, based on which the effect of
plastic deformation was discussed. Some results in this article are summarized based on the author’s
previous publications in Japanese [13,14].

2. Material and Methods

2.1. Material and Specimen

The experimental material is A890 Gr.3A, a centrifugally cast DSS of ASTM (American Society for
Testing and Materials), as shown in Figure 1 [14]. The original dimensions of these hollow cylinders
are ϕ 138 mm (inner diameter) × 200 mm (length) with a wall thickness of 27 mm. The chemical
composition is shown in Table 1. Following the material process of “centrifugal cast→solution heat
treatment (SHT) at 1100 ◦C for 3 h→water quench (WQ)”, the hollow cylinders were machine-finished
from the original dimensions to ϕ 150 mm (inner diameter) × 200 mm (length) with a wall thickness of
16 mm for residual stress measurement, which were designated as sample set TP16. Considering that
unbalanced migration of elements might be caused by centrifugal force, the author has investigated
the chemical composition difference between the inner and outer surfaces [13]. The results showed
that no obvious segregation occurred during centrifugal cast in this case, indicating that, in terms of
chemical composition distribution, the lattice structure should not change along the thickness direction
of the hollow cylinders. In addition, several specimens were fabricated for phase volume fraction
evaluation, strain-free lattice constant measurement and tensile testing. The round bar specimens for
tensile testing were designated as sample set TP4. As shown in Figure 1, the axial direction of TP4 is
consistent with the hoop direction of the hollow cylinder. The dimensions of the straight parallel part
of TP4 are ϕ 4 mm (diameter) × 42 mm (length). Table 2 shows the mechanical properties at ambient
temperature in air.

The microscopic structure was observed by using electron backscatter diffraction (EBSD).
EBSD analysis was conducted with an orientation imaging microscopy (OIM) module installed
inside a field-emission electron scanning electron microscope (FE-SEM) of S-4300SE made by Hitachi
High-Technologies Corporation. The inverse pole figure (IPF) image generated by EBSD is shown in
Figure 2. The area for EBSD analysis was 2 mm × 2 mm and the scanning step was 4 µm. In general,
the fine grains of γ phase disperse inside the coarse grains of α phase with an average grain size
(diameter) of about 60 µm, nearly equal to 1/10 of the grain size in α phase. The phase volume fraction
f was calculated as the ratio of the area identified as a given phase over the total measurement area by
an imaging analysis. The estimated phase volume fractions are fα = 0.588 for α phase and fγ = 0.412 for
γ phase, respectively.
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Table 1. Chemical composition of duplex stainless steel ASTM A890 Gr.3A. (mass %).

Specification C Si Mn P S Ni Cr Mo N Fe
<0.06 <1.00 <1.00 <0.040 <0.040 4.0–6.0 24.0–27.0 1.75–2.50 0.15–0.25 Bal.

Inspection certificate 0.02 0.41 0.64 0.016 0.002 4.8 24.7 1.86 0.19 -

Table 2. Mechanical properties of cast duplex stainless steel ASTM A890 Gr.3A.

Young’s Modulus
E′ (GPa)

Poisson’s Ratio
ν′

Proof Stress
σ0.2% (MPa)

Ultimate Strength
σB (MPa)

Elongation
(%)

197 0.29 485 687 39
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2.2. Triaxial Stress Evaluation

Based on the TOF method, the lattice plane (hkl) can be identified by the lattice spacing d, which is
calculated by the following relation [12]:

2dsinθ = λ =
h

mv
=

h·TOF
mL

(1)

where θ is the diffraction angle (Bragg angle), λ is the wave length belonging to a continuous spectrum
of white neutron, h is the Planck constant, m is the mass of neutron, v is the velocity of neutron, L is the
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total distance of the optical path from neutron emitter to the detector and TOF stands for the flight time
for the neutron to traverse the whole optical path. It should be noticed that each λ value correlates
to a specific TOF, which can be measured precisely by TAKUMI. Because the two detector banks of
TAKUMI are both settled in the directions perpendicular to the incidence of neutron, the diffraction
angles 2θ are fixed as 90 deg for both detectors. The crystal structure and lattice constant a of both α and
γ phases can be determined by Rietveld refinement [15] of the diffraction intensity profile. The lattice
strain εi is then calculated by the following relation:

