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Abstract: Emotion classification using physiological signals is a promising approach that is likely
to become the most prevalent method. Bio-signals such as those derived from Electrocardiograms
(ECGs) and the Galvanic Skin Response (GSR) are more reliable than facial and voice recognition
signals because they are not influenced by the participant’s subjective perception. However, the
precision of emotion classification with ECG and GSR signals is not satisfactory, and new methods
need to be developed to improve it. In addition, the fusion of the time and frequency features of ECG
and GSR signals should be explored to increase classification accuracy. Therefore, we propose a novel
technique for emotion classification that exploits the early fusion of ECG and GSR features extracted
from data in the AMIGOS database. To validate the performance of the model, we used various
machine learning classifiers, such as Support Vector Machine (SVM), Decision Tree, Random Forest
(RF), and K-Nearest Neighbor (KNN) classifiers. The KNN classifier gives the highest accuracy for
Valence and Arousal, with 69% and 70% for ECG and 96% and 94% for GSR, respectively. The mutual
information technique of feature selection and KNN for classification outperformed the performance
of other classifiers. Interestingly, the classification accuracy for the GSR was higher than for the
ECG, indicating that the GSR is the preferred modality for emotion detection. Moreover, the fusion
of features significantly enhances the accuracy of classification in comparison to the ECG. Overall,
our findings demonstrate that the proposed model based on the multiple modalities is suitable for
classifying emotions.

Keywords: emotion; AMIGOS; ECG; GSR; mutual information; KNN; fusion

1. Introduction

Emotions are brief feelings that help people communicate with others. A human–
computer interaction system can recognize and interpret emotions such as disgust, fear,
happiness, surprise, and sadness. Negative emotions like stress, anger, and fear should
be identified and dealt with using appropriate counseling to maintain societal balance.
Russell’s Circumplex Model categorizes emotions based on the two-dimensional Valence–
Arousal scale. The neutral point is represented by the center, as shown in Figure 1 [1–3].
Valence indicates the pleasantness of emotions, and Arousal indicates the intensity of
emotions. For instance, anger exhibits low Valence and high Arousal (LVHA), while
happiness indicates high Valence and high Arousal (HVHA) [4].

Images and videos are used to trigger emotions, with video clips being more effective
than other methods [5]. Emotions can be detected through speech [6], sentiment [7],
and facial expressions [8]. However, an emerging area of research involves emotion
classification using physiological signals. Biological parameters from the human body
cannot be misinterpreted, making them more reliable [1,9]. Researchers have explored facial
expressions, voice signals, and body gestures for emotion classification. Facial expressions
account for 95% of the research, while only 5% focuses on other parameters [10].
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Biological parameters such as ECG, GSR, Electroencephalograms (EEGs), and respi-
ration rate can be used to detect emotions. However, using invasive respiratory sensors to 
collect data can be uncomfortable for participants [11]. Therefore, the use of non-invasive 
sensors could make the process more comfortable. Advanced sensors can also be used to 
collect data in a way that is less prone to motion [12]. While researchers have explored 
using EEG signals for emotion classification, this method is more suitable for clinical ap-
plications. ECG and GSR signals have been used less frequently for emotion classification 
compared to EEG signals [13]. An ECG records the heart’s electrical movement, while the 
GSR measures the skin’s electrical conductance. The Shimmer instrument detects electri-
cal signals in the heart, while the GSR Shimmer instrument measures skin conductance 
using electrodes attached to the fingers [14]. ECG and GSR signals must be recorded when 
subjects are exposed to emotions in different quadrants of Russell’s model, and emotions 
must be classified appropriately. Standard databases are available for researchers to use 
in their studies [15–18]. However, raw ECG and GSR signals can be noisy and require 
suitable preprocessing techniques. Time and frequency domain features must be extracted 
from ECG and GSR signal recordings to obtain relevant information about different emo-
tions [19]. Further, relevant features must be selected using various feature selection tech-
niques before classification. 

