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Abstract: The equation of motion for a radiating charged particle is known as the Lorentz–Abraham–Dirac
(LAD) equation. The radiation reaction force in the LAD equation contains a third time-derivative
term, called the Schott term, which leads to a runaway solution and a pre-acceleration solution.
Since the Schott energy is the field energy confined to an area close to the particle and reversibly
exchanged between particle and fields, the question of how it affects particle motion is of interest.
In here we have obtained solutions for the LAD equation with and without the Schott term, and have
compared them quantitatively. We have shown that the relative difference between the two solutions
is quite small in the classical radiation reaction dominated regime.
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1. Introduction

The laser’s focused intensity has been increasing since its invention, and is going to reach
1024 W/cm2 and beyond in the very near future [1]. These intense fields open up new research in high
energy-density physics, and researchers are searching for laser-driven quantum beams with unique
features [2–4]. One of the important issues in the interactions of these intense fields with matter is the
radiation reaction, which is a back reaction of the radiation emission on the charged particle which
emits a form of radiation. Numerical investigations showed that high energy photons are emitted from
the laser-generated plasmas, which indicates the possibility of generating an intense and collimated
laser-driven γ-ray source [5,6]. In order to correctly describe the motions of electrons under these
intense field, the radiation reaction effect should be properly treated in the analyses.

The formulation of the equation of motion for a radiating charged particle has caught a lot of
attention. Lorentz studied the self-force on an accelerated charged particle [7], and Abraham followed
this work by deriving the reaction force in relativistic form [8], which was also derived by von Laue
via the transformation of Lorentz’s self-force [9]. Thereafter an extension to the Lorenz-covariant
form was performed by Dirac [10] and by Pauli [11], leading to the Lorentz–Abraham–Dirac (LAD)
equation which is considered to be the fundamental equation of Maxwell-Lorentz theory. Although the
LAD equation appears to have solid grounding, its correctness has been questioned due to the
mathematical problems—i.e., it allows a runaway solution which exponentially grows in time,
and a pre-acceleration solution which violates causality [12–15]. To circumvent these difficulties,
modified formulas of self-force were proposed [13,16,17], and particle motions evaluated with these
formulas were compared [18]. Recently, new equations of motion have been proposed, where the
self-force was reformulated by including the spatial extent of the charged particle [19–21], or a
time-delay between the radiation and its reaction [22]. In these analyses, the divergence problem is
circumvented by introducing a spatial extent to a particle. However, the validity of the assumption
that a charged particle is a rigid relativistic particle with a finite spatial extent has not yet been proven.
Then, in the classical electrodynamics whether a charged particle can be treated as a point particle or
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as a finite sized-particle is still an unsettled problem. In our analysis here, we adopt the model of the
electrons as point particles, and focus our study on the LAD equation-based solutions.

The LAD equation of a charged particle with mass m and charge q is written as

duµ

dτ
=

q
mc

Fµνuν +
2q2

3mc3

(
d2uµ

dτ2 +
aνaν

c2 uµ

)
, (1)

where c is the speed of light in vacuum, uµ = (γc, γvi) is the four-velocity with the Lorentz factor γ,
aµ is the four-acceleration which is defined as a derivative of uµ with respect to the proper time τ,
and Fµν is the electromagnetic field tensor. Greek indices run from 0 to 3, and Latin indices run
from 1 to 3. The metric of diag(+1,−1,−1,−1) is adopted. The first term on the RHS represents the
Lorentz force, and the second term represents the radiation reaction force. The radiation reaction force
is composed of two terms, the Schott term Fµ

Schott [23], and a radiation term Fµ
Rad:

Fµ
RR = Fµ

Schott + Fµ
Rad, (2)

Fµ
Schott =

2q2

3c3
d2uν

dτ2 , (3)

Fµ
Rad =

2q2

3c3
uµ

c2 aνaν. (4)

It is the Schott term which is responsible to the above mathematical problems, and whose
physical meaning was not clear until recently. It was found that the Schott term is responsible for the
electromagnetic field energy stored around the charged particle [24–26]. This analysis showed that
the Schott energy, which is a µ = 0 component of the Schott four-momentum Pµ

Schott, is the energy of
the electromagnetic field excluding the radiation field, i.e., the interference field of the Coulomb field
(velocity field) and the radiation field [24]. Here, the Schott four-momentum is defined as

Pµ
Schott = −

2q2

3c3 aµ, (5)

where Fµ
Schott = −

dPµ
Schott
dτ . Furthermore, it has been shown that the Schott energy is confined to the

vicinity of the charged particle, and is reversibly exchanged between particles and fields [25,26].
This intriguing idea is easily understood by considering what is taken into account in the µ = 0

component of the radiation term:

F0
Rad =

2q2γ

3c4 aνaν = −γ

c

{
2q2

3c
γ4
[

β̇
2
+ γ2(β · β̇)2

]}
. (6)

