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Abstract: The benefits of laser welding include higher production values, deeper penetration, higher
welding speeds, adaptability, and higher power density. These characteristics make laser welding
a superior process. Many industries are aware of the benefits of switching to lasers. For example,
metal-joining is migrating to modern industrial laser technology due to improved yields, design
flexibility, and energy efficiency. However, for an industrial process to be optimized for intelligent
manufacturing in the era of Industry 4.0, it must be captured online using high-quality data. Laser
welding of aluminum alloys presents a daunting challenge, mainly because aluminum is a less reliable
material for welding than other commercial metals such as steel, primarily because of its physical
properties: high thermal conductivity, high reflectivity, and low viscosity. The welding plates were
fixed by a special welding fixture, to validate alignments and improve measurement accuracy, and a
Computer-Aided Inspection (CAI) using 3D scanning was adopted. Certain literature has suggested
real-time monitoring of intelligent techniques as a solution to the critical problems associated with
aluminum laser welding. Real-time monitoring technologies are essential to improving welding
efficiency and guaranteeing product quality. This paper critically reviews the research findings and
advances for real-time monitoring of laser welding during the last 10 years. In the present work,
a specific methodology originating from process monitoring using Computer-Aided Inspection in
laser-welded blanks is reviewed as a candidate technology for a digital twin. Moreover, a novel
digital model based on CAI and cloud manufacturing is proposed.

Keywords: real-time monitoring; Computer-Aided Inspection (CAI); laser welded blanks (LWBs);
digital twin (DT); Industry 4.0

