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Supplement A: Inventory of Data Input Requirements of UHIMPT Model 

  

Components Requirement Potential Sources 

Urban Heat Island, Climate 
Change Impacts 

Normal mean warmest month ambient temperature 
in the urban area 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Urban Heat Island, Climate 
Change Impacts 

Normal mean warmest month ambient temperature 
in the rural area 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Urban Heat Island, Climate 
Change Impacts 

Normal mean maximum warmest month ambient 
temperature in the urban area 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Urban Heat Island, Climate 
change Impacts 

Normal mean maximum warmest month ambient 
temperature in the rural area 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Urban Heat Island Moderate- to high-resolution cloud-free, daytime 
satellite imagery with ultra-blue, green, red, near 
infrared, and thermal infrared bands 

Landsat 8 may be accessed through the 
EarthExplorer Internet-based application of the 
United States Geological Survey 

Urban Heat Island Vector-based geospatial dataset representing 
impervious cover in urban area 

Public geospatial data clearinghouses, private 
organizations 

Climate Change Impacts Projected mean warmest month ambient 
temperature for three periods, as downscaled to the 
urban area 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Climate Change Impacts Projected mean maximum warmest month ambient 
temperature for three periods, as downscaled to the 
urban area 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Climate Change Impacts Projected mean warmest month ambient 
temperature for three periods, as downscaled to the 
rural area 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 
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Supplement A: Inventory of Data Input Requirements of UHIMPT Model (Continued) 

Components Requirement Potential Sources 

Climate Change Impacts Projected mean maximum warmest month ambient 
temperature for three periods, as downscaled to the 
rural area 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Population Dynamics Population by single year of birth for last official 
census 

Official census agencies (e.g., United States Census 
Bureau, Statistics Canada) 

Population Dynamics Population by single year of birth for penultimate 
official census 

Official census agencies (e.g., United States Census 
Bureau, Statistics Canada) 

Population Dynamics Total births between last and penultimate census by 
single year of age of the parous female 

Local or regional health departments, offices of vital 
statistics 

Population Dynamics Total deaths between last and penultimate census by 
single year of age of the decedent 

Local or regional health departments, offices of vital 
statistics 

Heat-Related Mortality Normal mean summer ambient temperature in the 
region 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Heat-Related Mortality Normal mean winter ambient temperature in the 
region 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Heat-Related Mortality Projected annual mean ambient temperature for 
three periods, as downscaled to the region 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Heat-Related Mortality Normal annual mean ambient temperature in the 
region 

Climate models; Raster-based geospatial datasets 
(e.g., Wang et al. [56]) 

Not Applicable (General Use) Vector-based geospatial datasets representing the 
boundaries of the urban and rural areas (n.b., this is 
used to process raster-based geospatial datasets) 

Public geospatial data clearinghouses, private 
organizations 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

Introduction 

Equations 5 and 6 contain an adaptation of a multiple linear regression model (MLR Model) wherein: 

the land surface temperature of a given area is the dependent variable; and, the surface albedo and the 

proportions of impervious surface cover and vegetation in the same area are the independent 

variables. 

The MLR Model is developed with: data derived from a moderate- to high-resolution cloud-free, 

daytime satellite image; and, digital geographic data on impervious surface cover, land cover, and 

building footprints in shapefile data format. 

The means by which the satellite image and other digital geographic data were processed, as well as 

how the MLR Model was created, are described in the remainder of this appendix. 

Please note that while the MLR Model has been created with data that represents Philadelphia, 

Pennsylvania, this location only serves as an illustrative example. The methodologies explained herein 

are easily replicated, and similar MLR Models can be developed for customization of the UHIMPT 

model to other locations. 

Image Processing 

Moderate- to high-resolution satellite imagery is processed to extract data for entry into the MLR 

Model. In this example, a Landsat 8 Operational Land Imager/Thermal Infrared Sensor Tier 1 image 

was downloaded from the EarthExplorer Internet application of the United States Geological Survey, 

which is located at http://earthexplorer.usgs.gov, on 22 October 2017 and subsequently processed to 

retrieve information on the aforementioned dependent variable and independent variables. The image 

was captured by the Landsat 8 spacecraft on 30 July 2017 at approximately 15:39. The United States 

Geological Survey’s unique identification number of this image is “LC80140322017211LGN00”. The 

image includes essentially cloud-free coverage of Philadelphia and surrounding areas and represents 

warmest month conditions. It was processed with ArcGIS Desktop (Release 10.5.1) geographic 

information system software by ESRI, Inc. of Redlands, California. The image’s pixel dimension is 30 m 

by 30 m for bands captured by the Operational Land Imager. 