εi =
a− a0

a0
(i = r, h, z) (2)

where i denotes the sample directions. Considering the phase transformation during centrifugal cast
should cause an axially symmetric texture, the three main stress directions can be reasonably assumed
as radial (r), hoop (h) and axial (z) directions of the cylinder. The three main phase stresses then can be
determined for each phase by the essential equation as shown below:

σi =
E

1 + ν

[
εi +

ν
1− 2ν

(εr + εh + εz)
]

(i = r, h, z) (3)

where E is modulus of longitudinal elasticity (Young’s modulus) and ν is Poisson’s ratio. The values of
single phase derived from reference [16] (E = 206 GPa, ν = 0.28 for α phase and E = 193 GPa, ν = 0.3 for
γ phase) are utilized for the calculation in Equation (3). According to the mixture law [12], the relation
of stress types can be expressed as below:

σ′ = σα · fα + σγ · f γ (4)

where σα and σγ denote the phase stresses of α phase and γ phase respectively and σ′ denotes the
macro-stress, which is the average residual stress of all the grains in the material.

2.3. Preparation of Strain-Free Specimen

When applying neutron diffraction to perform the internal residual stress measurement, the triaxial
stress state should be taken into consideration. It is obvious from Equations (2) and (3) that the
measurement accuracy of residual stress depends very much on the accuracy of the strain-free lattice
constant a0 [17–19]. Considering that this lattice spacing could be affected by multiple factors. such as
chemical composition, solid solution elements, phase transformation and temperature, preparation for
the strain-free specimen requires caution [18–20]. Withers et al. have summarized various methods for
obtaining strain-free lattice constant a0 [19]. One of the common methods for single phase material
is removing residual strain by heat treatment. However, in the case of DSS, because thermal history
might trigger phase transformation possibly affecting the lattice structure, heat treatment is not an easy
approach to employ. Another method is to cut several tiny specimens from the target material in mm
scale to release the surrounding constraint, which is usually applied to the welded components [17,21].
However, obviously the size of these specimens is not small enough to separate the phase stresses
from one phase to another in DSS, where the grain size of γ phase is only several 10 µm. Johansson
et al. successfully measured the lattice constant a0 of a strain-free γ phase powder sample obtained
from α phase matrix of a DSS by using selective dissolution method and calculated a0 of the α phase
based on stress equilibrium conditions [10]. However, experimental measurement of strain-free lattice
constant a0 for both phases remains difficult.

In this study, the author attempted to prepare strain-free specimens by utilizing an electropolishing
method with neither thermal history nor thickness limitation. As shown in Figure 1, 4 small plates
of 8 mmL

× 3 mmW
× 0.5 mmT were picked up from the experimental material and their surfaces

were prepared using a sequence of emery paper, diamond paste and electropolishing. The thickness
removed by electropolishing was no less than 100 µm on each side of the surface to make sure that no
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work-hardened layer was left. With this procedure, these specimens were prepared without changing
the material properties that might affect the original lattice constant. The final thickness of these thin
plates was reduced to 60–90 µm, nearly equal to the grain size of γ phase and much smaller than that
of α phase. Therefore, the phase stresses of both phases in thickness direction were supposed to have
been relieved.

2.4. Measurement Conditions of Neutron Diffraction

2.4.1. Strain-Free Specimen

Figure 3 shows the optical system of neutron diffraction for strain-free lattice constant
measurement [13]. Four overlapped thin plates were fixed with a clip and settled on the specimen
stage with the longitudinal direction of the plates perpendicular to the stage surface. The neutron
diffraction can be detected by two detectors facing in opposite directions, designated as Detector 1 and 2,
which means the diffraction intensities in two orthogonal directions can be measured simultaneously.
The gauge volume of measurement was 2 mm × 2 mm × 2 mm. The specimens were periodically
rotated around the axis of longitudinal direction at a step angle of 22.5 deg until the total rotation angle
reaches 180 deg. The alignment calibration had been carefully conducted between the center axis of
the specimens and the rotation axis of the stage before measurement. In order to acquire sufficient
diffraction intensity, the measurement was conducted during a holding time of 600 s at each rotation
angle. Finally, the total of nine diffraction intensity profiles obtained from different rotation angles were
summed up for Rietveld refinement to cancel out the directional dependency of diffraction intensity
due to coarse grains and texture. The Rietveld refinement was performed with the analysis code
Z-Rietveld (ver 0.9.37) [22,23] developed by the High Energy Accelerator Research Organization (KEK).Quantum Beam Sci. 2020, 4, x FOR PEER REVIEW 6 of 14 
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(b) Top view [13].