Here, the term inside the curly brackets has the unit of power. The radiation power from the
accelerating charged particle is calculated straightforwardly using the Lieénard-Wiechert potential,
or the retarded field as

E(t) =
q(n− β)

r2γ2(1− n · β)3 +
qn×

[
(n− β)× β̇

]
cr(1− n · β)3 , (7)

B(t) = n× E. (8)

Here, r(t) is the distance between the particle position and the observation point evaluated at
t. It should be noted that the value of the RHS is evaluated at the retarded time t′ which has the
relation t = t′ + r(t′)/c. When calculating the radiation power, only the second term in Equation (7),
(i.e., the first time is neglected) is substituted into the following formula [27]:

dP
dΩ

=
c

4π
r2 |E|2 (1− n · β). (9)
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After angular integration, we obtain the radiation power which is exactly the same as the formula
inside the curly brackets of Equation (6). This means that in the radiation reaction, term Fµ

Rad expresses
the reaction to the electromagnetic field radiation, and Fµ

Schott accounts for the reaction to terms other
than radiation field, i.e., the neglected terms containing the Coulomb field. Therefore, the Schott term
correspond to the field which is bound to the particle, and is not radiated away.

It has been shown that during uniform acceleration, the Schott term plays a major role wherein
the radiation energy balances the Schott energy [26]. Furthermore, renormalizing the Schott term into
the mass has been proposed [28,29]. That led us to consider the following questions: Can the Schott
term can be integrated away when the particle motion is periodic? To what extent does the Schott
term affect the particle motion? In this paper, to identify the effect of the Schott term on the particle
motion, we quantitatively compare the solutions obtained from the LAD equation with and without
the Schott term.

2. The Schott Term for a Stationary Motion

To analyze the solutions, we need to solve the LAD equation both with and without the
Schott term for the same problem and procedure. Since numerical time-integration of the LAD
equation is not straightforward as it blows up in time, and obtaining a general analytical solution
is quite difficult, we look for an exact solution of particle motion under a simple field configuration.
We consider the electron motion under a static magnetic field which points along the z-axis
and a rotating electric field in the x–y plane with angular frequency ω, which are written as
B = (0, 0, B) and E = (E cos(ωt), E sin(ωt), 0). We look for a stationary solution in which the
charge rotates in the x–y plane with the angular frequency ω [30,31]. Then, the four-velocity is
written as u = γv = (u‖ cos(ωt)− u⊥ sin(ωt), u‖ sin(ωt) + u⊥ cos(ωt), 0). Here, u‖ and u⊥ denote
the four-velocity components which are parallel and perpendicular to the electric field, respectively.
By substituting these into the µ = 1, 2 components of the LAD equation, and solving for u⊥ and u‖,
we obtain

u‖ =
eB

mcωγ
u‖ −

2e2ωγ3

3mc3 u⊥, (10)

u⊥ =
eE

mcω
+

eB
mcωγ

u⊥ +
2e2ωγ3

3mc3 u‖. (11)

Here, we introduce the dimensionless variables a0 = eE/(mcω), b0 = eB/(mcω),
and ε = 2e2ω/(3mc3), and u⊥,‖ = u⊥,‖/c. Then, the following equations are obtained:(

1− b0

γ

)
u‖ = −εγ3u⊥, (12)(

1− b0

γ

)
u⊥ = a0 + εγ3u‖. (13)

By multiplying u‖ with Equation (12) and u⊥ with Equation (13) and adding them, we obtain

(γ2 − 1)(1− b0
γ ) = a0u⊥. Together with Equation (13), we obtain

a2
0 = (γ2 − 1)

[(
1− b0

γ

)2
+ ε2γ6

]
. (14)

Equations (12)–(14) are used to evaluate the electron motion with the radiation reaction effect
calculated by the LAD equation. The motion of the electron is shown in Figure 1, where the γ,
u⊥, and −u‖ dependencies on a0 are plotted for the cases of b = −10 (red line), 0 (black line),
and 10 (blue line), respectively. Here, the frequency of the rotating electric field is ω = 2πc× 106,
corresponding to ε ' 1.18× 10−8.
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Figure 1. Dependencies of (a) the Lorentz factor γ, (b) the perpendicular component of the four-velocity
u⊥, and (c) the parallel component of the four-velocity −u‖ on the electric field intensity a0. In each
figure, red, black, and blue lines correspond to the cases of b0 = −10, 0, and 10, respectively.
Here, the frequency of the rotating electric field is ω = 2πc× 106, corresponding to ε ' 1.18× 10−8.
All variables are dimensionless with normalization given in the text.