1. Introduction

The transportation industry has dedicated a lot of engineering effort and innovative
research into reducing the weight of its products. Air pollution and emission of greenhouse
gases from the transportation sector have had detrimental environmental and health ef-
fects for decades. For this reason, governments have enacted restrictive regulations on
automotive industries to prevent and control the spread of vehicular emissions. Strict
regulations have led car manufacturers to look for different solutions and new technologies
to solve the problem. One of the strategies that has been adopted in this field is to reduce
the weight of cars, leading to fuel consumption and carbon dioxide emission reduction.
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Given that the body and other exterior components are a large portion of the car’s weight,
using light metal structures such as aluminum alloys in automobiles is an effective way to
lessen the overall car weight. Aluminum alloys are known for their superior properties,
such as strength-to-weight ratio, heat resistance, and corrosion resistance. Laser welding
is an effective method of joining materials with high accuracy, good flexibility, and low
distortion [1]. However, laser welding of aluminum structures is associated with a range of
difficulties due to excessive heat dissipation, the hydrogen solubility of molten aluminum,
and an oxide layer inclusion. Manufacturers are motivated by Computer-Aided Inspection
(CAI) to ensure high product quality and avoid production defects, which requires auto-
mated, rapid, and accurate inspection [2]. CAI commonly refers to automated inspection,
among other computer-aided applications extensively used in different industries [3]. By
using manufacturing standards and geometric dimensioning and tolerancing (GD&T) crite-
ria, CAI is not only able to detect laser welding defects but also to compensate for these
shortcomings. Advances in scanning technology, digital cameras, and controllers have led
to a significant increase in real-time monitoring of laser welding processes. A digital twin
(DT) aims to build a digital replica of a physical system in a virtual space, such that the
digital replica represents the same elements and the same dynamics of a physical system.
DT systems can be very helpful for understanding, analyzing, and improving a product,
service system, or production [4]. DT systems can also be used to inspect the process, to
enable visualization of the impact of variations [5]. Integration of real-time monitoring
and real-time simulation in a laser welding process ultimately leads to adopting a DT in
laser welding processes. To communicate data, information technology advancements,
like the Internet of Things (IoT) and Augmented Reality (AR), can be implemented to link
the physical system and its digital twin [6]. Real-time data collection, data analysis, and
physics-based simulation are basic phases in defect detection aimed at avoiding the occur-
rence of defects, and improving the quality of this cutting-edge technology. Thus, a critical
review of monitoring technology for the laser welding process is provided. Kong, et al. [7]
utilized spectrographic monitoring to control the laser welding process of galvanized high
strength steel in two cases, with zinc coating and without zinc coating, in a lap joint con-
figuration. Considering zinc vapor signals as the process feedback, welding defects were
identified by the presence of spatters induced by zinc vapor at the faying surface. A series
of experiments were conducted to investigate the effects of laser welding parameters on
the keyhole dynamics and weld pool, using a high-speed charge-coupled device (CCD)
camera with a green laser as an illumination source. The results revealed that welding
quality strongly depends on zinc vapor at the faying surface; a higher depth of penetration
was also observed in the case of removing the zinc coating. Sebestova, et al. [8] moni-
tored Nd: YAG laser welding by measuring plasma spectral emission lines to calculate
the plasma electron temperature. They found a relationship between electron temperature
and depth of penetration, which can be used as a controller to identify welding defects
and achieve desired penetration depth. Liu, et al. [9] studied laser hot-wire welding of
butt joints to assess the molten pool dynamics and the stability of the welding process. A
high-speed CCD camera and a spectrometer were used for real-time monitoring of the
process through visualization of the molten pool and calculation of the electron temperature
according to the Boltzmann plot method. Research established that the contribution of
a hot wire facilitates the formation of a molten pool, though laser beams were not able
to make the molten pool in butt joints with a large gap. Harooni, et al. [10] conducted
real-time spectroscopic monitoring of laser welding of AZ31B magnesium alloy in lap joint
configuration. Spectroscopic analysis was performed to study the correlation of the oxide
layer on welding sheets and the generation of defects in the interface of overlapped sheets.
In addition, a high-speed CCD camera, assisted with a green laser as an illumination source,
was employed to monitor the molten pool and the keyhole dynamics due to the oxide
layer. The results confirmed that the existing oxide layer on magnesium sheets leads to
the generation of pores in the interface area. Blecher, et al. [11] utilized inline coherent
imaging for real-time monitoring of keyhole depth in five different alloys. A compari-
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son of real-time keyhole depth measurements and metallographic depth measurements
proved that the proposed method was capable of time measurement of keyhole depth
except for aluminum alloys. Luo, et al. [12] improvised the acoustic signal monitoring of
laser welding by offering a plane microphone array with a time delay recognition. They
concluded that the welding process could be monitored and justified using the suggested
method even with background noises in the working environment, which had been an
obstacle to traditional acoustic signal monitoring. Mirapeix, et al. [13] proposed plasma
optical spectroscopy to identify aluminum in the laser welding of Usibor1500 tailor-welded
blanks. The estimation of aluminum was done by the line-to-continuum method in real-
time. A correlation was identified between aluminum content in real-time monitoring and
off-line tests like macrographs or tensile tests. However, the correlation found in the tensile
specimen test at lower aluminum contents was not clear because it was affected by other
parameters like seam geometry. Recently, our research team developed a new automatic
technique to address the distortion in real-time monitoring of aluminum laser-welded
blanks [14,15]. The research also provided experimental and numerical investigation of
different types of key process parameters and their impact on production quality in au-
tomobile applications [16–19]. Wang, et al. [20] developed a real-time monitoring system
for disk laser welding based on the feature selection method for pattern recognition, and
the Support Vector Machine (SVM) and Back-Propagation (BP) neural network for pattern
classification. Images of the plume and spatters were processed, and a sequential forward
floating selection (SFFS) algorithm was used for detecting the optimal feature subset. The
