
Citation: Jiang, W.; Lu, C.; Han, B.;

Dai, B.; Zheng, Q.; Liu, G.; Wang, J.;

Luo, Y. Helical Electron Beam Status

Online Evaluation for Magnetron

Injection Gun. Quantum Beam Sci.

2024, 8, 3. https://doi.org/10.3390/

qubs8010003

Academic Editor: Masaki Oura

Received: 23 November 2023

Revised: 21 December 2023

Accepted: 27 December 2023

Published: 29 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Helical Electron Beam Status Online Evaluation for Magnetron
Injection Gun
Wei Jiang 1,* , Chaoxuan Lu 1 , Binyang Han 1, Boxin Dai 1, Qiang Zheng 1, Guo Liu 1, Jianxun Wang 1

and Yong Luo 1,2

1 School of Electronic Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 610054, China; chaoxuanlu@126.com (C.L.); 202311021709@std.uestc.edu.cn (B.H.);
202311021710@std.uestc.edu.cn (B.D.); qiangzheng@uestc.edu.cn (Q.Z.); liuguo@uestc.edu.cn (G.L.);
jxunwang@uestc.edu.cn (J.W.); yluo@uestc.edu.cn (Y.L.)

2 Laboratory of Electromagnetic Space Cognition and Intelligent Control, Beijing 100089, China
* Correspondence: jiangwei@uestc.edu.cn

Abstract: The magnetron injection gun (MIG) is an essential component of the gyrotron traveling
wave tube (gyro-TWT). Although the electron beam status influences the performance of the device,
it cannot be measured directly in the experiment. An online evaluation module (OEM) for the
experiment is developed to calculate the instant beam parameters of MIG. The OEM, by reconstructing
the geometry of the MIG and related magnetic field distribution, can obtain the electron beam status
under the operating parameters through the online simulation. The beam velocity spread of thermal
emission with instant temperature and surface roughness are also considered. The validation is done
in a W-band gyro-TWT, and the beam performance is evaluated in the experiment. With a pitch
factor of 1.06 electron beam, the velocity spread affected by the electric-magnetic mismatch, thermal
emission, and roughness is 1.00%, 0.56%, and 0.43%, respectively. The other beam parameters are
also presented in the developed module. The OEM could guide and accelerate the testing process
and ensure the safe and stable operation of the device.

Keywords: gyro-TWT; MIG; online evaluation module; electron beam status

1. Introduction

The gyro-devices are the primary high-power source in the millimeter-wave band. It
is widely used in plasma heating, high-resolution imaging radar, 5G/6G communication,
and advanced spectroscopic techniques [1–4].

The MIG is the crucial component of the gyro-devices, which provides the helical
electron beam for the beam-wave interaction. The various types of MIG are investigated by
many research institutes. At Karlsruhe Institution of Technology (KIT), series triode MIGs
are utilized in the 170 GHz, 2 MW coaxial cavity gyrotron [5–8]. At the Institute of Applied
Physics, Russian Academy of Sciences (IAP-RAS), the cusp gun is applied in the Ka-band [9]
and W-band [10] helically corrugated waveguide gyro-TWT. A W-band gyro-TWT with
a continuous-wave power of 3 kW, a gain of 54 dB, and a bandwidth of 2.5 GHz were
reported. The University of California Davis (UC Davis) has developed the gyro-TWTs
with the single or double anode MIG cover X-band [11], Ku-band [12], and W-band [13].
The preliminary test of the W-band gyro-TWT obtained an output power of 140 kW, a
gain of 60 dB, an efficiency of 22%, and a bandwidth of 2.2 GHz. The Communication
Power Industries (CPI) has developed a W-band gyro-TWT with a double anode MIG that
demonstrates a peak power of 2 kW at 40% duty cycle and bandwidth of 6.5 GHz [14,15].
At Beijing Vacuum Electronics Research Institute (BVERI), a W-band TE02 mode gyro-TWT
with a triode MIG achieved a peak power of 60 kW, a bandwidth of 8 GHz, and a saturated
gain of 32 dB under the 1% duty cycle [16]. At the University of Electronic Science and
Technology of China (UESTC), triode and diode MIGs are developed and applied to the
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gyro-TWTs covering X [17], Ku [18], Ka [19], Q [20], W [21,22], and G bands [23]. A W-band
gyro-TWT with a high duty cycle of 40% and a long pulse width of 2 ms, measured a
maximum average power of 20.1 kW. The bandwidth over 10 kW is from 94 GHz to 98 GHz
except at the point of 96.5 GHz.