2.4.2. Hollow Cylinder

As illustrated in Figure 4, the internal residual stress distributing along the thickness direction was
measured by neutron diffraction at the center of the cylinder [13]. Figure 5 shows the setup image and
optical system of neutron diffraction measurement of hollow cylinder specimen T16 [13]. For triaxial
stress analysis, the measurements were conducted on the cylinder with the axial direction (a) parallel
and (b) perpendicular to the stage surface, respectively. The gauge volume of measurement was set as
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2 mm × 2 mm × 2 mm when the cylinder axial direction is parallel to the stage surface. In the case of
the measurement in Figure 5b, considering the diffraction intensity would decrease remarkably after
the neutron beam had penetrated the walls of cylinder twice, the gauge volume was set as large as
2 mm (h direction) × 2 mm (r direction) × 10 mm (z direction) so that higher diffraction intensity could
be acquired. The lattice constant was also evaluated by Rietveld refinement. Two specimens of T16,
designated as A and B, were employed for investigating data scatter.
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Figure 5. Setup image and optical system of neutron diffraction measurement of hollow cylinder
specimen. (a) Measurement in radial (r) and axial (z) directions, (b) Measurement in radial (r) and hoop
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2.4.3. In-Situ Measurement of Lattice Strain during Tensile Test

In order to clarify the phase stress evolution responding to the applied loading and even plastic
deformation, the in-situ measurement of lattice strain ε was conducted during the tensile test with
specimen TP4. As shown in Figure 6, the specimen was horizontally strained by a tensile tester
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installed at the center of the specimen stage [14]. The angle between the incidence of neutron and the
longitudinal direction of the specimen was designed as 45 deg so that the two detector banks were able
to detect the diffraction from the lattice planes in axial and radial directions of TP4 simultaneously.
For the purpose of continuous measurement during plastic deformation, a large gauge volume in
size of 5 mm × 5 mm × 3 mm was utilized to acquire high diffraction intensity. Figure 7a shows the
applied stress history of the tensile test. During the elastic deformation, the applied stress σA in the
axial direction of specimen was gradually increased from 0 MPa at a step of 50 MPa and held for
180 s at each loading level. However, after the plastic deformation had started, the applied stress was
increased continuously. Figure 7b shows the stress-strain curve. The applied strain εA was measured
by the strain gauge attached on the straight parallel part of the specimen. During the entire tensile test,
the loading-unloading cycles were repeated several times until the maximum applied stress σA had
approximately reached 500 MPa, just exceeding its proof stress σy by 20–30 MPa. Correspondingly,
the maximum applied strain εA in the axial direction was nearly 2.6%.
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test. (a) Side view, (b) Top view [14].
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Figure 7. Loading condition of tensile test. (a) Applied stress history, (b) Stress-strain curve [14].

3. Results

3.1. Lattice Constant of Strain-Free Specimen

A typical neutron diffraction intensity profile of thin plate specimens obtained by Detector 1 is
shown in Figure 8, where the Rietveld refinement result is displayed as well. The lattice planes in
both phases corresponding to the intensity peaks can be identified by the lattice spacing d, which was
calculated based on the TOF method. Though the residual error scatters a little widely at the intensity
peaks, the Rietveld refinement result agrees very well with the measured profile. Then the phase
volume fractions, can also be evaluated as the ratio of total integrated intensity in one phase over the
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whole material. Based on this calculation, the phase volume fractions are fα = 0.526 and fγ = 0.474,
indicating an approximate 1:1 ratio between the two phases. It should be noticed that the phase
volume fractions estimated by Rietveld refinement in 3-dimensional analysis differ a little from the
result obtained by the 2-dimensional EBSD analysis. Considering the texture effect can be moderated
by measuring the specimens at different rotation angles, the phase volume fractions based on the
Rietveld refinement should be more accurate than EBSD. Thus fα = 0.526 and fγ = 0.474 were used for
the calculation of macro-stress in this study.
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Figure 8. Neutron diffraction intensity profile of strain-free specimen [13].