classification accuracy of BP and SVM were very close to one other; however, the accuracy
of SVM reached the maximum of 98.43 using 10 features. It should be noted that the overall
processing time remained a challenge for the proposed method. In another study, Wang,
et al. [21] used a combination of a Support Vector Machine and a Pearson product-moment
correlation coefficient to characterize disk laser welding quality. High-speed photography
was employed for image processing, and the area of the plume, the number of spatters,
and the horizontal coordinate of the plume centroid were selected among six features to
establish an SVM model with 93.58% classification accuracy. The authors concluded that
the proposed monitoring system could be used for real-time monitoring of high-power
laser welding. De Bono, et al. [22] evaluated two different monitoring methods of laser
welding: optical-based and laser interferometry monitoring methods. The optical-based
method investigated photodiodes signals of butt welding, and the laser interferometry
monitoring took advantage of the In-Process Depth Meter (IDM) sensor from Precitec in
stake welding. Photodiode data obtained at the wavelengths between 600 and 850 nm
deduced defects correlated to laser power and joint contamination and gap. However, for
detecting defects like porosities and cracks, photodiode data need to be decomposed by
orthogonal empirical mode decomposition (OEMD) theory. The data acquired by the IDM
sensor established a correlation between the IDM signal and the keyhole depth. Chen,
et al. [23] employed an SVM model for real-time monitoring in high-power disk laser
welding using 15 features of the metal vapor plume and spatters. A high-speed camera
was used to capture laser-induced metal vapor for image processing. SVM classification
using seven features reached a remarkably accurate 95.93% by 10-fold cross-validation.
The authors suggested that the centroid, perimeter, average grayscale value, and quantity
of the spatters were critical to improving welding quality. Pasinetti, et al. [24] proposed
in-line monitoring of the laser welding process by a smart vision system based on the
Industrial Internet of Things (IIoT) approach, to make an interconnection and remotely
control the process. Two different setups were used to fulfill two goals. The first setup,
called seam tracking, was targeted to keep the laser welding in an optimal position. The
second setup, called the keyhole monitor, aimed to detect incomplete keyhole penetra-
tion. The researchers suggested that the architecture used enables remote monitoring of
multiple welding units from a central unit. Lei, et al. [25] developed a multi-information
fused modeling system for predicting weld waist width and the weld back width by a
combination of Principal Component Analysis (PCA), genetic algorithm (GA), and neural
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networks (NN). Images were acquired by a modified optical fiber laser coaxial monitoring
system, and pre-processed by the PCA algorithm to effectively remove the redundancy
of extracted information. Two morphological features, in addition to laser power and
welding speed, were selected as input parameters of the NN. GA was used to optimize the
architecture of the NN. Considering the low errors of the developed model, and the short
processing time of less than 90 m, the authors proposed that it could be used for real-time
monitoring of the laser welding process. Zhang, et al. [26] employed a multiple-optical-
sensor system to integrate with a Deep Belief Network (DBN) that was optimized by a
genetic algorithm for online monitoring of the high-power disc laser welding process. The
multiple-optical-sensor system was able to deliver effectively a thorough insight into the
laser welding process. A deep learning model based on the DBN demonstrated more than
10% higher average accuracy compared to the back-propagation neural network (BPNN)
model. Haubold [27] offered a monitoring system for remote laser welding using two
parallel processing algorithms customized for identifying spatter number and size. The
reproducibility of spatter formation was investigated at four different settings of process
parameters for ten repetitions. Although a correlation between spatter number and the
corresponding standard deviation was established, no resolution for reduction of spatter
size and number was made. Shevchik, et al. [28] developed a hybrid monitoring system for
data acquisition and processing applied to titanium laser welding. The monitoring system
included optical and acoustic sensors combined with machine learning (ML) techniques.
M-band wavelets transformation was utilized to decompose optical and acoustic signals,
and the normalized energy of the frequency bands was extracted. The Laplacian graph Sup-
port Vector Machine (LapSVM) was used to correlate the extracted features with welding
quality. The proposed method displayed more than 85.9% classification accuracy, which
is notable given the low cost of data preparation. Accordingly, the researchers claimed
that the hybrid monitoring system could be used for the industrialization of laser welding
monitoring, and they also raised some concerns about sensors selection rather than sensors
combination. Zhang, et al. [29] put forward a vision-based monitoring system for laser
welding of tailor rolled blanks (TRB) through coaxial visual monitoring and Convolution
Neural Network (CNN) processing algorithms. The monitoring system was dedicated
to evaluating the penetration quality of the laser welding of TRB. Four statuses for the
penetration state were considered for the creation of an image dataset to train and validate
the CNN. They advised that with the 2 ms latency of the CNN for TRB, the proposed
monitoring system could be effectively employed for real-time monitoring applications.
Gonzalez, et al. [30] introduced ConvLBM to monitor laser deposition and welding pro-
cesses based on medium wavelength infrared (MWIR) imaging. ConvLBM employed a
Convolution Neural Network (CNN) to obtain features from MWIR. ConvLBM estimated
dilution for the laser deposition process due to its significance on the quality of the process.
Defect characterization was also achieved for the laser welding process by ConvLBM for
three different materials, proving the adaptability of the monitoring method for different
applications. Kaewprachum, et al. [31] employed an infrared camera for real-time moni-
toring of the laser welding process to apprehend fast dynamic heating phenomena. The
images were captured and analyzed to reveal the effects of laser power and welding speed
on the average molten pool temperature and the width of the molten pool. Infrared camera
measurements were validated by microscopic measurements, and a good correspondence
was observed, especially at high powers. Papacharalampopoulos, et al. [32] employed
a methodology as a candidate for process-level digital twins (DTs) in laser welding. A
simplified laser welding paradigm capable of displaying temperature profiles was studied
to assess the employed methodology. The proposed digital twin approach consisted of
decomposing spatial domains, adaptation to accuracy, adaptation to measurements, and es-
timation of inner state, providing intuitiveness to the operator, and real-time function. The
methodology was adopted to solve linear partial differential equations, and was validated
following measures ensuring the operational performance of a DT.