Numerous articles have also reported experimental measurements pertaining to beam
characteristics such as the beam pitch factor α, transverse velocity spread ∆β⊥, stability,
and concentricity. UC Davis has introduced an axial energy beam analyzer to test α and
axial velocity spread in the gyro-TWT [24]. At IAP-RAS, investigations into the velocity
spread and the oscillatory energy of trapped electrons have been conducted, with results
indicating a significant impact on beam parameters [25]. Trapped electron mechanisms and
emission inhomogeneity are studied at KIT, where experimental results suggest a correlation
between gyrotron performance and the presence of trapped electrons [26–28]. Massachusetts
Institute of Technology (MIT) explored low-frequency oscillation in a 1.5 MW, 110 GHz
gyrotron, measuring oscillations in the range of 165–180 MHz with a capacitive probe [29].
At Huazhong University of Science and Technology (HUST), an 800 GHz gyrotron proto-
type with a sapphire window was developed to examine the correlation between misalign-
ment and beam trajectory. The blue-violet spot resulting from the beam bombardment on the
sapphire serves allows measurement of the beam’s tilt angle and displacement distance [30].
To the authors’ knowledge, there are presently no reports on real-time online evaluation
systems for beam status due to the complex operating environment of the gyro-devices, char-
acterized by high vacuum, high voltage, and high magnetic fields. The currently reported
methods for measuring beam performance are all based on experimental data obtained in
prototype tubes, and the associated devices are relatively expensive and time-consuming.

Due to gyro-TWT processing and assembly errors, the MIG operates under inappropri-
ate parameters, causing the beam state in the experiments to deviate from the simulation.
The discrepancy can significantly impact device performance. (1) In high-frequency gyro-
TWTs, especially those in the W-band and above, undesirable magnetic field distributions
can induce substantial changes in beam pitch factor, velocity spread, and beam guide
radius R0. (2) Given the thermal cathode structure adopted by the gyro-TWT, an irrational
temperature distribution leads to the generation of ionized or sideband-emitted electrons.
(3) Excessive cathode surface roughness contributes to an increased velocity spread. Moreover,
operating parameters are scanned to identify optimal conditions in previous experiments.

In our group of UESTC, a previously developed automatic test system (ATS) for
gyro-TWT [31,32], has proven effective in accomplishing automatic data acquisition during
high average/continuous-wave power operation experiments. To enhance the perfor-
mance and testing efficiency of the gyro-TWT, a beam status online evaluation module
(OEM) technology is built upon the ATS. (1) A comprehensive discussion on the impact of
electric-magnetic field mismatch, thermal emission spread, and surface roughness emis-
sion spread on beam status is conducted, aligning the simulation data more consistently
with experimental results. (2) The MIG is remodeled with actual conditions, enabling
real-time acquisition of beam status information through the OEM. Utilizing feedback on
beam state, external factors affecting beam quality, such as compensation magnetic field,
SCM concentricity, and gyro-TWT position, are further adjusted to quickly reach the best
performance. (3) A visualization interface is proposed based on the analysis. The OEM
technology is validated in a W-band gyro-TWT, and experimental results indicate that the
device operates stably for a long time under high power conditions. In comparison with
existing testing methods, the proposed OEM technique can calculate the beam quality of
the gyro-TWT under various operating conditions in real-time. Furthermore, the OEM
technique is universally applicable to all dielectric-loaded gyro-TWTs developed by our
group and has undergone experimental verification across the X-band to G-band [17–23].

