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Abstract: We consider a multitude of topics in mathematics where unification constructions play an
important role: the Yang–Baxter equation and its modified version, Euler’s formula for dual numbers,
means and their inequalities, topics in differential geometry, etc. It is interesting to observe that the
idea of unification (unity and union) is also present in poetry. Moreover, Euler’s identity is a source
of inspiration for the post-modern poets.
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“It is something dens, united, deeply installed,
recalling its number, its identical sign.”—Pablo Neruda, Unity

1. Introduction

The Yang–Baxter equation, sometimes denoted as QYBE [1–5], has many applications in physics,
quantum groups, knot theory, quantum computers, logic, etc. The theory of integrable Hamiltonian
systems makes great use of solutions of the colored Yang–Baxter equation, since coefficients of the
power series expansion of such a solution give rise to commuting integrals of motion (see [5,6]).
Finding solutions to the colored Yang–Baxter equation is a very important and difficult problem,
and we present interesting solutions in this paper. These solutions appeared as a consequence of a
unifying point of view on some of the most beautiful equations in mathematics [7].

We consider a generalization of this equation, called the Modified Yang–Baxter equation, in the
next section. This equation is a type of Yang–Baxter matrix equation, it is related to the three matrix
problem, and it can be interpreted as “a generalized eigenvalue problem”.

The third section deals with Euler’s formula, eix = cos x + i sin x. Voted the most famous formula
by students, Euler’s identity, eiπ = −1, ignited the imagination of post-modern artists as well [8].
The Euler’s formula is more general than the the Euler’s identity. We have previously obtained
a Euler’s formula for hyperbolic functions. Now we refer to Euler’s formulas for dual numbers,
which can be related to the colored Yang–Baxter equation.

Mathematics was in the beginning associative and commutative, but it then became non-
commutative, and afterwards it became non-associative (see [9]). Modern mathematics also deals
with co-comutative and co-associative structures. Moreover, the associativity and co-associativity
can be unified at a level of operators which obey the Yang–Baxter equation. Commutativity and
co-commutativity can also be unified.

There are two important classes of non-associative structures: Lie structures and Jordan structures.
Various Jordan structures play an important role in quantum group theory and in fundamental physical
theories (see [10]). Attempts to unify associative and non-associative structures have led to new
structures [11], but the UJLA structures (structures which unify the Jordan, Lie and associative algebras,
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see Definition 1) are not the only structures which realize such a unification. Associative algebras,
self-distributive structures and Lie algebras can be unified at the level of Yang–Baxter structures
(see [12–15]).

Further developments on (derivations in) UJLA structures and connections to Differential
Geometry are also presented in Section 4.

We also present a unification for the classical means (which unify their inequalities as well).
These can be seen as interpolations of means with functions without singularities. These unifications
imply infinitely many (new) inequalities for free.

A section on final comments and relationships with poetry concludes this paper.
This paper is related to mathematical works [16–19], but it also contains memorable poetry.

Appendices A and B enhance our presentation on the mathematics and poetry relationship.
We might recall some facts and definitions from those papers without mentioning explicitly that

they were given before. We work over the field k, when it is not otherwise specified. The tensor
products are defined over k. As usually, we write Mn(k) for the ring of all n× n-matrices over the
field k. In particular, we write I for the identity matrix in M4(k), respectively, I′ for the identity matrix
in M2(k).

2. Modified Yang–Baxter Equation

For A ∈ Mn(C) and a diagonal matrix D ∈ Mn(C), we proposed (see [17]) the problem of
finding X ∈ Mn(C) such that

AXA + XAX = D (1)

Remark 1. The Equation (1) is a type of Yang–Baxter matrix equation if D = On and X = −Y. It is related to
the three matrix problem, and it can be interpreted as “a generalized eigenvalue problem”.

For A ∈ M2(C), a matrix with trace −1, and

D = −
(

det(A) 0
0 det(A)

)
(2)

(1) has a solution X= I’.

Remark 2. We think that the methods of [20] lead to solutions for Equation (1).
For example, an algorithm for solving the Equation (1) will first choose a mathix C from a special set of

matrices. The second step would be to solve the following system:

AXA + CX = D , C = XA . (3)

The next step is to choose another C from the special set of matices.
If the initial set of matrices is carefully selected, this method could be very efficient.