Figure 9 shows the measurement result of strain-free lattice constant a0 obtained from both
detectors [13]. It should be noticed that the measured lattice constant a0 of either α phase or γ
phase differs from the recommended value of single-phase material in reference [24], where a0 is
2.8665 × 10−10 m for α-Fe and 3.592 × 10−10 m for γ-Fe. It is confirmed that the scatter of a0 due to the
systematic difference from variant detectors is lower than 10−13 m.
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3.2. Residual Stress of Hollow Cylinder

As shown in Figure 10, the residual phase stress and macro-stress distributions between the outer
and inner surfaces of TP16-A and TP16-B are plotted in triaxial directions. It is confirmed that phase
stress σα tends to be lower than σγ in every chart, which is consistent with the previous results from
centrifugal bowl of duplex steel [6] and dual phase alloys with different phase volume fractions [7,8].
A similar tendency is recognized in the residual stress distributions of both specimens, indicating
a small data scatter between different specimens. In the r direction, the phase stresses of σα and σγ

are close to 0 MPa near the surface, but change to −200 MPa and 200 MPa, respectively, inside the
cylinder. However, the macro-stress σ′ is approximately 0 ± 50 MPa across the thickness, indicating
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that there is nearly no obvious distribution of radial macro-stress along thickness direction. On the
other hand, both phase stress and macro-stress distributions in the h direction are similar to those in z
direction, where σα is in a range from −450 MPa to 200 MPa, σγ is from −400 MPa to 250 MPa and σ′

is from −400 MPa to 200 MPa. From these results, an equal biaxial stress state can be estimated in h
and z directions. The distribution of macro-stress σ′ in triaxial directions shows realistic stress balance
along thickness, indicating that the strain-free lattice constant has been accurately measured. As for
the tensile macro-stress near the inner surface, the author has discussed the effect of stress relief heat
treatment on this material in another publication [13].
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Figure 10. Residual stress distribution of hollow cylinder specimens. (a) Radial (r) direction, (b) Hoop
(h) direction, (c) Axial (z) direction.

3.3. In-Situ Measurement of Lattice Strain during Tensile Test

The lattice strain ε corresponding to the applied strain εA was measured during the tensile test.
The discussion is focused on the cycle of “εA = 0%→2.6%→finally unloading (the 4th unloading)”,
which is displayed as the black line in Figure 7b. For the sake of convenience, the original lattice
strain ε0 before tensile test was excluded from the measured value ε during the tensile test, which was
reflected in εL defined by the following equation.

εL = ε − ε0 (5)

The evolution of εL of both phases in the specimen axial (z) direction (h direction in cylinder) is
shown in Figure 11a. At first, εL

α and εL
γ increase linearly in a similar proportion. Then the increasing

of both εL
α and εL

γ slows down gradually, leading to a non-linear relationship between ε and εA. It is
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also revealed that εL
α becomes higher than εL

γ during the plastic deformation. This result can be
explained by the fact that the original phase stress σα is lower than σγ, which can be derived easily from
the results of Figure 10. Therefore, γ phase is expected to reach yield point earlier than α phase under
applied strain, which agrees well with the results of Harjo et al., where partitioned plastic strain in γ
phase was confirmed larger than that in α phase during plastic deformation under tensile loading [9].
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Figure 11. Lattice strain evolution under tensile loading. (a) Axial direction, (b) Radial direction [14].

The evolution of εL of both phases in the specimen radial (r) direction is shown in Figure 11b,
εL
α and εL

γ are shown decreasing linearly in a similar proportion until εA has reached 0.2%. However,
after εA has exceeded 0.2%, εL

α stops changing but εL
γ keeps increasing, causing a mismatch in lattice

strain between different phases. Based on the measured εL, phase stress evolution can be discussed.