Moreover, fusion techniques can be used for emotion classification. Early feature fu-
sion concatenates features obtained through various modalities before classification. De-
cision-level fusion combines the classifier outputs of individual modalities to obtain the 
final classification accuracy. While Miranda et al. performed decision-level fusion on ECG, 
GSR, and EEG features, they reported lower classification accuracy [18]. Dar et al. classi-
fied emotions using decision-level fusion based on deep learning techniques [20]. Addi-
tionally, Hasnul et al. noted the need to develop a universal model with improved classi-
fication accuracy [9]. Although several techniques have been proposed for emotion classi-
fication using ECG and GSR modalities, none have explored emotion classification based 
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Biological parameters such as ECG, GSR, Electroencephalograms (EEGs), and respira-
tion rate can be used to detect emotions. However, using invasive respiratory sensors to
collect data can be uncomfortable for participants [11]. Therefore, the use of non-invasive
sensors could make the process more comfortable. Advanced sensors can also be used to
collect data in a way that is less prone to motion [12]. While researchers have explored using
EEG signals for emotion classification, this method is more suitable for clinical applications.
ECG and GSR signals have been used less frequently for emotion classification compared to
EEG signals [13]. An ECG records the heart’s electrical movement, while the GSR measures
the skin’s electrical conductance. The Shimmer instrument detects electrical signals in the
heart, while the GSR Shimmer instrument measures skin conductance using electrodes
attached to the fingers [14]. ECG and GSR signals must be recorded when subjects are
exposed to emotions in different quadrants of Russell’s model, and emotions must be
classified appropriately. Standard databases are available for researchers to use in their
studies [15–18]. However, raw ECG and GSR signals can be noisy and require suitable pre-
processing techniques. Time and frequency domain features must be extracted from ECG
and GSR signal recordings to obtain relevant information about different emotions [19].
Further, relevant features must be selected using various feature selection techniques
before classification.

Moreover, fusion techniques can be used for emotion classification. Early feature
fusion concatenates features obtained through various modalities before classification.
Decision-level fusion combines the classifier outputs of individual modalities to obtain
the final classification accuracy. While Miranda et al. performed decision-level fusion on
ECG, GSR, and EEG features, they reported lower classification accuracy [18]. Dar et al.
classified emotions using decision-level fusion based on deep learning techniques [20].
Additionally, Hasnul et al. noted the need to develop a universal model with improved
classification accuracy [9]. Although several techniques have been proposed for emotion
classification using ECG and GSR modalities, none have explored emotion classification
based on the early fusion of the time and frequency features of ECG and GSR signals. To
address this, we propose an early fusion technique that combines ECG and GSR features for
improved accuracy using appropriate signal processing, feature selection, and classification
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techniques. Herein, we propose the creation of a multimodal and multidomain model
for emotion classification. This model will be more robust than a single modality-based
model. By using feature fusion techniques, we can capture data from different modalities,
which will improve the performance and reliability of the classification. The main research
contributions of this work are as follows:

• Developing an algorithm that utilizes suitable preprocessing, feature extraction, feature
selection, and classification techniques to accurately classify emotions using ECG data.

• Developing an algorithm that utilizes suitable preprocessing, feature extraction, feature
selection, and classification techniques to classify emotions using GSR data accurately.

• Emotion classification through the early fusion of ECG and GSR features.