Quantum Beam Sci. 2022, 6, 19 5 of 12

To the best of the authors’ knowledge, the present work is the most comprehensive
attempt to present a DT for laser-welded blanks. A virtual system of the physical laser
welding system has been developed using CAI to monitor, quality control, and optimize
the laser welding process. The developed DT resides in the cloud, and it continuously
communicates with physical and virtual systems to provide appropriate commands to
operating processes and machines in real-time. In this DT, an evaluation of different
aspects of laser welding qualities has been made in order to give a product license to
laser-welded blanks.

2. Quality Control Based on 3D Geometrical Inspection

For developing a DT, the raw data of a physical system is collected to extract inspection
features and analyze the physical system in real-time. Computer-Aided Inspection (CAI)
can help to identify defects and abnormalities occurring in the geometry of a physical
system. A 3D scan measurement is one of the CAI tools which provides non-contact,
non-destructive, and accurate measurements of a physical system. In other words, it is a 3D
geometric inspection technology using data acquisition and data pre-processing to obtain
the size and shape of a physical part to display the part in digital space in three dimensions.
The 3D scanning provides an opportunity to immediately detect where the digital replica
does not match with the 3D CAD model. Three-dimensional scanning is a viable option for
the quality control of geometrical features of special welding jigs and fixtures. Using 3D
scanning, it is possible to identify where deviations occur, and to measure them instantly.
To better understand Geometric Dimensioning and Tolerancing (GD&T), manufacturing
standards such as ASME Y14.5 and ISO-GPS have been developed in the era of automation.
In addition, as part of its standards and requirements, the American Society of Mechanical
Engineers (ASME) also established rules, definitions, defaults, and recommended practices.
According to the ASME, parts and workpieces should be evaluated in a free state. Therefore,
it is necessary to consider the compliance and deformation of non-rigid parts during the
inspection. In response, definitions for geometric dimensioning and tolerancing of non-
rigid parts have been developed, based on the ASME Y14.5 and ISO standards. Figure 1
presents the types and tools of CAI algorithms. In fact, inspection 4.0 aims at intelligent
inspection by illustrating the basic work that can be implemented. Based on the compliance
behavior and inspection parameters, a digital inspection protocol can be implemented
onto the cloud, and the appropriate machine and inspection method will be selected. This
novel aspect will be presented in the upcoming parts of this article. Generally, components
are designed to fit into the right material and mechanical properties based on rigid and
non-rigid concepts in computer-aided modeling.