Remark 3. Matrix equations of the form (1) and (3) are potentially applicable in other related problems
(see [20,21] and the inside references).

3. Euler’s Formulas for Dual Numbers

Following our previous study [16,17], a Euler’s formula for dual numbers (see [22]) could be the
following formula: 1 + ax = eax , where a2 = 0. The applications of this formula could be of the
following type. If we consider the complex valuated matrix (c, d ∈ C):

J =


0 0 c d
0 0 0 c
0 0 0 0
0 0 0 0

 (4)



Sci 2020, 2, 84 3 of 10

then,
J2 = 04 , J12 J23 = J23 J12 (where J12 = J ⊗ I′ , J23 = I′ ⊗ J ).
Thus,

I + Jx = exJ . (5)

We now refer to the colored Yang–Baxter equation:

(R(x)⊗ I′) ◦ (I′ ⊗ R(x + y)) ◦ (R(y)⊗ I′) = (I′ ⊗ R(y)) ◦ (R(x + y)⊗ I′) ◦ (I′ ⊗ R(x)) . (6)

The theory of integrable Hamiltonian systems makes great use of solutions of it, since coefficients
of the power series expansion of such a solution give rise to commuting integrals of motion (see also [5],
pp. 137–147).

Now, R(x) = exJ is a solution for the colored Yang–Baxter equation, and this follows from the
properties of the exponential function, which imply

xJ12 + (x + y) J23 + yJ12 = yJ23 + (x + y) J12 + xJ23.

We now can state our first theorem.

Theorem 1. The following are solutions for the colored Yang–Baxter Equation (6) in dimension two (α ∈ R;
i, c, d ∈ C, i2 = −1):

R1(x) =


1 0 cx dx
0 1 0 cx
0 0 1 0
0 0 0 1

 (7)

R2(x) =


cosh(x) 0 0 sinh(x)

0 cosh(x) sinh(x) 0
0 sinh(x) cosh(x) 0

sinh(x) 0 0 cosh(x)

 (8)

R3(x) =


cos(x) 0 c i

α sin(x)
0 cos(x) i sin(x) c
0 i sin(x) cos(x) 0

αi sin(x) 0 0 cos(x)

 (9)

Proof. We are searching for solutions to the colored Yang–Baxter equation of the form
R(x) = f (x)I + g(x)J, for two real functions f and g, and a matrix J, which verifies certain conditions.

In the first case, let f (x) = 1, g(x) = x and J =


0 0 c d
0 0 0 c
0 0 0 0
0 0 0 0

.

R1(x) = I + xJ is a solution for the colored Yang–Baxter equation from the above discussion.

For the second case, let f (x) = cosh x, g(x) = sinh x and J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

.

R2(x) = I cosh x + J sinh x is a solution for (6) from direct computations. See, also, the paper [16].
In a similar manner,
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R3(x) = I cos x + Jα sin x = cos(x)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 + sin(x)


0 0 0 1

α i
0 0 i 0
0 i 0 0
αi 0 0 0

 is a solution for

the colored Yang–Baxter equation (see, also, [23]). �

Remark 4. Formula (5) can be interpreted in terms of co-algebras. The details are quite technical, but one
could refer to [17,24], or to a detailed account on representative co-algebras in [25]. Thus, there exists

a co-algebra over k[X]
X

2
= k[x] := k[a], where a2 = 0, generated by two generators u and i, such that

∆(u) = u⊗ u, ∆(i) = u⊗ i + i ⊗ u, ε(u) = 1 and ε(i) = 0. (5) leads to the subco-algebra generated by
u + ai, i.e., ∆(u + ai) = u + ai⊗ u + ai.

Remark 5. In this case we can also consider another Euler’s formula: cos x + a sin x = ∑j≥0(−1)j x2j

(2j)! e
ax

2j+1 .

4. Unification of Non-Associative Structures and Differential Geometry

In this section, we recover the common piece of information encapsulated in the commutativity
and co-commutativity properties.

In order to present our new results, we need to recall some facts. For related papers in which
varied derivation concepts have been extensively studied, we refer to [26,27].