2. Related Works

An outline of the emotion classification accuracies reported by the researchers using
machine learning techniques is mentioned below. Egger et al. claimed that physiological
signals are more adequate for emotion recognition than other techniques such as facial and
voice recognition [1]. Bulagang et al. reviewed emotion classification techniques using ECG
and GSR signals [2]. Dessai et al. reviewed articles on emotion classification that use ECG
and GSR parameters based on machine learning and deep learning techniques [13]. The
DEAP database provided physiological signals for emotional measurements for conduct-
ing research [15]. J. A. Miranda et al. contributed the first physiological signal database
based on affect, personality traits, and mood. They performed a correlation analysis be-
tween individual and group settings when participants watched videos individually and in
groups and between personality traits, PANAS, and social context [18]. Sayed Ismail et al.
converted ECG data from the DREAMER database into images and obtained an accuracy
of 63% for Valence and an accuracy of 58% for Arousal. Further obtained an accuracy of
79% for Valence and an accuracy of 69% for Arousal for numerical ECG data using the
SVM classifier, proving that ECG numerical data give better classification accuracy than
ECG images [21]. Romeo et al. classified emotions using the BVP signals from the DEAP
database using multiple instances learning-based SVM classifier. They obtained classifica-
tion accuracies of 68% and 69% for Valence and Arousal, respectively [22]. Bulagang et al.
used a virtual reality headset to allow subjects to view 360-degree video stimuli. They
recorded ECG signals from 20 participants using the Empatica E4 wristband. Inter-subject
classification achieved 46.7% accuracy for SVM, 42.9% for KNN, and 43.3% for Random
Forest [23]. An accuracy of 62.3% was obtained for ECG signals from the DREAMER for
emotion classification [24]. Moreover, researchers have classified emotions using GSR
parameters. Shukla et al. reported an accuracy of 85.75% for Arousal recognition and 83.9%
for Valence recognition using the GSR data [25]. Soleymani et al. classified emotions using
the SVM classifier and obtained classification accuracies of 46.2% and 45.5% for Arousal
and Valence using ECG and GSR data from the MAHNOB database, respectively [16].
Subramanian et al. classified emotions using signals from the ASCERTAIN database using
the SVM classifier and obtained classification accuracies of 56% and 57% for ECG signals for
Valence and Arousal levels, respectively, and 64% accuracy for Valence and 61% accuracy
for Arousal for GSR signals [17]. Miranda-Correa et al. obtained classification accuracies of
59.7% for Valence and 58.4% for Arousal using ECG data, as well as classification accuracies
of 53.1% for Valence and 54.8% for Arousal using GSR data [18]. It has been observed that
researchers mostly utilize the SVM classifier for carrying out classification tasks. Moreover,
deep machine learning techniques improve classification accuracy [26–34]. Various studies
have employed deep neural networks to automatically extract features and classify data.
However, this approach has some drawbacks, such as being computationally expensive and
requiring a large amount of data. Additionally, deep neural networks act as a “black-box”
model, making it challenging to understand how the model makes predictions and which
factors affect the predictions. Ahmad et al. mentioned a gap in the literature regarding
using fusion techniques to improve classification accuracy. Moreover, no standard set of
features works for all situations, and methods must be developed to select the best features
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automatically [35]. Khateeb et al. fused EEG signals’ time, frequency, and wavelet domain
features using concatenation before classification. They extracted time, frequency, and
wavelet features from EEG signals of the DEAP database and classified them using the
SVM classifier [36]. Tan et al. utilized a spiking neural network that combines facial and
peripheral data using both feature-level and decision-level fusion to classify emotions [10].
Wei et al. used a weighted fusion strategy to classify emotions by fusing multichannel
data at the decision level using the SVM classifier [37]. Bota et al. [38] collected data from
multiple modalities, such as ECG, blood volume pulse, respiration sensor, and electroder-
mal signals, to perform emotion recognition experiments on various databases by using
machine learning classifiers. They fused and classified the data from multiple sensors
and used the sequential forward feature selection technique to select the best features.
However, the authors concluded that the performance of the classifiers varied depending
on the datasets and the selected features [38]. Our study aimed to fuse data from only two
modalities, ECG and GSR, using wearable sensors in a user-friendly environment to avoid
complexity.

3. Methodology

Modalities such as skin temperature, EEG, and respiration rate are suitable for clinical
measurements. ECG and GSR signal modalities are suitable for detecting emotions because
these data can be easily collected using smart bands. In this study, we classified emotions
under three scenarios:

Scenario 1: Classifying emotions based on ECG data.
Scenario 2: Classifying emotions based on GSR data.
Scenario 3: Classifying emotions based on the fusion of ECG and GSR features.

A block diagram for the preprocessing and feature fusion of ECG and GSR signals is
shown in Figure 2. The selected features could be from either ECG or GSR modalities or
the fusion of ECG and GSR features.
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A block diagram for emotion classification using various machine learning classifiers
is shown in Figure 3. The best features derived from ECG or GSR or the fusion of ECG and
GSR were selected, and various machine learning classifiers were trained using the k-fold
cross validation technique.