4. Discussion

4.1. Mechanism of Micro-Stress Formation

The mechanism of macro-stress distribution formed in the h and z direction of the hollow cylinder
can be extrapolated by looking into the evolution of macro-stress during WQ after SHT, which is
illustrated in Figure 12. At the moment the hollow cylinder at SHT temperature is immediately
immersed into cold water, the water vapor surrounded by cylinder wall is briefly contained and
prevented from leaving outside by the cylinder wall. As a result, the temperature drop at the inner
surface is retarded in comparison to the outside surface. Therefore, as shown in Figure 12, the inner
surface with higher temperature constraints the outer surface from shrinking and causes a plastic
deformation, also accompanied by a tensile stress, to the outer surface. Simultaneously, the inner
surface is constrained by the shrinkage of the outer surface and experiences compression after a
larger plastic deformation, due to lower Young’s modulus and yield stress at high temperature.
However, as shown in Figure 12, even after the thermal shrinkage has finished on the outer surface,
the compressive constraint will still keep going, because the shrinkage on the inner surface will not
stop until the temperature difference disappears. This scenario finally turns the stress status of outer
surface from tension to compression. On the contrary, the stress of inner surface finally changes from
compression to tension under the constraint of the outer surface. Based on the discussion above,
the formation of micro-stress distribution along the thickness direction of the DSS hollow cylinder is
explainable [13].
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The combination of neutron diffraction measurement and numerical analysis is expected to be
an effective approach for the practical application of not just a simple hollow cylinder, but more
complicated shapes of real components. Chen et al. [25] have successfully clarified the relationship
between thermal stress and distortion of a largescale DSS impeller during the casting and heat treatment
by the numerical analysis. A thermoelastic-visco-plastic rheological model was used to evaluate the
constrained shrinkage of the casting. Based on the simulation results, the shape of impeller was
optimized to achieve a uniform and reasonable machining allowance. This precedential study shows
great prospects of the relief of residual macro-stress and deformation of DSS by optimizing structural
design and material processing as well.

4.2. Phase Stress Evolution under Tensile Loading

The orthogonal phase stresses are assumed to be equal in the radial direction of the round bar
specimen, based on which the three main phase stresses can be calculated by the following equation:

σi =
E

1 + ν

[
εi +

ν
1− 2ν

(2εr + εh)
]

(i = r, h) (6)

The original phase stress σ0 before tensile test was excluded from the measured value σ during
the tensile test, which was reflected in σL defined by the following equation:

σL = σ − σ0 (7)

The evolution of σL of both phases and the macro-stress σL
′ in the axial direction of TP4 is shown

in Figure 13a. In the earlier stage, σL
α and σL

γ are increasing in a similar proportion. Then σL
α becomes

higher than σL
γ and σL

γ does not increase any more, indicating that the grains of γ phase start yielding.
The macro-stress σL

′ agrees well with the applied stress σA. The enlargement of the detail surrounded by
the broken lines is shown in Figure 13b. After σA has exceeded 475 MPa, approximately the same as the
yield stress in Table 2, the increasing of σL

γ completely stops, which means the increment of σA is loaded
only on α phase. After unloading, the σL

α and σL
γ become close to 130 MPa and −30 MPa, respectively.

Figure 13c shows the evolution of σL of both phases and the macro-stress σL
′ in the radial direction of

TP4. Both σL
α and σL

γ remain almost 0 MPa until σA has reached 400 MPa, approximately. After σA
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has exceeded 400 MPa, σL
α and σL

γ become tension and compression, respectively. According to
the mixture law, the macro-stress σL

′ remains nearly 0 MPa all the time during the entire cycle of
loading and unloading, agreeing well with the fact that there is no applied stress in this direction.
After unloading, the σL

α and σL
γ become close to 130 MPa and −140 MPa, respectively.
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Figure 13. Phase stress evolution under tensile loading. (a) Axial direction, (b) Enlargement of the area
with broken lines in (a), (c) Radial direction.

It is interesting to note that after unloading, σL
α and σL

γ become tension and compression
respectively, indicating that the magnitude relationship and even the tension or compression status of the
two-phase stresses σα and σγ, which is caused by thermal history, might reverse after plastic deformation.

5. Conclusions

The phase stress of centrifugally cast duplex stainless steel ASTM A890 Gr.3A was measured by
neutron diffraction. The main results obtained are summarized below.

(1) Strain-free lattice constants of both phases were measured from the thin plates fabricated by
electropolishing, based on which the measurement of triaxial phase stress was successfully
conducted by neutron diffraction.

(2) The triaxial phase stress distribution along the thickness direction shows that, in general, the phase
stress of γ phase is in tension and higher than that of α phase.

