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Abstract: To enhance the solubility of orally administered pharmaceuticals, liquid capsules or
amorphous tablets are often preferred over crystalline drug products. However, little is known
regarding the variation in bonding mechanisms between pharmaceutical molecules in their different
disordered forms. In this study, liquid and melt-quenched glassy carbamazepine have been studied
using high energy X-ray diffraction and modeled using Empirical Potential Structure Refinement.
The results show significant structural differences between the liquid and glassy states. The liquid
shows a wide range of structures; from isolated molecules, to aromatic ring correlations and NH-O
hydrogen bonding. Upon quenching from the liquid to the glass the number of hydrogen bonds
per molecule increases by ~50% at the expense of a ~30% decrease in the close contact (non-bonded)
carbon-carbon interactions between aromatic rings. During the cooling process, there is an increase
in both singly and doubly hydrogen-bonded adjacent molecules. Although hydrogen-bonded dimers
found in the crystalline states persist in the glassy state, the absence of a crystalline lattice also allows
small, hydrogen-bonded NH-O trimers and tetramers to form. This proposed model for the structure
of glassy carbamazepine is consistent with the results from vibrational spectroscopy and nuclear
magnetic resonance.

Keywords: carbamazepine; amorphous; liquid structure; glass structure; X-ray diffraction; hydrogen
bonding

1. Introduction

Amorphous pharmaceuticals often possess greater solubility and bioavailability than
their crystalline forms [1,2]. However, competition between different intermolecular bond-
ing arrangements in liquid and amorphous pharmaceuticals, associated with the manu-
facturing, storage temperature and exposure to humidity, can have a substantial effect on
the structure phase stability [3,4]. From a crystalline standpoint carbamazepine (CBZ) has
served as a model compound for groups studying of crystal polymorphism [5]. Dissolution
rates of the crystalline forms I, III and the dihydrate, correlate strongly with solubility. This
leads to significant differences in the bioavailability between the anhydrous and dihydrate
forms after oral administration. In the fall of 1998 ~70 million tablets containing carba-
mazepine were withdrawn from the market because of a reported clinical failure, based on
the fact that the dihydrate was formed instead of form III [3].

Here we have characterized crystalline and glassy forms of CBZ using Differential
Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), and solid-
state Nuclear Magnetic Resonance (ssNMR). The structure of the liquid and glassy states
have also been studied using high energy X-ray diffraction (HEXRD) and modeling using
Empirical Potential Structure Refinement (EPSR). Previous total scattering experiments on
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CBZ have compared the amorphous pair distribution functions (PDFs) of CBZ with known
crystalline forms, and good agreement has been found with spherical nanocrystalline parti-
cles of CBZ form III crystallites of 4.5 nm in size [6]. However, the authors acknowledged
that a truly a homogeneous amorphous structure with short-range molecular CBZ III-like
packing ‘could not be ruled out’. Here, we argue that the assumption of single (or multiple)
crystalline forms in itself, can be problematic when modeling amorphous structures. This
has notably been the case in interpreting the PDF for water [7], where three crystalline
forms were manipulated to reproduce the liquid PDF but the model contained several
thermodynamic and scattering flaws [8,9]. Indeed, Wright has previously detailed an anal-
ogous debate on “the great crystallite vs random network controversy” for understanding
the structure of inorganic amorphous and glassy solids [10]. While [10] found that early
crystallite theory is untenable, it is acknowledged the likelihood of finding frozen in local
crystallite motifs above the fictive temperature, and that the original random network
theory of glasses by Zachariasen is only a first-order approximation. The number, size
distribution, and volume fraction of crystalline-like motifs will always be a major question.