Since the Lorentz factor is constant in time,

a0 =
du0

dτ
= γ

d(γc)
dt

= 0; (15)

i.e., the Schott energy vanishes for this stationary motion. Then, the µ = 0 component of the LAD
equation becomes

0 = −eF0iui +
2e2γaνaν

3c3 . (16)

This equation shows that the work done by the electric field per unit time equals the power
radiated away, with the Schott term in the µ = 0 component of the LAD equation not playing any
role. This is confirmed in Figure 2, where the work rate done by the electric field WE is plotted in black
and the power emitted as radiation PR in red is plotted for b0 = 0, which are almost identical to the
precision of the calculation.
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Figure 2. The work rate of the electron done by the electric field WK (black) and the radiation power
PR (red) in units of J/s are plotted as functions of a0.

3. Stationary Solution of LAD Equation Without the Schott Term

Although the Schott energy disappears from the LAD equation in the case of periodic motion,
the spatial component of the Schott term, the Schott momentum, does not vanish from the µ = i
component of the LAD equation, and may play a role in determining the electron motion. To see the
effect of the Schott momentum, we consider the LAD equation without the Schott term;

duµ

dτ
=

q
mc

Fµνuν +
2q2

3mc3
aνaν

c2 uµ. (17)

With this equation, we perform the same analysis as that in the previous section for the
electron under static magnetic and rotating electric fields. This leads to the following solution of
the electron motion: (

1− b
γ

)
u‖ = −εγ(γ2 − 1)u⊥, (18)(

1− b
γ

)
u⊥ = a0 + εγ(γ2 − 1)u‖, (19)

a2 =

(
1− b

γ

)2
(γ2 − 1) + ε2(γ2 − 1)3. (20)

The obtained solutions of γ, u⊥, and u‖ are almost identical to those calculated by the LAD
equation. When plotted together in Figure 1, they almost completely overlap. To see the difference in γ

calculated by the LAD equation with and without the Schott term, we introduce the relative difference
of the Lorentz factor:

δγ =
|γ− γLAD|

γLAD
. (21)

Here, γ denotes the Lorentz factor calculated by the equation without the Schott term.
The dependence of δγ on a0 is plotted in Figure 3, where b0 = 0 and ε ' 1.18× 10−8.

Figure 3. The relative difference between the Lorentz factor calculated from the LAD with and without
the Schott term, δγ, for b0 = 0 and ε ' 1.18× 10−8.
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The Schott momentum does play a role in determining the particle motion, but its effect on the
motion seems quite small in our case, where δγ has a maximum of about 10−6. The magnitudes of the
spatial component of Fi

Schott and Fi
Rad are compared:

∣∣∣∣∣ Fi
Schott

Fi
Rad

∣∣∣∣∣ =
∣∣∣∣∣∣

d2ui

dτ2

aνaνui

c2

∣∣∣∣∣∣ = c2ω2γ2ui

c2ω2γ2(γ2 − 1)ui =
1

γ2 − 1
. (22)

The radiation reaction term in the LAD equation without the Schott term is obtained from the
LAD equation by substitution of γ2 → γ2 − 1. Therefore, the effect of the Schott term on the electron
motion is quite small for wide range of a0.

The radiation power from the electron is evaluated by the Larmor formula P = 2e2a2

3c3 , or simply
the work rate done by the electric field on the electron, as

P = −ev · E = −
eu‖E

γ
. (23)

This is plotted in Figure 4a. The radiation power sharply increases with a0 for a0 ≤ 400,
and gradually for a0 ≥ 400. The relative differences in the radiation power evaluated by the LAD with
and without the Schott term are plotted in Figure 4b, which confirms the radiation power is evaluated
by the LAD equation with and without the Schott term with a high degree of accuracy.

Figure 4. (a) The radiation power from the charged particle under a static magnetic and a rotating
electric field as a function of electric field intensity a0 for different magnetic field intensities of b0 = 10
(red), b0 = 0 (black), and b0 = −10 (blue). (b) The relative difference of radiation power evaluated
using the LAD equation with and without the Schott term.

4. Conclusions

The effect of the Schott term in the LAD equation on the charged particle motion was investigated.
We obtained exact solutions of the LAD equation with and without the Schott term for a relatively
simple system where the particle performs periodic motion under static magnetic and rotating electric
fields. Since the Schott energy vanishes for the stationary solution, the µ = 0 components of the
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two equations become equal, which simply leads to the power balance between the work rate of the
field and the power of the radiation. The Schott momentum, however, does not vanish, so the spatial
components of two equations are different, and the solutions also differ to each other. We compared
the two solutions and found that they agree with high precision. The relative difference between the
Lorentz factor and radiation power is less than 10−6 for an electric field intensity of 10 ≤ a0 ≤ 104.
This analysis shows that for periodic motion, the effect of the Schott term on particle motion is
relatively small, which leads to that the renormalized LAD equation, which does not suffer from the
mathematical problems, so could be used for analyzing the interactions of intense fields and charged
particles in this particular case. Analysis in a more general geometry is left for a future study.
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