2. Building of Online Evaluated Module

The schematic of the dielectric-loaded gyro-TWT with a single anode MIG is shown
in Figure 1. The gyro-TWT mainly consists of the MIG, RF circuit, collector, input and
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output system. The magnetic field consisting of a super-conducting magnet (SCM) and
compensation coil (CC) guides the helical electron movement. The helical beam is emitted
from the cathode and passes through the acceleration and adiabatic compression ranges in
the MIG. Then, the beam is transmitted to the RF circuit to interact with the microwave and
finally recovered by the collector. The compensation coil is applied to adjust the magnetic
field at the cathode to control the final α.
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Figure 1. (a) Magnetic field distribution consists of SCM and CC. (b) Schematic configuration of the
dielectric-loaded gyro-TWT.

The transverse velocity of the electron at the interaction region β⊥ can be roughly
estimated by Equation (1) [33].

β⊥ ≈
1
γ

√
Fm

Ec cos θc

Bc
(1)

Here γ is the relativistic factor, θc is the emission angle, which is determined by the
distribution of the electric and magnetic fields. Fm is the magnetic compression ratio. Ec
and Bc are the electric and magnetic fields at the emitter, respectively. The detailed status
and trajectory of the beam can be calculated by electron optics software EGUN V3.799.

The factors influencing the velocity spread in the experiment can be classified into three
types which are static electric and magnetic field mismatch (∆β⊥)mis, surface roughness
(∆β⊥)rough, and thermal emission spread (∆β⊥)thermal. The total transverse spread ∆β⊥ can
be evaluated by Equation (2) [33].

∆β⊥ =
√
(∆β⊥)mis

2 + (∆β⊥)rough
2 + (∆β⊥)thermal

2 (2)

The (∆β⊥)mis is caused by the Ec and Bc distribution on the cathode and could be
calculated by Equation (3). Here n is the number of electrons. The lower (∆β⊥)mis can
be guaranteed by adjusting the Ec and Bc at the emitter, which could be optimized in the
electron optics design.

(∆β⊥)mis =

√
∑
(

β⊥ − β⊥
)2

/n

β⊥
(3)

However, the other two mechanisms are not considered during the electron trajectory
analysis. They can be evaluated by Equations (4) and (5) [34].

(∆β⊥)thermal =
1

β⊥

√
kTcFm

γm0
(4)
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(∆β⊥)rough =
0.4
β⊥

√
2eEcRaFm

γm0
(5)

Here e and m0 are the electron charge and mass. Tc is the emitter temperature, and k is
the Boltzmann constant. Ra is the radius hemispherical bump on the cathode surface.

The experimental test system setup of gyro-TWT is shown in Figure 2. The testing
process and parameters related to MIG are discussed here. The ATS controls the test
instruments through the programmable logic controller (PLC). (1) The power supply
provides the filament voltage (Vf) and filament current (If), which could heat the cathode.
(2) The voltage on the cathode is V0, then the beam current I0 is emitted. (3) The magnetic
field amplitude is determined by the SCM current (Is) and CC current (It). The relative axial
position between gyro-TWT and SCM (H) is adjusted to change the relative magnetic ratio
for the RF circuit and MIG. (4) The beam obtains a special α at the entrance of the RF circuit,
then interacts with the microwave. The water load is a crucial component of the power
detection device. By monitoring the liquid temperature, the output power of the gyro-TWT
can be calculated. The frequency was measured by the spectrometer. The optimal output
status of the gyro-TWT will be achieved by sweeping parameters like H, V0, I0, and Bz.
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Figure 2. The experimental testing system. 1—Gyro-TWT; 2—Super-conducting magnet; 3—Compensation
coil; 4—Fuel tank of power supply and 5—MIG.

The deviated parameter from the MIG design can lead to an unknown beam status.
So, the beam status is necessary to be evaluated to guide the test. In the experiment, the
gyro-TWT is tested under the control of ATS, the experimental data such as beam voltage,
beam current, and magnetic field are automatically acquired by the ATS and stored in the
database. Then, combined with the data, such as temperature, and fabrication size of MIG,
measured before assembly, the beam status of MIG is calculated by OEM. The specific
implementation details of OEM technology are discussed below.