 



 

5 

Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

For bands captured by the Thermal Infrared Sensor, the pixel dimension is 100 m by 100 m. However, 

bands captured by the Thermal Infrared Sensor are resampled to 30 m prior to distribution. 

 

The following subsections provide details on data derivation from the aforementioned Landsat 8 

Operational Land Imager/Thermal Infrared Sensor Tier 1 image. Please note that the methodologies 

presented herein are applicable to other satellite products, should another source of satellite imagery be 

used.  

 

Derivation of Proportion of Vegetation 

Deriving proportion of vegetation is a two-step process. First, the Normalized Difference Vegetation 

Index (NDVI), is calculated with the near-infrared and red bands of the aforementioned image by means 

of the NDVI function of ArcGIS Desktop. NDVI is used to assess whether an area contains living green 

vegetation and quantify same relative to other areas. It was first mentioned by Rouse et al. [75] and is 

calculated as: 

!"#$ = 	!"#	%	#
!"#	&	#

, 

where: !"#$ means Normal Difference Vegetation Index; !$' represents the near-infrared band of the 

image (viz., Band 5); and, ' represents the red band of the image (viz., Band 4). Once calculated, NDVI 

is transformed into proportion of vegetation by means for the following formula, which is provided in 

Jiménez-Muñoz et al. [76] as: 

(' =	)
!()"	%	!()"!
!()""	%	!()"!

*
*
, 

where: (' stands for the proportion of vegetation; and, the subscripts of !"#$ stand for the maximum 

(,) and minimum (.) of same. 

The application of the formula provided above yields an accessible measure of the amount of vegetation 

in each pixel, which ranges from 0.0 to 1.0, with 0.0 representing no vegetation and 1.0 representing 

complete vegetative cover. 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Derivation of Land Surface Temperature 

Land surface temperature is calculated with the proportion of vegetation (('), and is entered into the 

MLR Model as the averaged values of both thermal infrared bands of the image (viz., Band 10 and Band 

11). The employed methodology is generally described in Avdan and Jovanovska [77]. Please note, 

however, that slight modifications are made to apply: a more recent formula by the United States 

Geological Survey [78] for the calculation of spectral radiance; and, a simplified (i.e., average) calculation 

of land surface emissivity by Sobrino et al. [79]. 

The first step is to calculate spectral radiance at the top of the atmosphere as in the following formula by 

the United States Geological Survey [78]: 

/+ =	 (0, 	× 	2-./) +	4,, 

where: /+ represents the spectral radiance at the top of the atmosphere; 0, is the band-specific 

multiplicative rescaling factor that is provided in the image’s metadata; 2-./ is the pixel value; and, 4, is 

the band-specific additive rescaling factor that is provided in the image’s metadata. 

The second step is to calculate at-satellite brightness temperature as in the following formula by the 

United States Geological Survey [78] and modified by Avdan and Jovanovska [77] to convert from °K to 

°C: 

567 =	8
0#

123
$%
&'
	&	45

9 − 273.15, 

where: 567 represents at-satellite brightness temperature; /+ represents the spectral radiance at the top 

of the atmosphere, which has been explained above; and, A4 and A* represent the band-specific thermal 

conversion constants that are provided in the image’s metadata. 

The third step is to calculate land surface emissivity, for which the following formula by Sobrino et al. 

[79] is applied: 

B = (0.004	 ×	(') + 	0.986, 

where B is land surface emissivity and (' is the proportion of vegetation, both as previously discussed in 

this appendix. 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

The fourth step is to separately calculate the land surface temperature for both thermal infrared bands 

(viz., Band 10 and Band 11) of the image as in the following formula by Avdan and Jovanovska [77]: 

/57 = 678

94	&	:;
'	×	*+,

- < 12 =>?

, 

where: /57 represents land surface temperature; 567 represents at-satellite brightness temperature, 

which has been previously discussed in this appendix; B represents land surface emissivity; H represents 

the wavelength of emitted radiance, which is assumed to be 10.896 and 12.006 for Band 10 and Band 11, 

respectively (Yu et al. [80]); and, I is equivalent to 1.438	 ×	10%*	JA, as calculated by the following 

formula: 

I = ℎ @

A
= 	1.438	 ×	10%*	JA, 

where: ℎ is Plank’s constant (6.626	 ×	10%BC	L/.); N is the Boltzmann constant (1.38	 ×	10%*B	L/A); and, O 

is the velocity of light (2.998	 ×	10D	J/.). 