(3) The mechanism of macro-stress formation in the hollow cylinder is explainable when considering
the thermal shrinkage behavior during the cooling process of water quench after solution
heat treatment.
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(4) The magnitude relationship and even the tension or compression status of α phase and γ phase
might reverse after plastic deformation, which could occur during the material process, such as
plastic working. These characteristics should be taken into consideration when evaluating the
material properties of DSS that are easily affected by residual stress, such as fatigue strength and
stress corrosion cracking resistance.

Funding: This research received no external funding.

Acknowledgments: The author wishes to express his heartful gratitude to Stefanus Harjo and Kazuya Aizawa of
J-PARC for their technical support during the neutron diffraction measurements.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Silberschmidt, V.V.; Werner, E.A.; Messner, C. Thermal loading of duplex steels. J. Eng. Mater. Technol. 2003,
125, 56–64. [CrossRef]

2. Siegmund, T.; Werner, E.; Fischer, F.D. The Irreversible deformation of a duplex stainless steel under thermal
cycling. Mater. Sci. Eng. A 1993, 169, 125–134. [CrossRef]

3. Siegmund, T.; Werner, E.; Fischer, F.D. On the thermomechanical deformation behavior of duplex-type
materials. J. Mech. Phys. Solids 1995, 43, 495–532. [CrossRef]

4. Lodini, A.; Fitzpatrick, M.E. Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation;
CRC Press: Boca Raton, FL, USA, 2003.

5. Hutchings, M.T.; Krawitz, A.D. Measurement of Residual and Applied Stress Using Neutron Diffraction;
Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992.

6. Albertini, G.; Peng, R.L.; Manescu, A.; Ponzetti, A. Neutron diffraction measurement of residual stress in a
centrifugal bowl of duplex steel. J. Neutron Res. 2001, 9, 305–312. [CrossRef]

7. Harjo, S.; Tomota, Y.; Ono, M. Measurements of thermal residual elastic strain in ferrite-austenite Fe-Cr-Ni
alloys by neutron and X-ray diffractions. Acta Mater. 1999, 47, 353–362. [CrossRef]

8. Harjo, S.; Tomota, Y.; Torii, S.; Kamiyama, T. Residual thermal phase stresses in α-γ Fe-Cr-Ni alloys measured
by a neutron diffraction time-of-flight methods. Mater. Trans. 2002, 43, 1696–1702. [CrossRef]

9. Harjo, S.; Tomota, Y.; Lukáš, P.; Neov, D.; Vrána, M.; Mikula, P.; Ono, M. In situ neutron diffraction study of
α–γ Fe–Cr–Ni alloys under tensile deformation. Acta Mater. 2001, 49, 2471–2479. [CrossRef]

10. Johansson, J.; Odén, M.; Zeng, X.-H. Evolution of the residual stress state in a duplex stainless steel during
loading. Acta Mater. 1999, 47, 2669–2684. [CrossRef]

11. Daymond, M.R.; Priesmeyer, H.G.; Korsunsky, A.M. Elastoplastic deformation of two phase steels studied by
neutron diffraction and self-consistent modelling. In Recent Advances in Experimental Mechanics; Gdoutos, E.E.,
Ed.; Springer: New York, NY, USA, 2002; pp. 495–506.

12. Tanaka, K.; Suzuki, K.; Akiniwa, Y. Evaluation of Residual Stress by X-ray Diffraction-Fundamentals and
Applications; Yokendo Ltd.: Tokyo, Japan, 2006.

13. Wang, Y. Residual stress measurement of centrifugally cast duplex stainless steel by neutron diffraction.
J. Soc. Mater. Sci. Jpn. 2014, 63, 789–796. [CrossRef]

14. Wang, Y. A study on phase stress of centrifugally cast duplex stainless steel by neutron diffraction. Hamon Jpn.
Soc. Neutron Sci. 2014, 24, 28–33. [CrossRef]

15. Young, R.A. The Rietveld Method; Oxford University Press: Oxford, UK, 1995.
16. Sasaki, T.; Lin, Z.; Hirose, Y. X-ray measurement of macro- and microstresses using imaging plate and

its application to ferritic and austenitic dual phase stainless steel. Trans. JSME (A) 1996, 62, 2741–2749.
[CrossRef]