The accuracy and nature of the modeling procedure will always be an important aspect
of understanding the structure of amorphous materials. For organic amorphous molecules,
the situation is even more complex as variations in molecular shape are commonplace when
a long-range lattice is not present as an additional constraint. Moreover, since amorphous
forms are by definition metastable a variety of structures can be formed, depending on
fictive temperature or preparation history. This has recently been demonstrated in the
X-ray PDF of amorphous Indomethacin, which is particularly sensitive to the preferred
orientations of the chlorobenzyl ring [11]. Depending on the fabrication conditions (namely
humidity) in some cases the chlorobenzyl ring is found to have no preferred torsional angle
in the amorphous form, while in others there is evidence of distinct isomer orientations
found in the crystal forms. This is derived from competition between subtle intra- and
inter-molecular bonding configurations and is most clearly reflected in the intensity of
the first sharp diffraction peak of the X-ray structure factor S(Q). This latter observation
underscores the importance of comparing the measured total scattering data and model in
reciprocal space as well as real space. Here we show the Monte Carlo simulation approach
used by EPSR is well suited to modeling small rigid molecules with a specific geometry
and a limited number of bonding sites such as CBZ.

2. Materials and Methods

Experiments on both the liquid and glassy forms of CBZ were subject to the samples
quickly degrading over time. Partial crystallization of the high-temperature melt was
observed to occur within 5–10 min using most techniques, especially in sealed containers
where the absorbed water could not escape. In addition, the conversion of the glass to the
crystalline dihydrate form occurred on a similar time-scale in humid environments at room
the temperature, as water was absorbed from the atmosphere.

2.1. Nuclear Magnetic Resonance Spectroscopy

Solution state NMR of the as-received carbamazepine (Alfa-Aesar 98% purity) was
dissolved in CDCl3 and collected on a Bruker 500 MHz NEO spectrometer with a 5 mm
iProbe. The solid-state NMR data were collected on a Varian VNMRS (18.8 T) operating
at a Larmor frequency of 799.84 MHz and 201.14 MHz for 1H and 13C respectively. A
1.6 mm Varian T3 high speed MAS probe was employed with a MAS speed of 35 kHz for
the crystalline material. To eliminate crystallization concerns, the amorphous material
(produced by the same method as used in high energy X-ray diffraction experiments)
was only spun to 20 kHz MAS, to limit frictional heating. Sample temperature thereby
stayed well below Tg = 46 ◦C. Cross polarization (CP) with a 13C B1 field of 62.5 kHz and
a 10% linear ramp with a 1.5 ms contact time on the 1H CP contact pulse matching to the
−1 condition, depending on MAS speed. 1H decoupling at a B1 field of 117.6 kHz with time
proportional phase modulation (TPPM) was used during acquisition. Data were collected
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with a sweep width of 100 kHz, an acquisition time of 20 msec, and a recycle delay of 720 s
or 15 s for the crystalline and amorphous material, respectively. Peak positions were fit
using TopSpin 4.0 for CDCl3 solution, CBZ III and dihydrate. CBZ glass peaks were fit
using Gaussian deconvolution in OriginPro, see Supplementary Materials.

2.2. Vibrational Spectroscopy

Fourier transform infrared spectroscopy (FTIR) was performed using a Bruker Alpha
II FTIR Instrument equipped with a platinum single reflection attenuated total reflection
(ATR) module with a monolithic diamond interface, temperature stabilized deuterated
triglycine sulfate wideband near-infrared detector, and an integrated certified reference
standard. Spectra of form III crystalline CBZ stock, (Alfa Aesar ~98%, and Sigma Aldrich
>99.9%), as well as the thermally annealed form I of both, CBZ dihydrate (CBZ·2H2O)
recrystallized from form III stock (Alfa Aesar, 98%) in supersaturated EtOH formed by
heating to 80 ◦C then the addition of 20% (v/v) H2O antisolvent during cooling to 4 ◦C and
melt quenched amorphous products from each form) were collected in ambient conditions
(~25 ◦C, 1 atm, in air) from 400 to 4000 cm−1 in increments of 2 cm−1 for a total of 128 scans,
with a background collected between each sample using the same specifications. Spectra
were minimally processed with a zero-baseline correction applied at lower frequencies by
interpolation, and normalization to equalize intensities for comparison.