The fifth and final step is to compute the average land surface temperature for both thermal infrared 

bands (viz., Band 10 and Band 11). This is the measure of land surface temperature that is entered into 

the MLR Model. The average land surface temperature for both thermal infrared bands is computed as 

follows: 

/57EFGHIHJ =
(,68+./0	%1	&	,68+./0	%%)

*
, 

where: /57EFGHIHJ represents the measure of land surface temperature that is entered into the MLR 

Model; /577.FJ	4M is the land surface temperature reflected in Band 10, as computed in the fourth step; 

and, /577.FJ	44 is the land surface temperature reflected in Band 11, also as computed in the fourth step. 

Please note that land surface temperature is calculated in °C. 

Surface Albedo 

The following formula of Lee et al. [81] is used to calculate surface albedo: 

4 = 0.1667.FJ# + 0.3217.FJ2 + 0.3557.FJ3 − 0.0277.FJ4 + 0.1507.FJ5 − 0.0037, 

where: 4 represents albedo; and, the subscripts denote band numbers of the image. 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Surface albedo ranges from 0.0 to 1.0, with 0.0 representing no reflectivity and 1.0 representing total 

reflectivity. 

Please note that, in this example, surface albedo was calculated from a version of the aforementioned 

Landsat 8 Operational Land Imager/Thermal Infrared Sensor Tier 1 image that was specially processed 

by the United States Geological Survey to provide surface reflectance data. This version of the image 

was ordered through the Earth Science Processing Architecture On-Demand Interface of the Earth 

Resources Observation and Science Center of the United States Geological Survey on 30 October 2017. 

The Earth Science Processing Architecture On-Demand Interface is located at https://espa.cr.usgs.gov/. 

Water Features 

Although not used as an independent variable in the MLR Model that is represented in equations 5 and 

6, the Modified Normalized Difference Water Index (MNDWI), as is described by Xu [82], is calculated 

to facilitate the identification of water features so that they may be excluded from the input of the MLR 

Model. 

The complete exclusion of water features is important because they have the potential to skew the 

results of the MLR Model. Indeed, water features tend to have both low surface albedos and low surface 

temperatures. This is generally the inverse of the relationship between surface albedo and surface 

temperature over land, where low albedo surfaces would be expected to have a high surface 

temperature. 

The following formula of Xu [82] is used to calculate MNDWI: 

0!"P$ =	 N	%	O"#
N	&	O"#

, 

where: 0!"P$ is the Modified Normalized Difference Water Index; Q represents the green band of the 

image; and, 0$' represents the middle infrared band of the image. 

As has been previously stated, MNDWI is used to facilitate feature identification and extraction. In this 

regard, it is noted that positive MNDWI values represent water and negative values represent land. 

However, once calculated, MNDWI must subsequently be compared against the image in order to 

ensure the appropriateness of feature extraction. The reason for this is that MNDWI can be prone to 

errors resulting from shadows and atmospheric conditions reflected in the image, which, may cause 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

some areas to have a positive value when, in fact, they are not covered by water and should, therefore, 

not be extracted. 

In addition to a visual comparison of calculated MNDWI and the image, other available resources 

should also be used to ensure that water features are accurately selected and excluded. In this example, 

a digital geographic dataset on land cover in Philadelphia, which was created by the City of 

Philadelphia in 2016 and obtained from the Internet site of the Pennsylvania Geospatial Data 

Clearinghouse at http://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=7046 on 30 September 

2017, was used to identify additional pixels for exclusion by means of the locational selection functions 

of ArcGIS Desktop. 

Only the data of pixels that are located completely outside of a water feature are entered into the MLR 

Model. 

Impervious Surface Data Processing 

The calculated proportion of impervious surface cover is also entered into the MLR Model.  

In this example, digital geographic data on impervious surface cover and building footprints in 

Philadelphia was obtained from the Internet site of the Pennsylvania Geospatial Data Clearinghouse. 

Specifically, the following data was obtained: a shapefile depicting impervious surface cover during 

Spring 2015, which was created by the City of Philadelphia and downloaded from 

http://www.pasda.psu.edu/uci/FullMetadataDisplay.aspx?file=PhiladelphiaImperviousSurfaces2015.xml 

on 30 September 2017; and, a shapefile depicting building footprints during 2015, which was created by 

the City of Philadelphia and downloaded from 

http://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=146 on 30 September 2017. 