Regarding the compliance behavior of parts, rigid and non-rigid parts, CAI algorithms
are developed. CAI is primarily used for comparing the reference geometry, computer-
assisted design (CAD), with measured data, scan models [34]. Due to gravity and/or
residual stress, some mechanical components often have different shapes in the free-state
position compared to the state-of-use position. To make it possible to inspect different types
of parts, different registration methods have been developed to classify workpieces into
rigid and non-rigid ones. Furthermore, rigid registration is the primary step in computer-
assisted inspections of non-rigid parts. In conventional CAI software, it is assumed by
default that any data entered into the software is from a rigid part. Therefore, any deviation
between the input data and the nominal CAD model should be considered a potential
manufacturing defect [35]. Rigid registration has the primary goal of bringing CAD and
scan models into a common coordinate system without deforming either model. The model
is translated and rotated using an optimal transformation matrix without affecting its
shape [36]. Initial CAI approaches were introduced using a rigid registration algorithm
with Iterative Close Points (ICP) [37]. The ICP algorithm is known as one of the most robust
and efficient rigid registration approaches. Although various methods have been developed
over the years—including those described by researchers [38,39]—in different domains,
such as aeronautic inspections, the ICP algorithm remains a widely used registration
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approach [40], thanks to its statistically robust and reliable method of registering. A CAD
and a scan of a workpiece that is not presented in the same coordinate systems are shown
in Figure 2a, and the ICP algorithm applies the best geometrical fit in Figure 2b. In this
regard, the closest point in the reference set (CAD) is first identified for every point the
point cloud set contains. The transformation matrix (rotation and translation) is then
calculated, to move the CAD model towards scan data. This iteration is repeated until the
best geometrical fit is obtained.
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by estimating and computing the transformation matrix that combines translation and
rotation. The Hausdorff distance is the main tool in this algorithm [41]. A distance measure
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is taken between the CAD mesh and the point cloud data acquired by scanning. In other
words, it is the maximum distance between every point of a non-empty set and some point
of another non-empty set. Equation (1) illustrates this, where dH (X, Y) is the Hausdorff
distance and (X, Y) are the two non-empty subsets.

dH(X, Y) = max
{

supx∈Xin fy∈Yd(x, y), supy∈Yin fx∈Xd(x, y)
}

(1)

The ICP algorithm has undergone a lot of improvements and upgrades, as it is one of
the most powerful and widely used algorithms. The ICP algorithm was also modified and
developed to decrease calculation time [42]. This method proposes a robust solution by
applying random sampling to the point clouds. The algorithm also knew the minimization
strategy [43] or measured the transformation in a way that minimizes its error. By using
the corresponding points in previous iterations of the ICP algorithm, and searching only in
the immediate neighborhood of those points, the closest points search was significantly
improved in terms of speed [44]. In addition, some techniques have been used to improve
the efficiency and speed of the registration process [45]. A variation of the algorithm has
also been implemented to enhance the conversion of the sets by taking color information
from the workpieces. Even though not all scanners are able to capture the color information
from workpieces, this algorithm can still be used. There have been many variants of the
algorithm explored and many improvements made by the ICP algorithm [43].