As shown in Figure 3, when the testing status changes, the OEM reads the operating
parameters and then simulates and calculates the new beam status. (1) The electric and
magnetic fields for the operating MIG are rebuilt according to instant operating parameters.
Then, the trajectory is quickly simulated by the electron optics software. The beam status,
such as α, (∆β⊥)mis, R0, is evaluated. (2) The instant Tc is evaluated, and (∆β⊥)thermal is
calculated. (3) Read the roughness data and calculate (∆β⊥)rough. Finally, the beam status is
online feedback and presented to the tester. The results calculated by OEM can represent
the actual beam status in the experiment. With reference to the assessed beam quality,
adjustments to input parameters, such as H, V0, I0, and Bz, are made to further enhance the
device’s performance while ensuring safe operation.
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Figure 3. Schematic of beam performance OEM.

Due to the requirement for quick feedback, some complex experimental statuses are
simplified in OEM. (1) The 2D electric optics software is utilized. The axisymmetric mis-
alignment induced by installation between gyro-TWT and SCM is ignored. (2) The trapped
electron from magnetic adiabatic compression is considered, but those from ionization and
secondary electrons are neglected. Although the above effects on electron performance
are not considered, it has little effect on the status of the main electron beam. The evalua-
tion could also support the optimal status searching of gyro-TWT in the experiment. The
detailed process is discussed below.

2.1. Online Trajectory Simulation and Evaluation

The online electron trajectory simulation is realized based on the electron optics
software EGUN. The trajectory simulation needs the MIG geometry, operating electric
parameters, and magnetic field distribution. The OEM communicates with the testing
system and instantly achieves related data, such as the fabrication data, V0, I0, Is, It, and H.

The detailed online simulation and evaluation process of the beam status is shown in
Figure 4. First, the MIG geometry is updated based on the fabrication error of each part
and axial deviation in the assembly. Then, it is transferred to the simulation input files.

Second, the actual operating V0 and I0 fluctuate over time. The instantaneous values
of those parameters are applied in the online simulation.

Third, the magnetic field distribution is determined by the SCM and CC, as shown in
Figure 1a. Is and It is the current of SCM and CC. The operating distribution is the linear
combination of these two coils and could be calculated by Equation (6). Here Bs(z) and Bt(z)
are the normalized magnetic distribution of SCM and CC.

B(z) = Is × Bs(z) + It × Bt(z) (6)

Then, we need to confirm the Bc of MIG. The magnet plant is set as the base point.
The gyro-TWT will axially displace to adjust the magnetic field of the RF circuit or MIG.
The cathode position in the magnetic field also varies. The cathode coordinate zc could be
calculated by Equation (7).

zc = H − ∆z (7)
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∆z is the distance from the beam emitting strip of the cathode to the gyro-TWT
reference point. And the magnetic compression ratio Fm could be calculated by Equation (8).
Then, the cathode coordinate is confirmed in the magnetic field.

Fm =
max(B(z))

B(zc)
(8)

After all of the above data is written to the input files, the trajectory simulation
automatically runs. After several seconds, the electron trajectory is given, as shown in
Figure 5. The instant beam parameters such as α, (∆β⊥)mis, R0, and Larmor radius (RL) can
be calculated.
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Figure 5. Online simulation for beam trajectory.

The developed online evaluation process was utilized and validated in a W-band gyro-
TWT experiment. Figure 6a gives the beam status variation in testing by online simulation.
The changing of V0, I0, It, Fm, α, (∆β⊥)mis, and peak output power (Pout) are presented. V0,
I0, and It were read from the testing system instantly. Pout and spectrum were measured by
a high-power water load and spectrometer, respectively. Fm, α, (∆β⊥)mis are calculated by
the OEM.
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At Stage 1, V0 was applied gradually to the MIG, leading to a concurrent increase
in both I0 and α. Upon reaching Stage 2, V0 and I0 attained the designated working
values, with an evaluated α of about 1.11 and a measured Pout of 122 kW. The gyro-TWT
operated stably, and the spectrum of the output signal was pure, as depicted in Figure 6b.
Moving to Stage 3 involves adjusting It to modify Fm, causing a reduction in α to 1.05.
Correspondingly, Pout decreased to 108 kW. At stage 4, α was further diminished to 1.0,
leading to a rapid reduction in Pout to 47 kW. However, at stage 5, due to the increase in
compensation current, the beam pitch factor increases, resulting in oscillations and power
degradation. The corresponding oscillation frequency was noted to be at 85.1 GHz, as
shown in Figure 6c. The realization of online beam status evaluation in the experiment
enhances the transparency and safety of the testing process. It should be noted that the
beam–wave interaction status of the gyro-TWT is not at the optimal frequency point for
testing the evaluation module.
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2.2. Thermal Emission Spread Evaluation