3.1. Database

The AMIGOS database is the first of its kind to explore the affect, mood, social context,
and personality traits of subjects through ECG and GSR signal recordings. The database
contains recordings of 40 participants while they watched 16 short videos [18]. However,
we only used the ECG and GSR signal recordings of participants while watching the videos
numbered 1, 6, 8, and 12 in our work [18,19]. These short videos are less than 1.5 min
long, and each video represents a different quadrant of Russell’s model: Video 1 (HVLA),
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Video 6 (LVLA), Video 8 (LVHA), and Video 12 (HVHA). For valence classification, we
considered the high-Valence data of videos 1 and 12 and the low-Valence data of videos 6
and 8. Moreover, we used high-Arousal data from videos 8 and 12 and low-Arousal data
from videos 1 and 6 for the Arousal classification of emotions.
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3.2. Preprocessing

To classify emotions, the noise from the ECG signal is eliminated using preprocessing
techniques. Additionally, relevant information from the signal is extracted at this stage.
The variations in the intervals of the ECG signal can help classify emotions. For instance,
the skin conductance of GSR varies as per Arousal, with increased peaks indicating high
Arousal [19]. The steps followed to carry out the preprocessing of ECG and GSR signals
are explained further below.

3.2.1. Scenario 1: ECG Signal Preprocessing

The ECG waveform has a baseline that indicates no overall depolarization or re-
polarization. The atrial depolarization is represented by the P wave, which lasts for
80–100 ms. The ventricular depolarization is indicated by the QRS complex, which lasts
for 80–120 ms [19]. The ventricular repolarization is specified by the T wave and lasts for
200 ms [14,19]. To eliminate noise in the raw ECG signals due to baseline drift, muscle
artifacts, and electrode motion, a filtering technique and an algorithm are used. A low-
pass Butterworth filter of 15 HZ is used to reduce electrical noise and muscle artifacts. In
addition, Butterworth’s high-pass filter with a cut-off frequency of 0.5 Hz is employed to
minimize motion artifacts in the ECG signals [19].

To eliminate baseline drift, a baseline wandered path-finding algorithm is employed.
This algorithm splits the ECG signal into several segments, each of which contains one or
more baseline wandered paths. Next, each segment is approximated by a polynomial with
a variable x, as shown in Equation (1) [19,39].

f (x) = p0 + p1 × x + p2 × x2 + . . . + pk × xk (1)

Deviance between the ECG signal segment and the poly-fitted signal, f (x), is deter-
mined by increasing the polynomial order until the error is minimized [19,39]. Here, p0,
p1, etc., indicate the polynomial coefficients, and k is the polynomial degree [39]. It is
crucial to extract relevant information from a preprocessed ECG signal. To retrieve the RR
interval from the ECG signal, the QRS complex must be identified and extracted [19,40].
The Pan–Tompkins algorithm is used to detect the QRS complex, and from there, the RR
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interval is extracted [19,40]. As per the algorithm, the first derivative of the signal, d0(q), is
obtained for the ECG amplitude ‘r’ and time instant ‘q’ using Equation (2) [19].

d0(q) = ABS[r(q + 1) − r(q − 1)], 3 < q < 8188 (2)

The first derivative is smoothened as shown in Equation (3).

d1(q) = [d0(q − 1) + 2d0(q) + d0(q + 1)]/4, 3 < q < 8188 (3)

The rectified second derivative, d2, is calculated in Equation (4).

d2(q) = ABS[s(q + 2) − 2s(q) + s(q − 2), 3 < q < 8188 (4)

The first and second derivatives are added to form Equation (5).

d3(q) = t1(q) + t2(q), 3 < q < 8188 (5)

The primary and secondary thresholds are obtained in Equations (6) and (7).

Primary threshold = 0.8max[d3(q)], 3 < q < 8188 (6)

Secondary threshold = 0.1max[d3(q)], 3 < q < 8188 (7)

Additionally, the smallest and largest positive valued elements of the array of sample
points of the synthesized ECG in Equations (2)–(7) are 3 and 8188, respectively.

The ECG data of thirty-eight participants who were watching the above-mentioned
four videos were preprocessed and filtered. To recognize a QRS candidate, an array of a sum
of the first and second derivatives is checked against the primary threshold. Additionally,
six points consecutively greater than the second threshold are required [19,40].