2.3. Thermal Analysis

Differential scanning calorimetry measurements were performed on a TA Instruments
Discovery 2500 DSC with a constant dry nitrogen flow > 200 mL/min. The baseline,
forward, and reversing heat capacity were calibrated using sapphire disc standards, while
the cell constant was calibrated using In wire standard (Strem chemicals, 99.9985%). 2–3 mg
samples (form III crystalline CBZ stock, Alfa Aesar ~98%, and Sigma Aldrich >99.9%, as
well as the thermally annealed form I and melt quenched amorphous products from
each form, and the CBZ·2H2O recrystallized as described above) were loaded in non-
hermetic Al crucibles. The use of a non-hermetic pan (critically, under N2 flow in the DSC
cell) is necessary to prevent increased pressure at higher temperatures, which has been
demonstrated to increase the degradation of CBZ to iminostilbene (IMB) [12]. Sample
expansion in these pans at higher temperatures risks leaking CBZ through the lid, so the
maximum temperature used for CBZ samples in standard pans was 215 ◦C (~24 ◦C above
the melting point of form I). Cyclic DSC experiments were carried out at a heating scan
rate of 10 ◦C/min, with variable cooling rates between 1–10 ◦C/min.

2.4. High-Energy X-ray Diffraction

The X-ray pair distribution function (PDF) method is an established technique for
the cintermediate-range both local and intermediate range ordering of disordered organic
materials, providing details of molecular structure at the atomic level. Powdered carba-
mazepine samples (Aldrich >98% purity) were loaded into 1.5 mm diameter, unsealed thin
walled (0.1 mm) capillaries, and heated to 230 ◦C, 40 ◦C above the melting point for the
X-ray measurements lasting 2 min. The glass was immediately quenched from the melt into
liquid nitrogen and measured at room temperature. The high-energy X-ray measurements
performed were on beamline 6-ID-D at the Advanced Photon Source at Argonne National
Laboratory. The setup and correction procedures have been previously described in de-
tail [13]. Experiments were carried out using a monochromatic X-ray beam E = 100 keV
(λ = 0.124 Å) collimated to a square 0.5 mm cross section, and the scattered beam was
measured using a Varex (CT4343) area detector. NIST CeO2 powder was used for sample-
detector distance calibration, which was set to 360 mm in order to balance resolution and
Q-range. An additional time-resolved humidity experiment on amorphous cryoground,
fluffy carbamazepine powder was performed at 80% relative humidity (RH, Electro-Tech
Systems, Inc., Glenside, PA, USA, model 5503) using a Pilatus 2M CdTe detector after
drying CBZ at 20% RH for 2 h.
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The total X-ray scattering data were analyzed as described previously using Fit2D
and PDFgetX2 [14,15]. In brief, geometrical, polarization, background and attenuation
corrections were applied to all data sets. For the Varex detector dark current corrections
were applied. The total X-ray structure factor S(Q) and differential pair distribution func-
tion D(r) have been defined in reference [16]. Additional masking was needed for the
Pilatus 2M detector due to the dead zones between detector elements and residual trapped
excited states.

2.5. Empirical Potential Structure Refinement

Empirical Potential Structural Refinement (EPSR) modeling [17,18] was used to obtain
atomistic models of liquid and glassy carbamazepine (C15H12N2O, see Figure 1), based
on the high-energy X-ray diffraction data. The EPSR simulations were performed on
100 molecules within a cubic box under periodic boundary conditions, using atomic num-
ber densities of 0.1025 atomsÅ−3 for the glass and 0.1000 atomsÅ−3 for the liquid. The
parameters for the Lennard-Jones reference potentials are given in Table 1. The starting con-
figuration was a random array of molecules and following initial Monte Carlo equilibration,
the empirical potential term was refined to improve agreement with scattering data, Once
the goodness-of-fit parameter was minimized between the model and the experimental
S(Q), structural data were collected over ensembles of at least 5000 configurations. Enabling
rotations along the N2-C1 and C1-N1 bonds resulted in no significant improvement in the
fits. While the EPSR fit to the data does not necessarily give a unique structural 3D configu-
ration of molecules, it does provide an important insight into the types of interactions that
are likely in the disordered state.
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Figure 1. Structure of the carbamazepine molecule with the atom labels used in the EPSR simulation.
In EPSR C3 corresponds to the 5 carbon atoms in the ring.