A thermal cathode structure is employed in the gyro-TWT, and the beam quality was
influenced by the temperature distribution of the cathode, as mentioned in Equation (4). An
inhomogeneous temperature distribution on the cathode surface can give rise to phenomena
such as sideband electron emission, making the device unable to operate stably. The
emitter operating temperature Tc is about 1050 ◦C. However, the actual Tc was hard to
detect because of the vacuum environment and high voltage in an enclosure MIG. The
temperature evaluation method by heating power (Pheat) is utilized. The detailed process
flow is shown in Figure 7. The relationship between Tc and Pheat was simulated and stored
in the database. Then, according to the instant Vf and If, Tc was evaluated. Finally, the
(∆β⊥)thermal was calculated.
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Before the assembly of the MIG into the gyro-TWT, thermal analysis and temperature
distribution tests are conducted on the cathode, as shown in Figure 8. Utilizing a reasonable
filament winding method, an obvious temperature gradient was established between the
emitter and the rear and front electrodes. Tc reaches 1043 ◦C when Pheat is 22.5 W in the
simulation. The temperature difference between the front and rear electrodes is 130 ◦C and
337 ◦C, respectively. The fabricated cathode was enveloped in the glass shield and heated,
as shown in Figure 8b. The temperature was measured using an infrared thermometer, and
the simulated and measured temperature deviations are shown in Figure 8c. The results
indicate that the temperature deviation at each point is less than 0.6%.
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The relationship between Tc and Pheat is shown in Figure 9. Tc higher than 850 ◦C is
recorded in the experiment because of the measuring range of the infrared thermometer.
The measurement result matches well with the simulation, and the maximum deviation is
about 5% at 1200 ◦C. The Tc–Pheat curve is stored in the database and employed to evaluate
the operating Tc in testing.
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The fundamental principle of filament heating is shown in Figure 10. Here, Rf repre-
sents the filament resistance, which is influenced by Tc. R1 denotes the contact resistance
induced by the assembly and is measured before testing. During MIG operation, Vf and
If are loaded, and the effective Pheat can be estimated by Equation (9). Subsequently, the
operating Tc can be evaluated through the Tc–Pheat curve. Through a synergistic approach
involving both experimentation and simulation, the emitter temperature was estimated
quickly based on the filament heating power.

Pheat = I f ·Vf − I f
2 · R1 (9)
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Figure 10. Equivalent thermal circuit of cathode heating.

Tc evaluation is validated in the W-band MIG. The measured R1 is about 0.03 Ω. In
Figure 11, the instant Tc is calculated as the heating power increases. When Pheat is 22.6 W,
Tc reaches 1047 ◦C. Then, the instant (∆β⊥)thermal could be calculated using 4. Here, Fm, γ
and β⊥ are read from the synchronized trajectory simulation.
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2.3. Roughness Spread Evaluation

(∆β⊥)rough depends on the surface roughness Ra in the fabrication process, and the
evaluation process is shown in Figure 12a. The surface roughness of various cathodes
has been measured prior to assembly and stored in the database. An emitter sample was
measured by an Atomic Force Microscope (AFM), as shown in Figure 12b. Ra was about
23 nm for this cathode type under the current fabrication process. Ra is stored in the OEM,
and the instant (∆β⊥)rough is calculated using 5. The rest of the parameters are also read
from the synchronized trajectory simulation.
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Finally, the total beam velocity spread ∆β⊥ was calculated using 2. After the entire
electron beam parameters are evaluated, the results are fed back and presented to the user
interface. It could guide the optimal testing process and make it more scientific.