Since non-rigid workpieces have so much more parameters to consider, rigid registra-
tion needs to be accompanied by non-rigid algorithms, to take into consideration the part’s
deviation in its free state [46]. Scanning models cannot be compared to CAD models due to
the flexible deformation of parts in a free state. CAI methods can resolve this problem for
non-rigid parts where defects (e.g., geometric deviations from the CAD model) are sepa-
rated from the deformations caused by the compliance or flexible deformation of non-rigid
parts. Typically, non-rigid parts are dimensioned and inspected with over-constrained
inspection fixtures to compensate for the flexible nature of these components and to ensure
that the measurement setup accurately reflects the part’s assembly functionality.

3. Verification and Validation of the Methods in CAI

All Computer-Aided Inspection methods cited are based on scan data and compu-
tational calculations. It follows that verification and validation of the calculations are
imperative due to this aspect of the methods. Both rigid and non-rigid inspection methods
are prone to uncertainty in computational simulations and measurement errors due to
inaccuracies in data acquisition devices. Due to the technical limitations of devices, optical
effects (such as light fraction and reflectivity of surfaces), or the inaccessible features of
some parts, scanners are inaccurate. The results of CAI are influenced by these noisy data.
Simulation models can be assessed for accuracy, reliability, and robustness by applying
verification and validation (V&V) approaches [47]. Validation evaluates the consistency
of computed simulation results compared to the actual ones, while verification measures
the accuracy of the solution to a problem using a computational model. All numerical
methods, including CAI methods, must be thoroughly verified and validated because of
various sources of uncertainty in computer codes and simulations. Validating the result of
a numerical approach concerning input noise aims at evaluating a computational model’s
robustness. An effective computational model should be able to produce satisfactory
results despite the presence of noises in the input. A robust approach can still produce
acceptable results for noise-containing input data compared with noise-free input data.
Typically, the input noise in CAI methods comes from measurement noise that is inherent
to measuring data acquisition devices. Thus, it is necessary to study the robustness of
CAI methods, given the noise generated by scanning devices. A first development model
will be generated based on the CAI method, and real feedback will be received during the
production process. Furthermore, by combining the concepts of physical and simulation,
the human and machine interface theory can make a powerful and self-learning device.
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This smart connected modeling is the trigger for Industry 4.0 and intelligent manufacturing
by developing a digital twin model.