Table 1. Parameters used for the Lennard-Jones reference potential in the EPSR simulations. Par-
tial charges were put on the oxygen and methylene hydrogens. No charges were put on the
nitrogen atoms.

Atom Coulomb Charges (e) ε (kJ/mole) σ (Å)

H1 +0.25 0.00 0.00
N1 & N2 0.00 0.70 3.20

O1 −0.50 0.65 3.10

3. Results
3.1. Sample Characterization

In contrast to the melt-quenched glass measured on the X-ray beamline, to perform
ssNMR on amorphous CBZ, the freshly melt-quenched sample had to be ground into a
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powder and loaded in ambient conditions. The remaining powder was stored at 4 ◦C
for the time it took to load the rotor into the probe and optimize d1 to set up the 1H-13C
CP-MAS experiment (Figure 2, top). Though the measurement was made at only 20 kHz
spinning speed to minimize frictional heating, FTIR and DSC measurements were promptly
performed to verify the absence of the thermal degradation of CBZ samples and absence of
nucleation or recrystallization in amorphous CBZ samples.
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Figure 2. Solid State 13C CP-MAS NMR spectra of amorphous carbamazepine, crystalline CBZ
dihydrate, crystalline CBZ III, and solution spectrum in CDCl3.

The solution 13C chemical shifts of CBZ in CDCl3 and the 1H-13C CP-MAS 13C chemi-
cal shifts of the crystalline form III and dihydrate agree well with published values assigned
using HETCOR and COSY experiments (Figure 2 middle and lower curves) [5], summa-
rized in Table 2. The amorphous CBZ spectrum (Figure 2, top) has very broad peaks, such
that the majority of the fused ring structure peaks are not resolved. 1H-13C CP-MAS is
not precisely quantitative on a natural abundance sample due to the differential efficiency
of magnetization transfer rates with different heteronuclear dipolar interaction strengths
within the sample, so deconvolution to correctly integrate percentages of states quantita-
tively is not possible [19,20]. Nonetheless, some qualitative conclusions are apparent from
the 1H-13C CP-MAS spectrum of glassy carbamazepine, and a deconvoluted spectrum is
given in the Supplementary Materials. Importantly, the carboxamide peak at 159.3 ppm
has a clear shoulder at 157.6 ppm. In solution, the carboxamide peak chemical shift is
157.2 ppm, while the crystalline polymorphs range from 159.0–159.9 ppm for polymorphs
I-IV, and 158.5 ppm for the dihydrate. There is also an asymmetry to the peak at 140.1 ppm,
where a shoulder is visible at 141.9 ppm. The origin of these spectral details is discussed
in comparison to the X-ray pdf data and modeling in the next section. It is clear from
the ssNMR data in Figure 2 when taken with the DSC and FTIR data (Figures 3 and 4,
respectively) that neither the crystalline polymorphs nor the amorphous CBZ are converted
in detectible quantities to the dihydrate at ambient conditions (~22 ◦C, 20–30% R.H.) during
the experimental time frame used for these experiments.
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Table 2. 13C chemical shifts of CBZ in CDCl3 solution, and ssNMR 1H-13C CP-MAS chemical shifts of
CBZ III, CBZ dihydrate, and CBZ glass. Peak positions were fit using TopSpin 4.0 for CDCl3 solution,
CBZ III and dihydrate. CBZ glass peaks were fit using Gaussian deconvolution in OriginPro, see
Supplementary Materials.

NMR Labels for Carbamazepine Carbon Number CDCl3 Solution CBZ III Dihydrate Glass
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Figure 3. DSC thermograms of the first heating cycle at 10 ◦C/min under dry N2 of amorphous CBZ
with inset enlarging the range from 30–60 ◦C to show glass transition; crystalline CBZ dihydrate,
CBZ I (triclinic) and CBZ III (p-monoclinic).