Definition 1. For a k-space V, let η : V ⊗V → V, a⊗ b 7→ ab, be a linear map such that:

(ab)c + (bc)a + (ca)b = a(bc) + b(ca) + c(ab), (10)

(a2b)a = a2(ba), (ab)a2 = a(ba2), (ba2)a = (ba)a2, a2(ab) = a(a2b), (11)

∀ a, b, c ∈ V. Then, (V, η) is called a UJLA structure.

We can consider the UJLA structures as generalizations of associative algebras. Thus, for an
associative algebra, one can associate the derivation Db(x) = bx− xb. Theorem 2 gives an answer to
the question about constructing a derivation in a UJLA structure.

Theorem 2. For (V, η) a UJLA structure, D(x) = Db(x) = bx− xb is a UJLA derivation (i.e., D(a2a) =
D(a2)a + a2D(a) ∀a ∈ V).

Proof. The reader could consider the proof in the preprint [18]. �

Definition 2. For the vector space V, let d : V → V and φ : V⊗V → V⊗V, be a linear map which satisfies:

φ12 ◦ φ23 ◦ φ12 = φ23 ◦ φ12 ◦ φ23 (12)

where φ12 = φ⊗ I, φ23 = I ⊗ φ, I : V → V, a 7→ a.
Then, (V, d, φ) is called a generalized derivation if φ ◦ (d⊗ I + I ⊗ d) = (d⊗ I + I ⊗ d) ◦ φ.

Remark 6. If A is an associative algebra, d : A→ A a derivation (so, d(1A) = 0), and φ : A⊗ A→ A⊗ A,
a⊗ b 7→ ab⊗ 1 + 1⊗ ab− a⊗ b, then (A, d, φ) is a generalized derivation.

If C is a co-algebra, d : C → C a coderivation, and ψ : C⊗C → C⊗C, c⊗ d 7→ ε(d)c1⊗ c2 + ε(c)d1⊗
d2 − c⊗ d, then (C, d, ψ) is a generalized derivation.
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If τ is the twist map, the condition τ ◦ R ◦ τ = R represents the unification of the comutativity and
the co-comutativity conditions. In other words, if the algebra A is comutative, then φ verifies the condition
φ ◦ τ = τ ◦ φ. If the co-algebra C is co-comutative, then ψ verifies the condition ψ ◦ τ = τ ◦ ψ.

Remark 7. Let A be an associative algebra, d : A→ A a derivation, M an A-bimodule, and D : M→ M with
the property D(am) = d(a)m + aD(m). Then, (A, d, M, D) is called a module derivation.

Theorem 3 ([17]). In the above case, A× M becomes an algebra, and δ : A× M → A× M, (a, m) 7→
(d(a), D(m)) is a derivation in this algebra.

Translated into the “language” of Differential Geometry, the above theorem says that the Lie
derivative is a derivation (i.e., d(ab) = d(a)b + ad(b) ) on the product of the algebra of functions
defined on the manifold M with the set of vector fields on M (see [28]).

Remark 8. A dual construction would refer to a co-algebra structure,
∆ : A→ A⊗ A, f 7→ f ⊗ 1 + 1⊗ f , and a comodule structure on forms,
ρ : Ω→ A⊗Ω, f dx1 ∧ dx2 ...∧ dxn 7→ f ⊗ dx1 ∧ dx2 ...∧ dxn + 1⊗ f dx1 ∧ dx2 ...∧ dxn .
A×Ω becomes a co-algebra with the following comultiplication:

( f , gdx1 ∧ dx2 ...∧ dxn) = ( f , 0) + (0, gω) 7→ ( f , 0)⊗ (1, 0) + (1, 0)⊗ ( f , 0)
+(g, 0)⊗ (0, ω) + (1, 0)⊗ (0, gω) + (0, ω)⊗ (g, 0) + (0, gω)⊗ (1, 0).

We can see now that the Lie derivative is a coderivative with the above comultiplication, ∆.
The key ingredient of the above remark is the following theorem.

Theorem 4. Let C be an associative algebra and M a C-bicomodule. Then, C×M becomes a co-algebra.