The aforementioned data layers were processed by first merging and then dissolving them with the 

corresponding geoprocessing functions of ArcGIS Desktop. This resulted in one data layer with a single 

feature, which depicted all impervious surfaces within Philadelphia; this data layer is hereinafter 

referred to as the interim impervious surface layer. 

Next, interim impervious surface layer was intersected, by means of the corresponding geoprocessing 

function of ArcGIS Desktop, with a vector-based fishnet grid to make it (i.e., the interim impervious 

surface layer) gridded. The boundaries and number of features in the vector-based fishnet grid 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

mimicked those of the pixels of the aforementioned satellite image. This grid was created by: first 

converting a copy of the satellite-derived, raster-based information on land surface temperature, which 

was previously introduced in this appendix, to point features by means of the Raster to Point function of 

ArcGIS Desktop; and, then using the resulting point-based data layer to create a grid by means of the 

“Create Fishnet” function of ArcGIS Desktop with the individual cell size being set to 30 m in height and 

30 m in width. 

After intersecting the interim impervious surface layer with the vector-based fishnet grid, the area of 

impervious surface cover, as measured in square meters (i.e., m2), within each cell was computed. The 

intersected impervious surface layer was then dissolved, by means of the corresponding geoprocessing 

function of ArcGIS Desktop. While doing so, the unique cell identifier was retained, and the total 

impervious surface cover in each unique cell was summed. At this point, a new field was created in the 

attribute table, and the proportion of total impervious surface cover in each unique cell was computed 

by means of the following formula: 

(P =	
∑ P

RMM
, 

where (P represents proportion of impervious surface cover and R represents impervious cover. The 

divisor (900) represents the total area of each unique cell (n.b., 30* = 900). All measurements are made 

in square meters (i.e., m2). 

The final result of these operations was a data layer showing the proportion of impervious surface cover 

in cells that matched the pixel dimensions and arrangement of the satellite-derived information that has 

been previously discussed in this appendix. 

Please note that impervious surface cover is measured on a scale of 0.0 to 1.0, with 0.0 representing no 

impervious surface cover and 1.0 representing total impervious surface cover. 

 

Data Processing Results 

Images showing proportion of vegetation, land surface temperature, surface albedo, water features, and 

impervious surface cover in Philadelphia are provided on the following pages. Please note that water 

features have not been removed from the images of proportion of vegetation, land surface temperature, 

surface albedo, and impervious surface cover. 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Proportion of Vegetation 

 
 
 
 
 
 
 
 
 
 



 

12 

Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Surface Temperature 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Surface Albedo 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Water Features (MNDWI) 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Impervious Surface Cover 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Development of Multiple Linear Regression (MLR) Model 

At the outset of the development of the MLR Model, the satellite-derived data on proportion of 

vegetation, land surface temperature, and surface albedo, as well as the processed, vector-based data on 

impervious surface cover, were combined into one data layer. This was achieved by first converting the 

raster-based (i.e., satellite-derived) data layers (viz., proportion of vegetation, land surface temperature, 

surface albedo) to vector-based files, and then joining the attribute tables of all converted data layers 

with that of impervious surface cover. The end result was one composite, vector-based file with a single 

attribute table that contained complete information on each of the independent and dependent 

variables. Water features, as identified with the methodologies described herein, were then used to 

select cells in the composite file that fell wholly or partially within a water feature. The selected cells 

were deleted from the composite file and excluded from further analysis. As previously noted, this was 

done to prevent albedo over water surfaces from skewing the MLR Model’s depiction of the correlation 

between land surface temperature and surface albedo (n.b., the albedo and surface temperature of water 

features is generally low; on land, however, low albedo surfaces are generally associated with high 

surface temperatures). At this point, the attribute table of the composite file was exported for analysis in 

IBM SPSS Statistics (Release 25), which is a statistical analysis software package by IBM Corporation of 

Armonk, New York. There was a total of 379,419 records in the exported data table. Each record 

depicted average conditions within an area measuring 30 m by 30 m and with a centroid located on land 

surface within the municipal boundaries of Philadelphia, Pennsylvania. 