Immediately after initiating ssNMR experiments the amorphous CBZ was subse-
quently quickly loaded in duplicate in DSC pans (Figure 3, top) and during the run of the
first sample the FTIR-ATR measurement was taken (Figure 4). The importance of quickly
measuring amorphous CBZ when handled in ambient conditions has been extensively char-
acterized [21,22], to prevent nucleation and recrystallization as well as decarboxamination
to the IMB degradation product that happens more readily in air [23]. Dołęga et al. [22]
have used temperature-controlled FTIR in tandem with DSC and HPLC to study the
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kinetics of non-isothermal cold-crystallization of the quench-cooled Carbamazepine, as
well as quantify the amount of IMB in amorphous CBZ samples and re-crystallized CBZ
polymorphs, demonstrating that even small IMB percentages can be detected by either
method. The fast heating rate before melt-quenching increases the degradation temperature,
which is observed to have an onset by conventional TGA heating at 10 ◦C/min of ~240 ◦C
(data not shown) in agreement with literature values [20]. Critically, the absence of the
endotherm at 140 ◦C attributed to the fusion of the eutectic mixture of IMB and CBZ [23]
indicates that the bulk CBZ as received and the amorphous CBZ samples in this study
did not undergo decomposition during preparation, handling, or measurements (Figure 3,
transitions summarized in Table 2).
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Figure 4. FTIR-ATR spectra of amorphous CBZ, and crystalline CBZ dihydrate, form I (triclinic) and
form III (p-monoclinic) with main peaks labeled.

The FTIR-ATR spectra of CBZ I and III agree with the literature values of Grzesiak et al. [24],
though their hermetically sealed crucible DSC results show some variation with higher
melting transitions for cold-recrystallized form I from form III melting that was not ob-
served in this study (Figure 3, bottom and Table 3) and other recent studies [19]. The FTIR
spectra of CBZ contaminated with IMB critically showed a loss of the asymmetric amide
stretch vibration at 3478 cm−1, with the formation of peaks at 3416 cm−1 and ~3190 cm−1

not present in the samples in this study (Figure 4, top).

3.2. High-Energy X-ray Diffraction and EPSR Modeling Results

The measured X-ray total structure factors for liquid and glassy carbamazepine and
the EPSR model fit are shown in Figure 5. The high-Q region is dominated by the intra-
molecular scattering and the first double peak feature is strongly correlated with the
inter-molecular packing arrangements and changes in density. Best fits were obtained for
the glass using an atomic number density 2.5% higher than that of the liquid.

Since X-rays are scattered by electrons, the S(Q)’s and corresponding PDF’s are most
sensitive to the heavier atoms and in particular the orientations of the carbon rings on the
‘wings’ of the molecules, labeled C3 in Figure 1. The intermolecular C3-C3 partial structure
factor and corresponding C3-C3 partial pair distribution function showsa significant change
between the liquid and glassy forms (see Figure 6). A distinct first inter-molecular peak at
2.58 Å and a second peak at 3.84 Å are both more intense in the liquid state, and indicate
an increased number of close contacts between aromatic rings. The minima after first
peak in gC3-C3(r) is at r = 3.06 Å, and corresponds to an average coordination number of
nC3-C3 = 1.06 ± 0.03 in the liquid and 0.74 ± 0.02 in the glass. Given the distinct geometry
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of the carbamazepine molecule these molecular orientations in the model define the average
NH-O hydrogen bond distances present. Hydrogen bonding is most clearly observed in
the N1-O1 partial pair distribution function, which exhibits a well-defined peak at 2.9 Å.
The minima after the first peak in gN1-O1(r) is at r = 4.0 Å, corresponds to an average
coordination number of n~0.73 ± 0.02 in glass and 0.63 ± 0.02 in the liquid.

Table 3. Thermodynamic parameters obtained from DSC analysis of CBZ polymorphs and glass.