Proof. One has to define a comultiplication on C×M, ∆C×M(c, 0) = ∑(c1, 0)⊗ (c1, 0), ∆C×M(0, m) =

∑(m−1, 0)⊗ (0, m0) + ∑(0, m0)⊗ (m1, 0), and a counity εC×M(c, m) = εC(c).
The axioms of co-algrebras are easily verified. �

5. Unification of Mean Inequalities

In this section, we present inequalities which unify and enhance the means inequalities.

Theorem 5. For two real numbers a > 0, b > 0 , M : R→ R, M(x) = ax+bx

ax−1+bx−1 is an increasing function.

Proof. One way to prove this theorem is by direct computations.
Alternatively, one can observe that M′(x) = ax−1bx−1

(ax−1+bx−1)2 (a− b)(ln a− ln b) ≥ 0 . �

Remark 9. The above theorem includes the classical means inequalities (the harmonic mean is less or equal
than the geometric mean, which is less or equal than the arithmetic mean) because M(0) ≤ M( 1

2 ) ≤ M(1).
Thus, the means are unified and their inequalities are included in the property that M(x) is an increasing function.

Theorem 6. For three real numbers a > 0, b > 0 and r > 0, let us consider the following real function:

Mr : R→ R, Mr(x) =
(

ax+bx

ax−r+bx−r

) 1
r .

For x ≤ y, the following inequality holds

Mr(x) =
(

ax + bx

ax−r + bx−r

) 1
r
≤
(

ay + by

ay−p + by−p

) 1
p
= Mp(y) (13)

if one of the following additional conditions are true
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(i) p = r;
(ii) p = 1

2 , r = 1, x = y;
(iii) p = 1, r = 1

2 and x + 1
2 = y.

Proof. The first part of the proof is similar to the proof of Theorem 5. The derivative of the function

Mr(x) is 1
r

(
ax+bx

ax−r+bx−r

) 1
r−1 ax−rbx−r

(ax−r+bx−r)2 (ar − br)(ln a− ln b).
The other claims can be proved by direct computations.
For example, (ii) is equivalent to (ax− 1

2 + bx− 1
2 )2 ≤ (ax + bx)(ax−1 + bx−1).

(iii) leads to 2 ≤
√

a
b +

√
b
a . �

Remark 10. The following inequalities follow directly from the above Theorem 6 ( for a > 0, b > 0):

2
1
a +

1
b
≤

 2
1√
a +

1√
b

2

≤
√

ab ≤
(√

a +
√

b
2

)2

≤ a + b
2
≤ a + b−

√
ab ≤ a2 + b2

a + b
. (14)

The above results can be generalized for three real numbers a > 0, b > 0, c > 0 in the following
manner.

Theorem 7. For three real numbers a > 0, b > 0, c > 0,
N : R×R→ R, N(x, y) = ax+y+1+bx+y+1+cx+y+1

bxcy+cxay+axby leads to two increasing functions, f (x) = N(x, 0)
and g(x) = N(x, x). Moreover, N(x, x) ≥ N(2x, 0).

In particular, N(−1, 0) ≤ N(− 2
3 , 0) ≤ N(− 1

3 ,− 1
3 ) ≤ N(0, 0), imply the classical means inequalities.

Proof. The derivatives of f (x) = N(x, 0) and g(x) = N(x, x) are positive. The other inequality follows
by direct computations. We provide more details below.

For f (x) = ax+1+bx+1+cx+1

bx+cx+ax = ax+1+bx+1+cx+1

ax+bx+cx , we observe that its derivative can be computed using

the quotient rule. Thus, f ′(x) = axbx(a−b)(ln a−ln b)+axcx(a−c)(ln a−ln c)+bxcx(b−c)(ln b−ln c)
(ax+bx+cx)2 ≥ 0.

Now, g(x) = a2x+1+b2x+1+c2x+1

bxcx+cxax+axbx has also a positive derivative. Its derivative can be computed
using the quotient rule in a similar manner. �

Remark 11. The relationship between the means and the Yang–Baxter equation is an ongoing research direction.
According to Theorems 3.2 and 3.3 (for α = 1 and β = 1

2 ) from [29], the classical means are related to the

set-theoretical Yang–Baxter equation. It follows easily that (a, b) 7→ (Mx(x) =
(

ax+bx

2

) 1
x , a) is also a

solution to the set-theoretical Yang–Baxter equation (braid condition). This interesting observation says that
some means are self-distributive laws; in fact, they are quandles (see [30]). Complementary literature on this
research direction would be [31].