A stepwise multiple linear regression analysis was then run in IBM SPSS Statistics. All data inputs were 

derived from the exported attribute table of the composite file. The dependent variable was land surface 

temperature, and the independent variables were surface albedo, proportion of vegetation, and the 

proportion of impervious surface cover. The resulting MLR Model indicated that when the impact on 

land surface temperature is predicted, surface albedo (! = 379,419; 	U = −5.874; 	V <

.0005; 95-(XYOXZ[	\$ = −6.042,−5.707), impervious surface cover (! = 379,419; 	U = 2.103; 	V <

.0005; 95-(XYOXZ[	\$ = 2.078, 2.128), and the proportion of vegetation (! = 379,419; 	U = −8.730; 	V <

.0005; 95-(XYOXZ[	\$ = −8.779,−8.681) are highly significant predictors. The coefficient of multiple 

determination (Y*) of the MLR Model is 0.63. 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

The MLR Model is summarized by the following formula: 

/57 = 31.661 + (2.103	 × 	$) − (8.730	 × 	#) − (5.874	 × 	4), 

where: /57 represents land surface temperature; $ represents the proportion of impervious surface 

cover; # represents the proportion of vegetation; and, 4 represents surface albedo. 

It should be noted that inclusion of the three independent variables (viz., proportion impervious surface 

cover, proportion of vegetation, and surface albedo) together resulted in a higher coefficient of multiple 

determination (Y*) than would have been possible if linear regression analysis had been performed in 

any other possible way, including: simple linear regression of the proportion impervious surface cover, 

which would have resulted in a coefficient of determination (Y*) of 0.50; simple linear regression of the 

proportion of vegetation, which would have resulted in a coefficient of determination (Y*) of 0.59; 

simple linear regression of surface albedo, which would have resulted in a coefficient of determination 

(Y*) of 0.01; multiple linear regression of the proportions of vegetation and impervious surface cover, 

which would have resulted in a coefficient of multiple determination (Y*) of 0.62; multiple linear 

regression of surface albedo and the proportion of impervious surface cover, which would have resulted 

in a coefficient of multiple determination (Y*) of 0.51; and, multiple linear regression of surface albedo 

and the proportion of vegetation, which would have resulted in a coefficient of multiple determination 

(Y*) of 0.60. 

It should further be noted that the MLR Model is based on an approximately normally distributed 

dataset. This is demonstrated by the following histogram of regression standardized residuals. 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Histogram of Regression Standardized Residual 

 

As can be seen in the histogram of regression standardized residuals, the distribution of the dataset is 

approximately symmetrical and short-tailed. These characteristics suggest a normally distributed 

dataset. 

The normal distribution of the dataset on which the MLR Model is based can also be seen in the 

following normal probability–probability plot of regression standardized residual. 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Normal Probability–Probability Plot of Regression Standardized Residual 

 

As can be seen in the normal probability–probability plot of regression standardized residuals, there is 

no skew to the left or right, nor do the extremes of observed cumulative probability show significant 

departures from expected cumulative probability (i.e., the data do not have long or short tails). In 

addition, the coefficient of determination (Y*) between observed cumulative probability and expected 

cumulative probability is greater (i.e., >) than 0.99. These characteristics facilitate the conclusion that the 

dataset is normally distributed. 

In addition to the above, it is noted that, because it has been developed with data that represents all 

areas of land surface within Philadelphia, the MLR Model should be understood to represent the 

average relationship between the independent variables and the dependent variable. This comports with 

the intent, purpose and requirements of the UHIMPT model, which has been presented in the article. It 

is, nonetheless, interesting to note that if records for specific subareas of Philadelphia (e.g., wards) were 

to be selected from the composite file, regression models with a higher coefficient of multiple 

determination (Y*) may be achieved. For example, if the records of the aforementioned composite file 

that intersect Ward 34, which is located at the westernmost point of Philadelphia, were selected and a 

multiple linear regression analysis of the selected records were run in the same manner as has been done 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

for the entirety of Philadelphia, the following model, which achieves a coefficient of multiple 

determination (Y*) of 0.78, would result: 

/57S.IJ	BC = 32.886 + (0.942	 ×	$S.IJ	BC) − (11.326	 ×	#S.IJ	BC) − (2.470	 ×	4S.IJ	BC), 

where: /57 represents land surface temperature; $ represents the proportion of impervious surface 

cover; # represents the proportion of vegetation; 4 represents surface albedo; and, subscripts specify 

values for Ward 34. 