3.2.2. Scenario 2: GSR Signal Preprocessing

The sweat content of human skin can increase when individuals experience emotional
Arousal [19,41]. To measure this response, the Galvanic Skin Response (GSR) signal is used.
The GSR signal is filtered with a low-pass Butterworth filter with a cut-off frequency of
19 Hz, and the coefficients obtained from the original Butterworth filter are applied to the
signal using a zero-phase digital filter [19,26]. The amplitude of the GSR waveform starts
rising a few seconds after stimulation, with the peak amplitude indicating the maximum
amplitude [41]. The GSR data of thirty-eight participants while watching short videos are
used for classification.

3.3. Feature Extraction

The features are extracted from the preprocessed ECG and GSR signals as below. The
early fusion of ECG and GSR signals based on concatenation is proposed in this model.

3.3.1. Scenario 1: ECG Feature Extraction

The time difference between two consecutive R peaks in the ECG waveform is defined
as the RR interval [19]. To analyze this interval, various time domain features, such as the
median RR interval, the standard deviation of the RR interval series, the mean RR interval,
the coefficient of variation, the number of pairs of successive NNs that diverge by 50 ms,
kurtosis, the root mean square of the differences of successive R-R interval (RMSD), and the
mode are extracted. Additionally, frequency domain features such as the power spectral
entropy (SE) and the power spectral density (PSD) are extracted from the ECG signal. PSD
measures the power in the signal at different frequency components. The root mean square
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of the differences of successive R-R intervals (RMSD), standard deviation, and coefficient of
variation (CV) are given in Equation (8), Equation (9), and Equation (10), respectively [19].

RMSD =

√
∑N

i=1(RRi − RR(i + 1))2

N
(8)

where RRi indicates the RR interval at index i, and N indicates the number of samples.
Standard deviation (S) of RR interval series:

S =

√
∑N

i=1(RRi–mean)2

N
(9)

Coefficient of variation (CV):

CV =
standard deviation

mean
(10)

3.3.2. Scenario 2: GSR Feature Extraction

The time domain GSR signals are used to extract statistical measures such as standard
deviation, maximum value, mean, kurtosis, and variance. Kurtosis is a statistical measure
that defines how different the tails of a distribution are from a normal distribution, as
shown in Equation (11) [19].

Kurtosis =
∑N

i=1(Xi − mean)
N

/S4 (11)

where S is the standard deviation, and N is the number of samples.
Frequency domain features such as power spectral entropy are also extracted.

3.4. Feature Selection

Our algorithm selects the most optimal features required for classification by mea-
suring the entropy of the features and calculating the dependency between the two vari-
ables [42]. In addition, we used a mutual information gain of 10% to determine the total
number of features to be retained. Our algorithm also eliminates duplicate features, thereby
eliminating redundancy. Once the features were selected, we partitioned the corresponding
dataset into training and test sets using the five-fold cross-validation technique [43]. The
k-fold cross-validation technique divides the dataset into K-equal sets. We trained the
network over (K − 1) sets with one set under test each time [43]. We used the same dataset
for both training and testing, making it a subject-dependent classification method.

3.5. Feature Fusion

Fusion is a process of combining information from multiple sources. There are different
fusion techniques, including early fusion and decision-level fusion. In early fusion, features
from different sources are combined by concatenation, and the best features are chosen for
further processing. In decision-level fusion, the outputs of classifiers trained on individual
sources are combined by weighting to make the final classification. Feature-level fusion
can be used if the features from multiple sensors can be combined in the same feature
vector. Moreover, feature-level fusion reduces the complexity of the task by eliminating
the need for additional algorithms for decision making. In our model, we used feature
fusion-based Arousal classification and feature fusion-based Valence classification. For
Arousal classification, we used the power spectral entropy and kurtosis of the GSR data,
and for Valence classification, we used the standard deviation of the GSR data.
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3.6. Classification

The model’s performance was validated using different classifiers, such as SVM, RF,
KNN, and Decision Tree classifiers. KNN classifies a sample based on its proximity to the
neighbors [44]. We found that classification based on three neighbors gives the best accuracy
for our model. The training data are stored in the memory of the KNN classifier, which
makes it easy to adjust to new data. SVM uses a kernel technique to classify non-linear data.
We optimized the performance of the SVM classifier by using a radial basis function (RBF)
hyperparameter. The Decision Tree classifier is a tree-based model that is suitable for non-
linear data but may not be appropriate for unseen data [45]. The RF classifier with multiple
Decision Trees performs classification based on the majority voting by all the trees [46]. We
used Matlab software (https://www.mathworks.com/products/matlab.html, accessed
on 30 January 2024) for signal processing and feature extraction, while Python software
(https://www.python.org/, accessed on 30 January 2024) was used for implementing
machine learning techniques.