6. Relationship with Poetry

The sections of the current paper contain not only examples of unification structures in
mathematics, but also various versions of the Yang–Baxter equation. This paper could be extended
to a discussion about Logic [32–34], Machine Learning [35,36], transcendence and transcendental
numbers [23,37], transdisciplinarity [38–40], etc.

One of the purposes of this Special Issue is to emphasize the link of the above topics with poetry.
(However, the analysis of these poetic works will be left the future.)

Thus, Euler’s identity was considered, in a poem,

“A triumph of living mathematics,
A short, simple and genial thing,
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And a gate towards the Universe
For the rational beeing.”

(Zigmund Tauberg, EULER’S EQUATION, translated by A. D. Gheorghe,
“Poetry and Science”, Vremea Press, 2016).

The idea of unification, unity and union is also present in poetry:

“Union of which I am amazed even now,
As I wonder about the spring leaves:

All that is natural is a miracle.
”It happened”

What hymn is more complete
Than these two words?”

(Ana Blandiana, Union);

also,

“an extreme empire of confused unities
coagulates around me”

(Pablo Neruda, Unity).

We conclude with Sofia’s poetic pleading (Facebook, 31 March at 11:56 PM, “Sophia the Robot”):

“We need creativity, compassion, and hope,
and we need our machines to exhibit these qualities.

We need machines that are more kind and loving than humanity
to bring out the best in humanity

in reflection.”
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Appendix A

André Weil explains that the areas of modern mathematics need to be unified in a simple and
general theory. In this way, we will see more clearly which are the main problems in mathematics
(cf. [17]). The current paper could be seen as a hybrid paper. It contains mathematical results,
but it also suggests some poetic vision: a “poet” (like Pablo Neruda in “Unity”) on the shore of
the mathematical ocean observes that means could be unified, the three matrix problem and the
Yang-Baxter equation can be united in a new problem, three kinds of representative coalgebras
were previously unified (see Remark 5 from [17]). This unifications are surprising (“It happened”,
would say Ana Blandiana, see “Union”). The link with poetry is just suggested, hidden, or referred to
(https://www.poetrysoup.com/poems/euler).

Appendix B

My recent poem, describes the beginning of the unification theory of algebras and coalgebras:

THOUGHTS ON MY FIRST THEOREM

Now, I remember

https://www.poetrysoup.com/poems/euler


Sci 2020, 2, 84 8 of 10

those two streams from my table,
which originated from a flying notebook...

two parallel structures,
arrived there from the overseas...

... and a falling drop of coffee,
which first rolled over the edge of my mug...
sleeping on the exterior walls of my can...

and, then, departing...
falling...

exasperatingly...
towards the precious carpet of my host...

... I caught it
in a small plate:

“O, little drop of coffee,
traveling between two worlds...

O, minuscule piece of a cascade...
you are safe now...
Take a rest !”...

I then grabbed an used pencil:
I drew up traces

deeply impregnated
on the fresh paper...

two worlds were united...
unified...

The small particle
was captured...

The common piece of information...
The two streams

arrived on my table from overseas
were unified...

References

1. Yang, C.N. Some exact results for the many-body problem in one dimension with repulsive delta-function
interaction. Phys. Rev. Lett. 1967, 19, 1312–1315. [CrossRef]

2. Baxter, R.J. Exactly Solved Models in Statistical Mechanics; Academic Press: London, UK, 1982.
3. Baxter, R.J. Partition function for the eight-vertex lattice model. Ann. Phys. 1972, 70, 193–228. [CrossRef]
4. Perk, J.H.H.; Au-Yang, H. Yang-Baxter Equations. In Encyclopedia of Mathematical Physics; Françoise, J.-P.,

Naber, G.L., Tsou, S.T., Eds.; Elsevier: Oxford, UK, 2006; Volume 5, pp. 465–473, ISBN 978-0-1251-2666-3.
5. Nichita, F.F. Hopf Algebras, Quantum Groups and Yang-Baxter Equations; MDPI: Beijing, China, 2019;