As noted above, the foregoing model achieves a coefficient of multiple determination (Y*) of 0.78. This is 

0.15 higher than the model that is applicable to the entirety of Philadelphia (i.e., the MLR Model), which 

achieved a coefficient of multiple determination (Y*) of 0.63. The reason why higher coefficients of 

multiple determination may be achieved when the data represent a specific subarea of the Philadelphia 

lies in the fact that the citywide data may, depending upon how data is resampled, include a higher 

degree of variability. Resampling the data may help to remove a significant degree of this variability, 

and thereby facilitate the achievement of a higher coefficient of multiple determination (Y*). However, 

because the intent of the UHIMPT model was to represent average conditions in order to support 

citywide analysis, the regression model developed with all 379,419 data points (i.e., the MLR Model) has 

been included in the UHIMPT model. Nonetheless, it is noted that, if desired, the UHIMPT model could 

be reformulated to include a multiple linear regression model derived from data representing a more 

specific (i.e., smaller) area. In such a scenario, however, the UHIMPT should only be used to simulate 

conditions within the area that is represented by the data. Additionally, it is important to ensure that the 

resampled data is evenly distributed and results in a logical model; resampling the data in the manner 

that has been described here may result in an uneven distribution and illogical model. 

 

In addition to the above, it is noted that the UHIMPT model, and specifically as represented in equations 

5 and 6, includes only an adaptation of the aforementioned MLR Model. The constant of the MLR Model 

(31.661) has been excluded from equations 5 and 6, and has been replaced with the mean and mean 

maximum urban heat island amplitude of the warmest month in a given time step (4̅T6.789!:	;</:= and 

4̅T,O.TPVWV6.789!:	;</:=, respectively), as represented below: 

Equation 5: Modification of Mean Warmest Month Urban Heat Island Amplitude 

4̅T6.789!:	;</:=,OXJPYPHJ = 4̅T6.789!:	;</:= + ^)
(Z>	×	\"̅)	%	(Z"	×	\)̂)	%	(Z?	×	\_̂)	%	*.D*

4.4a
* + 2.452_, and 
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Supplement B: Development of Multiple Linear Regression Model Used in Equations 5 and 6 

(Continued) 

Equation 6: Modification of Mean Maximum Warmest Month Urban Heat Island Amplitude 

4̅T,O.TPVWV6.789!:	;</:=,OXJPYPHJ = 4̅T,O.TPVWV6.789!:	;</:= + ^)
(Z>	×	\")̅	%	(Z"	×	\)̂)	%	(Z?	×	\_̂)	%	*.D*

4.4a
* + 2.452_, 

where: 4̅ represents mean urban heat island amplitude; Δ$ ̅represents the change in mean proportion of 

impervious surface cover in the urban area; Δ#a  represents the change in mean proportion of vegetation 

in the urban area; Δba represents the change in mean surface albedo in the urban area; UP represents the 

standard (i.e., beta [U]) coefficient for proportion of impervious surface cover (viz., 2.103) that results 

when the surface albedo and proportions of impervious surface cover and vegetation of a given area are 

regressed on its land surface temperature; U' represents the standard (i.e., beta [U]) coefficient for 

proportion of vegetation (viz., −8.730) that results when the surface albedo and proportions of 

impervious surface cover and vegetation of a given area are regressed on its land surface temperature; 

U_ represents the standard (i.e., beta [U]) coefficient for surface albedo (viz., −5.874) that results when 

the surface albedo and proportions of impervious surface cover and vegetation of a given area are 

regressed on its land surface temperature; and, subscripts, other than those contained in predictor (i.e., 

beta [U]) values, specify magnitudinal (e.g., maximum), temporal (e.g.: warmest month; current time 

step, as specified by c), and other characteristics (viz., modified, which signifies that the urban heat 

island amplitude in a given time step is modified by the right side of the equation) such that 

4̅T,O.TPVWV6.789!:	;</:= represents the mean maximum urban heat island amplitude of the warmest 

month in a given time step. 

Replacement of the constant of the MLR Model with 4̅T6.789!:	;</:= and 4̅T,O.TPVWV6.789!:	;</:= in 

equations 5 and 6 is explained by the fact that said equations are intended only for use in simulating 

how the modification of the proportion of impervious surface cover, the proportion of vegetation, and 

surface albedo impacts land surface temperature (n.b., as explained in the article, equations 5 and 6 

convert land surface temperature to ambient temperature). The initial urban heat island amplitude of 

the time step, which fills the role of the constant in equations 5 and 6, however, is more precisely 

calculated by equations 3 and 4, the results of which are included in equations 5 and 6 as 4̅T6.789!:	;</:= 

and 4̅T,O.TPVWV6.789!:	;</:=. The acceptability of this adaptation of MLR Model is confirmed by the fact 

that the relative impacts of the independent variables remain unchanged over the original (i.e., un-

adapted) form of the MLR Model. 
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Supplement C: Philadelphia-Specific Data Inputs to Demonstrative UHIMPT Model 