3. Evaluation of Experiment

To validate the feasibility of the OEM technology in the context of the W-band gyro-
TWT, a test platform is established, and the OEM is integrated into the system, as shown in
Figure 13. The system consists of the testing controlling platform, PLC, testing instruments,
and gyro-TWT. The controlling platform sends the test order to the instruments through
PLC. Then, the electric parameters and input signal are applied to the gyro-TWT. The OEM
is deployed on the testing controlling platform.
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After considering the impact of electric-magnetic field mismatch, thermal emission
spread, and surface roughness emission spread on the beam status, a visualization interface
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for gyro-TWTs testing is proposed, as shown in Figure 14. The operating parameters of
MIG are obtained from the testing system. Subsequently, online evaluation is conducted,
and the results are presented in the left area. The test duration for gyro-TWTs in our group
typically exceeds one hour, and the evaluation results experience only a minimal delay of
about 8 s due to trajectory simulation. This delay is acceptable for real-time results. The
W-band gyro-TWT is driven by a 59.8 kV-10.4 A electron beam with a B0 of 3.61 T and an
Fm of 17.1. The operating Tc is ~965 ◦C. The corresponding α is 1.06, with velocity spread
of (∆β⊥)mis, (∆β⊥)thermal, and (∆β⊥)rough at 1.00%, 0.56%, and 0.43%, respectively. The total
∆β⊥ is 1.23%. The guide center radius R0 is about 1.00 mm, while the maximum beam
radius is 1.29 mm. The beam status varies with the time presented in the right area. It
indicates the beam status could be instantly evaluated when adjusting the MIG parameters
such as Fm, and I0, α.
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The accuracy of OEM technology can be further improved by taking into account the
influence of other factors. First, (1) the axial misalignment from fabrication and assembly
is ignored due to the 2D trajectory simulation. Then, (2) the emission inhomogeneity and
side-band emission are also neglected. The actual velocity spread and the maximum beam
radius are larger than the evaluated result. Next, (3) if the low-frequency oscillation occurs,
the backstream bombardment electron heats the cathode. The evaluated temperature is
inaccurate. A novel method of measuring filament resistance by varying temperatures will
be considered in the future to improve accuracy. Finally, (4) the surface roughness of the
emitter will deteriorate after a long operation due to the ionization and backstream electron
bombarding the cathode. The estimated roughness spread is smaller than the actual value.

Despite the above limitations, the OEM technology also provides useful instant elec-
tron beam information in operation, which guides the testing of the gyro-TWTs. First, the
gyro-TWT is often designed to operate in an extensive range of voltage (45~60 kV) and
current (3~10 A) for different applications. A significant margin adjustment may lead to an
unwanted velocity ratio or electron trapping. The OEM presents the instant beam status,
which could ensure the MIG operates in a reasonable scope. Second, the instant information
on the velocity ratio and radial distance between the electron position and the center of
the waveguide could help investigate the interaction oscillation and accelerate the testing
process. Third, the OEM could compare the MIG status for different gyro-TWTs in different
testing systems. This technology supports the testing of high-performance gyro-TWTs in
several frequency bands [18,20,22].
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4. Conclusions

An online evaluation module for helical electron beam status is developed. The
instant operating parameters for MIG are achieved from the testing system. The geometry
and magnetic field are rebuilt and connected according to the corresponding parameters
to realize the online trajectory simulation. The electron beam status is calculated after
the online trajectory simulation. The velocity spread considering thermal emission and
surface roughness is also evaluated. The OEM has been validated in a W-band gyro-TWT
experiment. The evaluated α is 1.08, R0 is 1.00 mm, three-velocity-spread of (∆β⊥)mis,
(∆β⊥)thermal, and (∆β⊥)rough is 1.00%, 0.56%, and 0.43%, respectively. And the calculated
total ∆β⊥ is 1.23%. Instant electron status evaluation could guide and accelerate the testing
process. And the OEM is already utilized in a series of gyro-TWTs testing.
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