Structure Tg (◦C) ∆H (J/g) Onset (◦C) Tm (◦C)

CBZ I

Form I fusion 113.95 190.38 191.38

CBZ III

CBZ III fusion 20.856 173.35 174.95
CBZ I cold-crystallization 5.217 175.44 175.95
CBZ I fusion 110.91 191.10 191.26

CBZ·2H2O

Dehydration 362.85 73.03 84.49, 95.35
Mixed phase melting 7.085 155.99 164.47
CBZ I fusion 95.052 190.75 191.16

CBZ glass

Glass transition, onset
Glass transition, midpoint 42.83
CBZ I cold-crystallization 46.03 57.083 81.98 97.62
CBZ I fusion 102.21 189.00 190.31
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4. Discussion

In CBZ the four anhydrous crystals all contain similar molecular conformations with
stabilities that are within 0.7 kcal/mol of each other [24]. In addition, all polymorphs have
the same strong hydrogen bonding patterns containing dimers of carbamazepine molecules
linked via pairs of NH-O hydrogen bonds. In crystalline carbamazepine, forms I and II
have similar packing of dimers, with an offset π-π stacking of the aromatic rings as the
main interaction between neighboring dimers. In forms III and IV aromatic rings form both
π-π stacking and edge-to-face contacts in an interlocked packing arrangement. The stability
order of these polymorphs at room temperature has been ranked as III > I > IV > II [24].
A previous study on amorphous carbamazepine has promoted a nanocrystalline model
of a 3–4 molecular aromatic stack of hydrogen bonded dimers similar to that found in
form III [6]. In the EPSR liquid model the first inter-molecular gC3-C3(r) peak at 2.58 Å
can be attributed to non-bonded ring interactions, while the second peak at 3.84 Å is a
distance more commonly associated with π-π stacking and edge-to-face contacts, as shown
in Figure 7a.

The average ring and chain distributions for NH-O hydrogen bonding in the EPSR
model are shown in Figure 8, using an N-O cut off distance of 4.0 Å. Here the ring dis-
tributions show that this average is a mixture of isolated molecules and small clusters of
1 to 4 nearest neighbors. In the crystalline state there are only dimers are connected via
two NH-O bonds and these configurations also persist in the liquid and glassy states (see
Figure 7b). However, our model shows the liquid contains more single (non-hydrogen
bonded) molecules, whereas the glass comprises mostly of dimers and small hydrogen
bonded clusters. This is reflected in the average bonds per molecule, which increases from
0.8 ± 0.2 in the liquid model to 1.2 ± 0.2 in the glassy model. Given that there is only a 16%
increase in the first peak of gN1-O1(r) between the liquid and glass, this reflects an increase
in both singly and doubly hydrogen bonded adjacent molecules upon cooling. In addition
to dimers, trimers, tetramers and pentamers also form via a shared hydrogen bonding
arrangement. This is illustrated by the trimer in Figure 7c where one molecule shares OH-N
bonds with two different molecules, a structural motif not found in the crystalline state.
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(c) trimer with shared NH-O bonds in the glass model.
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The increase in hydrogen bonding upon cooling is also reflected in the 1H-13C CP-MAS
ssNMR data (Figure 2), in which there is clear asymmetry in the peak at 140.1 ppm, with
a shoulder at 141.9 ppm. In solution, there is only one peak at 139.9 ppm, whereas the
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solid-state chemical shift anisotropy separates these two carbons by 2–3 ppm depending on
the polymorph due to the restriction of rotation about the N2-C1 bond in Figure 1 [5]. While
there is no precise evidence of a trimeric (nor higher oligomers) structure from the ssNMR
data, the shoulder peak at 157.6 ppm for the carboxamide 13C chemical shift suggests that
there are indeed interactions that are not seen in any of the known solid states in which the
dimeric interaction has a chemical shift of 159.0–159.9 ppm for anhydrous CBZ polymorphs.
Moreover, this shoulder peak is clearly very broad, and while quantitative deconvolution
is not possible for this natural abundance sample due to the experimental conditions, it is
clear that the expected peak at 159.1 ppm corresponding to a mixture of dimeric structures
is the same order of magnitude as the shoulder i.e., that the sum of the other states have a
greater concentration to the expected dimeric structures (see Supplementary Materials for
more information). There is also a clear distribution of states of the primary interaction via
the carboxamide moiety observed in the FTIR spectrum of CBZ glass in Figure 4. The CBZ
I and III polymorphs display sharp peaks for the NH2 asymmetric stretch at 3483 cm−1