Population Inputs 

Age Cohort 2000 Population* 2010 Population* Births** Deaths** 

< 1 Year  19,732   21,077  0   2,340  

1 Year  19,414   20,649  0   115  

2 Years  19,257   20,333  0   85  

3 Years  19,403   19,912  0   71  

4 Years  20,355   19,082  0   54  

5 Years  21,198   18,534  0   54  

6 Years  22,048   18,576  0   41  

7 Years  22,370   18,022  0   41  

8 Years  22,908   17,672  0   14  

9 Years  23,587   18,023  0   24  

10 Years  23,965   18,300  0   37  

11 Years  22,958   18,017  0   27  

12 Years  22,650   17,803   25   44  

13 Years  21,879   17,929   126   71  

14 Years  21,274   18,591   669   58  

15 Years  20,106   19,604   2,080   68  

16 Years  19,814   20,337   4,178   91  

17 Years  20,551   21,376   6,772   156  

18 Years  23,844   25,940   9,667   240  

19 Years  26,386   31,040   11,751   240  

* Source: United States Census Bureau ** Source: Pennsylvania Department of Health 
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Supplement C: Philadelphia-Specific Data Inputs to Demonstrative UHIMPT Model (Continued) 

Population Inputs (Continued) 

Age Cohort 2000 Population* 2010 Population* Births** Deaths** 

20 Years  25,535   30,794   11,721   288  

21 Years  24,143   29,314   12,086   281  

22 Years  23,123   28,825   12,854   291  

23 Years  22,449   28,914   12,525   308  

24 Years  22,359   28,870   12,677   325  

25 Years  22,974   28,225   10,397   338  

26 Years  21,763   27,365   10,855   328  

27 Years  22,308   27,541   11,740   294  

28 Years  23,136   26,499   12,198   318  

29 Years  24,172   25,980   12,558   278  

30 Years  24,305   25,471   9,602   376  

31 Years  21,685   22,925   9,585   291  

32 Years  21,828   22,073   8,797   342  

33 Years  21,125   20,359   8,050   352  

34 Years  21,568   19,624   7,386   379  

35 Years  22,898   19,190   6,136   372  

36 Years  22,342   17,995   5,190   426  

37 Years  21,669   17,978   4,022   521  

38 Years  21,492   18,836   3,196   569  

39 Years  22,440   20,008   2,412   616  

* Source: United States Census Bureau ** Source: Pennsylvania Department of Health  
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Supplement C: Philadelphia-Specific Data Inputs to Demonstrative UHIMPT Model (Continued) 

Population Inputs (Continued) 

Age Cohort 2000 Population* 2010 Population* Births** Deaths** 

40 Years  23,301   19,819   1,883   640  

41 Years  21,533   18,504   1,256   758  

42 Years  22,103   18,697   745   711  

43 Years  21,306   18,564   434   795  

44 Years  20,826   18,732   384   870  

45 Years  21,130   19,857   305   951  

46 Years  19,551   19,715  0   1,090  

47 Years  19,272   19,456  0   1,093  

48 Years  18,523   19,203  0   1,063  

49 Years  18,539   19,855  0   1,252  

50 Years  19,047   20,632  0   1,212  

51 Years  17,296   19,756  0   1,317  

52 Years  17,947   20,278  0   1,323  

53 Years  17,108   19,802  0   1,608  

54 Years  14,117   19,416  0   1,479  

55 Years  14,088   19,248  0   1,642  

56 Years  13,865   17,855  0   1,730  

57 Years  14,477   17,465  0   1,841  

58 Years  12,556   16,462  0   1,723  

59 Years  12,294   16,667  0   1,909  

* Source: United States Census Bureau ** Source: Pennsylvania Department of Health   
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Supplement C: Philadelphia-Specific Data Inputs to Demonstrative UHIMPT Model (Continued) 

Population Inputs (Continued) 