4. Results

The model uses the mutual information technique for feature selection and various
classifiers, such as SVM, KNN, RF, and Decision Tree classifiers, to train the model using
the data obtained from preprocessed ECG and GSR signals. The model’s performance was
evaluated based on F1 score, precision, recall, and accuracy for three different scenarios [33].

4.1. Scenario 1: Emotion Classification Using ECG Data

Tables 1 and 2 indicate the performance of the model for ECG-based classification in
terms of 5-fold accuracy, average accuracy, precision, recall, and F1 score, respectively.

Table 1. Performance evaluation of ECG Valence classification.

Sr. No. ECG Valence
Classifier

5-Fold
Accuracy

ECG Valence
Accuracy (%) Precision Recall F1 Score

1 SVM [0.60, 0.60,
0.67, 0.46, 0.63] 60 0.56 0.89 0.68

2 KNN [0.64, 0.71,
0.68, 0.75, 0.66] 69 0.69 0.68 0.68

3 RF [0.57, 0.53,
0.78, 0.64,0.63] 63 0.65 0.59 0.62

4 DECISION
TREE

[0.57, 0.53,0.86,
0.60,.63] 64 0.64 0.62 0.63

Table 2. Performance evaluation of ECG Arousal classification.

Sr. No. ECG Arousal
Classifier

5-Fold
Accuracy

ECG Arousal
Accuracy (%) Precision Recall F1 Score

1 SVM [0.78, 0.53,
0.46, 0.64, 0.66] 62 0.66 0.54 0.59

2 KNN [0.78, 0.64,
0.71, 0.71, 0.63] 70 0.70 0.74 0.72

3 RF [0.78, 0.71,
0.68, 0.68, 0.74] 72 0.71 0.77 0.74

4 DECISION
TREE

[0.71, 0.75,
0.71, 0.68, 0.70] 71 0.68 0.80 0.73

4.2. Scenario 2: Emotion Classification Using GSR Data

Tables 3 and 4 display the GSR-based classification model’s performance in terms of
5-fold accuracy, average accuracy, precision, recall, and F1 score.

https://www.mathworks.com/products/matlab.html
https://www.python.org/
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Table 3. Performance evaluation of GSR Valence classification.

Sr. No. GSR Valence
Classifier

5-Fold
Accuracy

GSR Valence
Accuracy (%) Precision Recall F1 Score

1 SVM [1.0, 0.96, 0.96,
0.89, 1.0] 96 0.94 0.99 0.96

2 KNN [1.0, 0.96, 0.96,
0.89, 1.0] 96 0.94 0.99 0.96

3 RF [0.98, 0.96,
0.96, 0.89, 0.98] 95 0.93 0.98 0.95

4 DECISION
TREE

[0.98, 0.96,
0.96, 0.89, 0.98] 95 0.93 0.98 0.95

Table 4. Performance evaluation of GSR Arousal classification.

Sr. No. GSR Arousal
Classifier

5-Fold
Accuracy

GSR Arousal
Accuracy (%) Precision Recall F1 Score

1 SVM [0.89, 0.93,
0.96, 0.928, 1.0] 94 0.92 0.97 0.94

2 KNN [0.92, 0.93,
0.94, 0.96, 0.96] 94 0.92 0.96 0.94

3 RF [0.89, 0.85,
0.96, 0.93, 0.96] 92 0.92 0.93 0.92

4 DECISION
TREE

[0.89, 0.85,
0.96, 0.93, 0.96] 92 0.92 0.93 0.92

4.3. Scenario 3: Emotion Classification via the Fusion of ECG and GSR Features

Fused features are classified based on the Valence–Arousal scale. Tables 5 and 6 present
values for 5-fold accuracy, average accuracy, precision, recall, and F1 score, respectively.