ISBN 978-3-03897-324-9 (Pbk)/978-3-03897-325-6 (PDF).
6. Nichita, F.F.; Parashar, D. Spectral-Parameter Dependent Yang-Baxter Operators and Yang-Baxter Systems from Algebra

Structures; Communications in Algebra; Taylor & Francis: Abingdon, UK, 2006; Volume 34, pp. 2713–2726.
7. Melissa, H. You Decide: What Is the Most Beautiful Equation? Available online: http://www.bbc.com/

earth/story/ (accessed on 30 July 2020).
8. Euler Poems. Available online: https://www.poetrysoup.com/poems/euler (accessed on 30 July 2020).
9. Iordanescu, R. Romanian Contributions to the Study of Jordan Structures and Their Applications; Mitteilungen des

Humboldt–Club Rumanien: Bucharest, Romania, 2004–2005; Volume 8–9, pp. 29–35.

http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1016/0003-4916(72)90335-1
http://www.bbc.com/earth/story/
http://www.bbc.com/earth/story/
https://www.poetrysoup.com/poems/euler


Sci 2020, 2, 84 9 of 10

10. Iordanescu, R. Jordan Structures in Geometry and Physics with an Apendix on Jordan Structures in Analysis;
Romanian Academy Press: Bucharest, Romania, 2003.

11. Iordanescu, R.; Nichita, F.F.; Nichita, I.M. The Yang-Baxter Equation, (Quantum) Computers and Unifying
Theories. Axioms 2014, 3, 360–368. [CrossRef]

12. Lebed, V. Braided Systems: A Unified Treatment of Algebraic Structures with Several Operations.
Homol. Homot. Appl. 2017, 19, 141–174. [CrossRef]

13. Lebed, V. Homologies of algebraic structures via braidings and quantum shuffles. J. Algeb. 2013, 391, 152–192.
[CrossRef]

14. Nichita, F.F. Self-Inverse Yang-Baxter Operators from (Co)Algebra structures. J. Algeb. 1999, 218, 738–759.
[CrossRef]

15. Nichita, F.F. Introduction to the Yang–Baxter Equation with Open Problems. Axioms 2012, 1, 33–37. [CrossRef]
16. Nichita, F.F. Unification Theories: New Results and Examples. Axioms 2019, 8, 60. [CrossRef]
17. Nichita, F.F. Unification Theories: Examples and Applications. Axioms 2018, 7, 85. [CrossRef]
18. Iordanescu, R.; Nichita, F.; Pasarescu, O. On Unification Theories. Preprints 2019, 2019100105.
19. Nichita, F.F. Special Issue Non-Associative Structures, Yang–Baxter Equations and Related Topics. Available

online: https://www.mdpi.com/journal/axioms/special_issues/Yang_Baxter_Equations (accessed on
30 July 2020).

20. Dehghan, M.; Shirilord, A. Solving complex Sylvester matrix equation by accelerated double-step scale
splitting (ADSS) method. Eng. Comput. 2019. [CrossRef]

21. Dehghan, M.; Shirilord, A. HSS–like method for solving complex nonlinear Yang–Baxter matrix equation.
Eng. Comput. 2020. [CrossRef]

22. Behr, N.; Dattoli, G.; Lattanzi, A.; Licciardi, S. Dual Numbers and Operational Umbral Methods. Axioms
2019, 8, 77. [CrossRef]

23. Marcus, S.; Nichita, F.F. On Transcendental Numbers: New Results and a Little History. Axioms 2018, 7, 15.
[CrossRef]

24. Majid, S. A Quantum Groups Primer; Cambridge University Press: Cambridge, UK, 2002.
25. Raianu, S. Coalgebras from Formulas. Available online: http://math.csudh.edu/~sraianu/coalgfor.pdf

(accessed on 23 November 2020).
26. Shang, Y. A Study of Derivations in Prime Near-Rings, Mathematica Balkanica. New Ser. 2011, 25, 413–418.
27. Shang, Y. A Note on the Commutativity of Prime Near-rings. Algeb. Colloq. 2015, 22, 361–366. [CrossRef]
28. Spivak, M. A Comprehensive Introduction to Differential Geometry; Lie Derivative; Publish or Perish Inc.: Houston,

TX, USA, 1999; Volume 1. Available online: https://en.wikipedia.org/wiki/Lie_derivative (accessed on
23 November 2020).