4. Digital Twins (DT)

Industry 4.0 is the latest revolution in the industrial era, and refers to the digitization
of manufacturing by merging physical and virtual (digital) worlds. Digital twins (DTs)
are a strategy within Industry 4.0, operating on the virtualization principle [48]. DTs
are digitalized integrated systems to monitor, analyze, and simulate the behavior of a
physical system. DTs are composed of three main components: the physical system,
the virtual system, and the communication layer that connects these two systems. The
communication layer is a linkage for data storage, data processing, and data mapping
functionalities [49]. The data from the physical and virtual systems must be stored and
processed in the communication layer. In this regard, the communication layer needs to be
capable of transmitting a big amount of data (big data) in addition to easy fault detection
characteristics. Internet of Things (IoT) technology can be used to make interactions
between different layers of the integrated systems for real-time data transmission. IoT
effectively maintains two-way synchronization of physical and virtual systems, to keep
the virtual system updated and to provide real-time control commands for the physical
system. The physical system changes are reflected in the virtual system; in other words,
the virtual system is updated by employing feedback from the physical system. Real-time
control commands are made based on the past and present conditions of the physical
system to take care of the consistency of the manufacturing process and the quality of
manufactured parts [50]. The constant synchronization between physical and virtual
systems through the communication layer ends up in a real-time quality control platform
which is also supported and updated by the physical system. As illustrated in Figure 3,
all sorts of information originating from physical and virtual systems—GD&T standards,
historical data, customer feedback, and fabrication protocols—are communicating with
the cloud network to provide enough material to make decisions. Continuous and online
communication between different physical and virtual data providers is only made possible
by the ability of IoT [51] to transmit large volumes of data.
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Smart welding is heading inevitably toward the Industry 4.0 paradigm. A schematic
of the DT model designed for intelligent laser welding leading to a product license for
laser-welded blanks is presented in Figure 4. In this DT, all data from the physical system,
including seam tracking, in-process depth meter, and weld inspect data, are communicating
with the cloud to update and support the cloud. There is a two-way network of interactions
between consequent stages of physical and virtual twins, to transfer and update informa-
tion, guaranteeing high-quality laser seam according to standards, process command, and
specifications defined in the cloud. The application of DTs might facilitate the provision of
production licenses for parts manufactured in different production sites, with no need to
re-inspect the parts.
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In general, digital twins are efficient platforms for predicting every machine and
device’s performance, due to their intelligent data processing capability. In a virtual model
or DT, physical models of machine operations will be combined with sensor data collected
and processed from real assets during real-world operations. In this regard, operators of
laser welding machines will benefit from being able to predict structural failure and to plan
maintenance activities more effectively. This strategy will result in reduced maintenance
costs and operational downtime during welding. As shown in the following model,
aluminum sheets are prepared before welding to ensure there is no contamination on the
surface. Then, the clamping procedure is adjusted to apply an equivalent force on the
surface of the plates. To do so, alignment sensors are used to define the error, and the results
are sent to the cloud for future action. By using the validation method, all the process
parameters are set, and acceptance/rejection outcomes will be considered, to make a cloud-
based smart decision based on the DG&T criteria. If the alignment has been accepted,
automatic laser welding will start, and real-time monitoring will be done (seam tracking, in-
process depth penetration, weld inspection, etc.). Using sensors and artificial intelligence,
digital platforms and physical operations communicate data simultaneously. A cloud
platform should be able to process big data and refine it based on pass/fail production
criteria. Finally, a license will be issued for the quality assessment of each production. It
is worth mentioning that this model can be used in mass production as well as remote
manufacturing platforms in any location throughout the world. Thus, this model can be
considered the first step toward cloud manufacturing and connected production which can
be remotely accessible anytime.

5. Summary and Future Scopes

Investigation of the digital twins market reflects the challenges that have hindered
cost-efficient application of digital twins (DTs) in manufacturing. Some of these challenges
are due to the complex physics of manufacturing processes and production uncertainties,
which in turn leads to difficulties in capturing physical phenomena by a virtual replica. The
desire is to set up data-driven digital twins based on a hierarchical structure without any
conflict between the physical and virtual systems, which entails appropriate communication
and collaboration between them. However, the development of digital twins is still costly
due to the restrictions of communication platforms. The ability to predict, prevent and
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resolve problems and faults also requires the proper implementation of data analysis,
decision making, and problem-solving techniques.

In this regard, an overview of computer-aided process monitoring was reviewed,
based on the digital twins concept for lightweight laser-welded metals. Different types of
3D geometric inspection, Computer-Aided Inspection (CAI) methods, and tools in the man-
ufacturing industry, are presented and compared in this paper. CAI approaches address
automated inspection challenges and requirements for different types of manufactured
parts. The development of this process is essential in the production cycle of a part, and
therefore should not be ignored. In addition, as moving further toward Industry 4.0,
its concepts ought to be incorporated into geometric inspections allowing a comparison
between nominal data (CAD model) with respect to a manufactured part, to determine
whether it meets specifications without having to apply human judgment. An automated
cloud-based Inspection 4.0 is therefore applied. Another objective is to propose an auto-
mated production cycle that does not require human intervention. This survey presents an
agile approach allowing automation of the laser-welded blanks process. Applying CAI,
the process is automated along with the implementation of its DTs. This original model
allows remote monitoring of the process, increasing its precision by removing human
intervention, increasing productivity, and providing a proper decision-making tool. The
challenge now is to integrate artificial intelligence to delegate all redundant work to the
machines, and have them provide feedback and auto-maintenance at some point. More
research is also needed to develop cost-effective digital twins so that these solutions can
meet Industry 4.0 requirements.
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