Table 5. Performance evaluation of fusion Valence classification.

Sr. No. Classifier 5-Fold
Accuracy

GSR Valence
Accuracy (%) Precision Recall F1 Score

1 SVM [1.0, 0.96, 0.96,
0.89, 1.0] 96 0.94 0.99 0.96

2 KNN [1.0, 0.96, 0.96,
0.89, 1.0] 96 0.94 0.99 0.96

3 RF [0.98, 0.96,
0.96, 0.89, 0.98] 95 0.93 0.98 0.95

4 DECISION
TREE

[0.98, 0.96,
0.96, 0.89, 0.98] 95 0.93 0.98 0.95

Table 6. Performance evaluation for fusion Arousal classification.

Sr. No. Classifier 5-Fold
Accuracy

Fusion
Arousal
Accuracy (%)

Precision Recall F1 Score

1 SVM [0.89, 0.93,
0.96, 0.93, 1.0] 94 0.93 0.96 0.94

2 KNN [0.93, 0.93,
0.93, 0.93, 0.96] 94 0.92 0.96 0.94

3 RF [0.88, 0.88,
0.96, 0.93, 1.0] 94 0.94 0.93 0.93

4 DECISION
TREE

[0.89, 0.93, 1.0,
0.93, 1.0] 95 0.96 0.93 0.94
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The model’s performance was evaluated and validated using multiple modalities
and various machine learning classifiers, which are presented in Table 7 and Figure 4.
Comparisons of the accuracy percentages achieved by the classifiers for Valence and
Arousal are shown in Figures 5 and 6, respectively. The KNN classifier achieved the highest
accuracy for Valence and Arousal classification, with values of 69% and 70% for ECG and
96% and 94% for both GSR and early Fusion, respectively, as shown in Table 7.

Table 7. Classification accuracies.

Sr. No. Classifier ECG
Valence (%)

ECG Arousal
(%)

GSR Valence
(%)

GSR Arousal
(%)

Fusion
Valence (%)

Fusion
Arousal (%)

1 SVM 60 62 96 94 96 94
2 KNN 69 70 96 94 96 94
3 RF 63 72 95 92 95 94

4 DECISION
TREE 64 71 95 92 95 95

Sci 2024, 6, x FOR PEER REVIEW 10 of 14 
 

 

4 DECISION TREE 64 71 95 92 95 95 

 
Figure 4. Valence and Arousal classification accuracies. 

 
Figure 5. Valence classification accuracies. 

 
Figure 6. Arousal classification accuracies. 

Figures 4–6 indicate that GSR is a more effective modality for emotion classification 
compared to the ECG. The fusion of ECG and GSR features significantly increases the 

Figure 4. Valence and Arousal classification accuracies.

Sci 2024, 6, x FOR PEER REVIEW 10 of 14 
 

 

4 DECISION TREE 64 71 95 92 95 95 

 
Figure 4. Valence and Arousal classification accuracies. 

 
Figure 5. Valence classification accuracies. 

 
Figure 6. Arousal classification accuracies. 

Figures 4–6 indicate that GSR is a more effective modality for emotion classification 
compared to the ECG. The fusion of ECG and GSR features significantly increases the 

Figure 5. Valence classification accuracies.



Sci 2024, 6, 10 11 of 14

Sci 2024, 6, x FOR PEER REVIEW 10 of 14 
 

 

4 DECISION TREE 64 71 95 92 95 95 

 
Figure 4. Valence and Arousal classification accuracies. 

 
Figure 5. Valence classification accuracies. 

 
Figure 6. Arousal classification accuracies. 

Figures 4–6 indicate that GSR is a more effective modality for emotion classification 
compared to the ECG. The fusion of ECG and GSR features significantly increases the 

Figure 6. Arousal classification accuracies.

Figures 4–6 indicate that GSR is a more effective modality for emotion classification
compared to the ECG. The fusion of ECG and GSR features significantly increases the
classification accuracy in comparison to the ECG. The performance measures are similar
for all the classifiers. However, the KNN classifier outperforms all others in all scenarios.