Age Cohort 2000 Population* 2010 Population* Births** Deaths** 

60 Years  12,286   15,946  0   1,865  

61 Years  11,505   15,233  0   1,953  

62 Years  11,809   15,453  0   2,153  

63 Years  11,139   14,707  0   2,119  

64 Years  11,197   11,772  0   2,109  

65 Years  11,305   11,466  0   2,068  

66 Years  10,526   11,103  0   2,298  

67 Years  10,832   11,429  0   2,139  

68 Years  10,494   9,836  0   2,440  

69 Years  10,965   9,357  0   2,650  

70 Years  11,042   8,944  0   2,752  

71 Years  10,440   8,586  0   2,941  

72 Years  10,739   8,456  0   3,029  

73 Years  10,207   7,861  0   3,337  

74 Years  10,498   7,726  0   3,452  

75 Years  10,298   7,624  0   3,855  

76 Years  9,831   6,923  0   4,258  

77 Years  9,150   6,805  0   4,566  

78 Years  9,055   6,761  0   4,583  

79 Years  8,532   6,554  0   4,786  

* Source: United States Census Bureau ** Source: Pennsylvania Department of Health   
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Supplement C: Philadelphia-Specific Data Inputs to Demonstrative UHIMPT Model (Continued) 

Population Inputs (Continued) 

Age Cohort 2000 Population* 2010 Population* Births** Deaths** 

80 Years  8,214   6,157  0   5,206  

81 Years  6,964   5,828  0   5,476  

82 Years  6,523   5,702  0   5,503  

83 Years  5,614   5,094  0   5,524  

84 Years  5,154   4,986  0   5,690  

85 Years  4,874   4,589  0   5,754  

86 Years  4,069   4,132  0   5,466  

87 Years  3,648   3,696  0   5,118  

88 Years  2,876   3,103  0   5,138  

89 Years  2,712   2,826  0   4,887  

90 Years  2,096   2,240  0   4,217  

91 Years  1,628   1,827  0   3,649  

92 Years  1,395   1,404  0   3,320  

93 Years  1,025   1,110  0   2,616  

94 Years  815   869  0   2,379  

95 Years  630   718  0   1,929  

96 Years  436   489  0   1,499  

97 Years  362   374  0   1,019  

98 Years  207   248  0   660  

99 Years  211   197  0   78  

≥ 100 Years  355   289  0   10  

* Source: United States Census Bureau ** Source: Pennsylvania Department of Health  
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Supplement C: Philadelphia-Specific Data Inputs to Demonstrative UHIMPT Model (Continued) 

Climate Inputs* 

Input Rural Urban Region 

Last Year Represented by Climate Norm 2010 2010 2010 

Normal Mean Warmest Month Temperature 24.3358 25.1167 — 

Normal Mean Maximum Warmest Month Temperature 30.2288 30.4175 — 

Normal Mean Annual Temperature — — 12.2539 

Normal Mean Summer Temperature — — 23.2760 

Normal Mean Winter Temperature — — 0.9525 

Projected Mean Annual Temperature (Period 1) — — 13.4335 

Projected Mean Annual Temperature (Period 2) — — 15.0754 

Projected Mean Annual Temperature (Period 3) — — 16.8857 

Projected Mean Warmest Month Temperature (Period 1) 25.7293 26.4736 — 

Projected Mean Maximum Warmest Month Temperature (Period 1) 31.7643 31.9823 — 

Projected Mean Warmest Month Temperature (Period 2) 27.4590 28.2037 — 

Projected Mean Maximum Warmest Month Temperature (Period 2) 33.5278 33.7454 — 

Projected Mean Warmest Month Temperature (Period 3) 29.4353 30.1688 — 

Projected Mean Maximum Warmest Month Temperature (Period 3) 35.5536 35.7608 — 

First Year of Projection Period 1 2011 2011 2011 

Last Year of Projection Period 1 2040 2040 2040 

First Year of Projection Period 2 2041 2041 2041 

Last Year of Projection Period 2 2070 2070 2070 

First Year of Projection Period 3 2071 2071 2071 

Last Year of Projection Period 3 2100 2100 2100 

* All climate inputs obtained/derived from Wang et al. [56] 
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Supplement D: Demonstrative UHIMPT Model in STELLA (.STMX) File Format 

The file entitled “SUPPLEMENT D (UHIMPT Model as Demonstrated in Section 3.1 of Article).stmx,” 

which is provided in the subfolder entitled “Supporting Files,” contains the UHIMPT model as used in 

the demonstration that is discussed in Section 3.1 of the article. 

Please note that the file is in the STELLA (.stmx) file format and can be opened in STELLA software, 

which is published by isee systems, Inc. of Lebanon, New Hampshire (https://www.iseesystems.com). 

 