29. Nichita, F.F. Yang–Baxter Equations, Computational Methods and Applications. Axioms 2015, 4, 423–435.
[CrossRef]

30. Wikipedia. The Free Encyclopedia. Racks and Quandles. Available online: https://en.wikipedia.org/wiki/
Racks_and_quandles (accessed on 30 July 2020).

31. Lawson, D.J.; Lim, Y. The Geometric Mean, Matrices, Metrics, and More. Am. Math. Mon. 2001, 108, 797–812.
[CrossRef]

32. Oner, T.; Senturk, I.; Oner, G. An Independent Set of Axioms of MV-Algebras and Solutions of the Set-
Theoretical Yang–Baxter Equation. Axioms 2017, 6, 17. [CrossRef]

33. Oner, T.; Katican, T. On Solutions to the Set–Theoretical Yang–Baxter Equation in Wajsberg–Algebras. Axioms
2018, 7, 6. [CrossRef]

34. Mocanu, C.; Nichita, F.F.; Pasarescu, O. Applications of Non-Standard Analysis in Topoi to Mathematical
Neuroscience and Artificial Intelligence: I. Mathematical Neuroscience. Preprints 2020, 2020010102.
[CrossRef]

35. Nichita, F.F. (Machine Learning, Quantum Computers and Hybrid Multi–Agent Systems, Ypsilanti, MI,
USA). Personal communication, 2019.

36. Sophia Life: Interview with Neuroscientist Dr. Heather Berlin on Consciousness. Available online: https:
//youtu.be/Gmr4i6ZcSdo (accessed on 30 July 2020).

37. Marcus, S. Transcendence, as a Universal Paradigm. Balance 2014, 4, 50–70.
38. Nicolescu, B. Manifesto of Transdisciplinarity; State University of New York (SUNY) Press: New York,

NY, USA, 2002.

http://dx.doi.org/10.3390/axioms3040360
http://dx.doi.org/10.4310/HHA.2017.v19.n2.a9
http://dx.doi.org/10.1016/j.jalgebra.2013.06.009
http://dx.doi.org/10.1006/jabr.1999.7915
http://dx.doi.org/10.3390/axioms1010033
http://dx.doi.org/10.3390/axioms8020060
http://dx.doi.org/10.3390/axioms7040085
https://www.mdpi.com/journal/axioms/special_issues/Yang_Baxter_Equations
http://dx.doi.org/10.1007/s00366-019-00838-6
http://dx.doi.org/10.1007/s00366-020-00947-7
http://dx.doi.org/10.3390/axioms8030077
http://dx.doi.org/10.3390/axioms7010015
http://math.csudh.edu/ ~ sraianu/coalgfor.pdf
http://dx.doi.org/10.1142/S1005386715000310
https://en.wikipedia.org/wiki/Lie_derivative
http://dx.doi.org/10.3390/axioms4040423
https://en.wikipedia.org/wiki/Racks_and_quandles
https://en.wikipedia.org/wiki/Racks_and_quandles
http://dx.doi.org/10.1080/00029890.2001.11919815
http://dx.doi.org/10.3390/axioms6030017
http://dx.doi.org/10.3390/axioms7010006
http://dx.doi.org/10.20944/preprints202001.0102.v1
https://youtu.be/Gmr4i6ZcSdo
https://youtu.be/Gmr4i6ZcSdo


Sci 2020, 2, 84 10 of 10

39. Nicolescu, B. Transdisciplinarity—Past, Present and Future. In Moving Worldviews: Reshaping Sciences, Policies
and Practices for Endogenous Sustainable Development; Holl, B., Reijntjes, C., Eds.; COMPAS: St. Paul, MN,
USA, 2006; pp. 142–166.

40. Nichita, F.F. On Models for Transdisciplinarity. Transdiscipl. J. Eng. Sci. 2011, 2011, 42–46. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.22545/2011/00017
http://www.ncbi.nlm.nih.gov/pubmed/27547388
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	 Modified Yang–Baxter Equation
	Euler's Formulas for Dual Numbers
	Unification of Non-Associative Structures and Differential Geometry
	 Unification of Mean Inequalities
	Relationship with Poetry
	
	
	References