17. Suzuki, H.; Akita, K. Discussion on accuracy of weld residual stress measurement by neutron diffraction.
Influence of strain free reference. J. Soc. Mater. Sci. Jpn. 2012, 61, 604–611. [CrossRef]

18. Santisteban, J.R.; Steuwer, A.; Edwards, L.; Withers, P.J.; Fitzpatrick, M.E. Mapping of unstressed lattice
parameters using pulsed neutron transmission diffraction. J. Appl. Crystallogr. 2002, 35, 497–504. [CrossRef]

19. Withers, P.J.; Preuss, M.; Steuwer, A.; Pang, J.W.L. Methods for obtaining the strain-free lattice parameter
when using diffraction to determine residual stress. J. Appl. Crystallogr. 2007, 40, 891–904. [CrossRef]

http://dx.doi.org/10.1115/1.1525250
http://dx.doi.org/10.1016/0921-5093(93)90607-G
http://dx.doi.org/10.1016/0022-5096(95)00003-2
http://dx.doi.org/10.1080/10238160108200156
http://dx.doi.org/10.1016/S1359-6454(98)00300-0
http://dx.doi.org/10.2320/matertrans.43.1696
http://dx.doi.org/10.1016/S1359-6454(01)00147-1
http://dx.doi.org/10.1016/S1359-6454(99)00149-4
http://dx.doi.org/10.2472/jsms.63.789
http://dx.doi.org/10.5611/hamon.24.1_28
http://dx.doi.org/10.1299/kikaia.62.2741
http://dx.doi.org/10.2472/jsms.61.604
http://dx.doi.org/10.1107/S0021889802009044
http://dx.doi.org/10.1107/S0021889807030269


Quantum Beam Sci. 2020, 4, 28 14 of 14

20. Tomota, Y.; Harjo, S.; Tokumura, K.; Sato, H.; Ono, M. Measurements of phase stresses in a commercial dual
phase stainless steel by using neutron and X-ray diffractions. Netsu Shori 1998, 38, 174–179.

21. Suzuki, H.; Akita, K. Residual stress measurement of large scaled welded pipe using neutron diffraction
method. Effect of SCC crack propagation and repair weld on residual stress distribution. Q. J. Jpn. Weld. Soc.
2011, 29, 294–304. [CrossRef]

22. Oishi, R.; Yonemura, M.; Nishimaki, Y.; Torii, S.; Hoshikawa, A.; Ishigaki, T.; Morishima, T.; Mori, K.;
Kamiyama, T. Rietveld analysis software for J-PARC. Nucl. Instrum. Methods Phys. Res. 2009, 600, 94–96.
[CrossRef]

23. Oishi-Tomiyasu, R.; Yonemura, M.; Morishima, T.; Hoshikawa, A.; Torii, S.; Ishigaki, T.; Kamiyama, T.
Application of matrix decomposition algorithms for singular matrices to the Pawley method in Z-rietveld.
J. Appl. Crystallogr. 2012, 45, 299–308. [CrossRef]

24. JSMS Committee on X-ray Study of Mechanical Behavior of Materials. Standard Method for X-ray Stress
Measurement; The Society of Materials Science: Kyoto, Japan, 2002.

25. Chen, L.; Ling, Y.; Kang, X.; Xia, L.; Li, D. Numerical simulation of stress and deformation for a duplex
stainless steel impeller during casting and heat treatment processes. J. Mater. Sci. Technol. 2008, 24, 364–368.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2207/qjjws.29.294
http://dx.doi.org/10.1016/j.nima.2008.11.056
http://dx.doi.org/10.1107/S0021889812003998
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Material and Specimen 
	Triaxial Stress Evaluation 
	Preparation of Strain-Free Specimen 
	Measurement Conditions of Neutron Diffraction 
	Strain-Free Specimen 
	Hollow Cylinder 
	In-Situ Measurement of Lattice Strain during Tensile Test 


	Results 
	Lattice Constant of Strain-Free Specimen 
	Residual Stress of Hollow Cylinder 
	In-Situ Measurement of Lattice Strain during Tensile Test 

	Discussion 
	Mechanism of Micro-Stress Formation 
	Phase Stress Evolution under Tensile Loading 

	Conclusions 
	References