5. Discussion

Tables 8–10 compare the classification accuracies for the three scenarios described
above with those reported in the literature. The relevant features were selected from prepro-
cessed ECG and GSR signals using the mutual information feature selection technique. The
model’s performance was validated through the use of various classification techniques
and multiple modalities.

Table 8. Classification accuracies for ECG signals.

Sr. No. Reference No. Database Feature Selection Cross Validation
Technique Classifier Accuracy

1 Present work AMIGOS Mutual information K-fold KNN
Valence: 69%
Arousal: 70%

2 [3] AMIGOS _ K-fold Decision Tree
Valence: 59.2%
Arousal: 60.6%

3 [18] AMIGOS Fisher’s linear
discrimination

Leave one participant
out

Linear SVM
Valence: 57.6%
Arousal: 59.2%

Table 9. Classification accuracies for GSR signals.

Sr. No. Reference Database Feature Selection Classifier Accuracy

1 Present work AMIGOS Mutual information KNN Valence: 96%
Arousal: 94%

2 [18] AMIGOS Fisher’s linear discriminant Linear SVM Valence: 53.1%
Arousal: 54.8%

3 [25] AMIGOS Mutual information Non-linear SVM Valence: 83.9%
Arousal: 85.71%
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Table 10. Fusion of ECG and GSR signals.

Sr. No. Reference Database Feature Fusion
Technique Feature Selection Classifier Accuracy

1 Present work AMIGOS Early fusion Mutual information KNN Valence: 96%
Arousal: 94%

2 [18] AMIGOS Decision-level fusion Fisher’s linear
discriminant Linear SVM Valence: 57%

Arousal: 58.5%

Table 8 demonstrates that using the mutual information technique for feature selection,
k-fold for cross-validation, and KNN for classification improves the accuracy of emotion
classification for ECG data. Similarly, Table 9 shows that using k-fold for cross-validation
and KNN for classification enhances the accuracy of classification. Moreover, Table 10
shows that implementing a novel technique of early fusion can lead to an improvement
in classification accuracy. Therefore, this study contributes to the literature by establish-
ing a more accurate model that is suitable for classification and uses both unimodal and
multimodal data. The proposed model’s enhancements are mainly due to appropriate
preprocessing, feature extraction, feature selection, and classification techniques. This
study confirms that GSR is a preferred modality for emotion classification. J. A. Miranda-
Correa et al. combined the classification outcomes of ECG, GSR, and EEG data and achieved
Valence–Arousal classification accuracies of 57% and 58.5% using decision-level fusion
techniques. However, decision-level fusion did not enhance the results compared to the
individual modalities [18]. Our study’s limitations include the fact that the manual extrac-
tion of time and frequency features and subject-dependent classification were employed.
Additionally, the same dataset was utilized for both training and testing. Therefore, the
model’s accuracy may slightly deviate when exposed to unseen data.

6. Conclusions

Most researchers have focused on building emotion recognition models using a single
modality. However, this study proposes a model suitable for multiple modalities to en-
hance classification accuracy. The model demonstrates the effectiveness of ECG and GSR
modalities for emotion classification. Additionally, this study showcases a novel technique
based on the early fusion of ECG and GSR features. Although all classifiers performed
similarly, KNN outperformed the others, giving the highest accuracies for Valence and
Arousal, with accuracies of 69% and 70% for ECG and 96% and 94% for GSR, respectively.
The classification accuracy obtained with the GSR modality outperformed other modalities
for emotion detection, verifying that GSR is better suited for emotion classification. The
fusion of ECG and GSR features significantly improved classification accuracy compared
to the use of ECG alone. The proposed model, built on multiple modalities, demonstrates
reliability and improved classification accuracy. The performance of the model was vali-
dated using multiple modalities and various machine learning classifiers used for emotion
classification. Machine learning techniques based on handcrafted feature extraction have
the advantage of being less complex in terms of hardware and computing facility require-
ments. In the future, subject-independent classification can be achieved to make the system
free of biasing effects. Furthermore, using the recently published databases on ECG and
GSR signals, the proposed model can be applied to classify emotions.
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