and 3465 cm−1, respectively [25]. This vibrational mode is changed significantly for the
dihydrate due to hydrogen bonding with water, giving two broad, overlapping peaks at
3429 cm−1 and 3360 cm−1. The glass has none of these features, with a broad single peak at
3478 cm−1, which is intermediate to the dimeric states of the two crystalline polymorphs
but not blue-shifted as observed for the dihydrate outside of the bounds of the two most
different triclinic (CBZ I) and p-monoclinic (CBZ III) forms used in this study.

Hydration of CBZ

The Food and Drug Administration reported that carbamazepine can lose up to one
third of its effectiveness when stored in humid conditions [26]. Water absorption initiates
an amorphous-dihydrate transition and the reverse dihydrate-amorphous transition upon
dehydration. The CBZ dihydrate comprises of one carbamazepine molecule and two water
molecules, with a network of hydrogen bonds involving the amide group and the water
molecules, linking dimers into a double layer [5]. All the hydrophilic parts of the structure
are sandwiched within the layer, while the layers contact each other via the hydrophobic
parts of the carbamazepine molecules and are connected by van der Waals interactions.
Our experiments on dry (20% RH) amorphous CBZ suddenly exposed to 80% RH at room
temperature directly converted to the dihydrate crystal, see Figure 9. The crystallization
rate was determined from the height of the most intense five dihydrate Bragg peaks as a
function of time. After an initial exposure of amorphous CBZ for ~30 min the crystallization
rate was found to approximately follow an exponential decay curve. The sample saturated
after ~4 h, but some variation was still observed in the crystal:glass ratio after that time,
most likely due to inhomogeneous packing and swelling of the sample in the region probed
by the X-ray beam.
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Figure 9. (a) The difference in X-ray intensity after 4 h at 80% RH and 21 ◦C minus the initial
amorphous form at 20% RH, shows dihydrate crystal formation upon exposure to high humidity.
(b) Crystallization rate of amorphous carbamazepine to the dihydrate form at 80% RH and 21 ◦C
fitted with an exponential decay curve with a time constant of 2.16 h.
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5. Conclusions

The EPSR modeling of high energy X-ray diffraction data from liquid and glassy
carbamazepine has revealed a mixture of bonding mechanisms, that are also observed
in the crystalline forms. However, the variation of these competing interactions between
the liquid and glassy forms is shown to be substantial, when analyzed in terms of the
associated partial pair distribution functions. Overall, non-bonded aromatic ring (carbon-
carbon) interactions at ~2.6 Å are found to be substantially higher in the liquid state. These
correlations are likely associated with π-π stacking and face-to-edge contacts between
aromatic rings at longer distances. Moreover, the presence of hydrogen bonds per molecule
increases by 50% (using an N-O cut off distance of 4.0 Å) upon cooling from the liquid to the
glass. Here, we find the lack of crystalline symmetry enables the formation of small groups
of isolated hydrogen bonded clusters in the glassy state not observed in the crystalline
phases. Consequently, the combination of HEXRD and ssNMR measurements with EPSR
modeling represents a powerful combination in the interpretation of liquid and glassy
intermolecular structures of small organic pharmaceutical molecules. In addition, in the
case of CBZ, the rapidity of the X-ray synchrotron measurements over the timescale of
a few minutes is essential, due to the effects of water absorption causing the samples to
crystallize in both the liquid and glassy states.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/qubs6040031/s1, Figure S1 and Table S1: Gaussian deconvolution of 1H-13C CP-MAS
spectrum of amorphous CBZ [27,28].
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