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Abstract: Much research has documented the contagiousness of violence. Some of this work has
focused on contagiousness as operationalized by the spread across geographical space, while other
work has examined the spread within social networks. While the latter body of work struggles with
incomplete network data, the former constitutes a theoretical mismatch with how violence should
spread. Theory instead strongly suggests that violence contagion should diffuse through everyday
mobility networks rather than just adjacently through geographical space. Beyond contagion itself,
I argue that neighborhoods connected through mobility networks should serve as useful short-term
sensors in predicting imminent violence because these sets of residents tend to experience shared
environmental exposures, which may induce synchrony in the likelihood of violence. I explore
this topic and these relationships using violent crime data from the three largest U.S. cities: New
York City, Los Angeles, and Chicago. Using two-way fixed effects models, I test whether or not
violence in mobility-connected alter neighborhoods in the preceding hour predicts violence in an
ego neighborhood in the next hour. Across all three jurisdictions, I find that recent violence in the
neighborhoods to which a neighborhood is connected through mobility ties can strongly predict
that neighborhood’s odds of subsequent violence. Furthermore, spatial proximity has no significant
effect on the likelihood of violent crime after controlling for mobility ties. I conclude by arguing that
mobility patterns are an important pathway in the prediction of violence.

Keywords: violence; mobility patterns; mobility networks; contagion

1. Introduction

Urban violence in the United States is unevenly distributed and has adverse conse-
quences with unequal effects [1–6]. A substantial body of research has investigated violence
as a contagion. On a large scale, early theories of gun violence, in particular, described
the proliferation of urban violence as a result of an arms race between young men [7].
In this sense, gun violence was argued to be contagious on a larger scale of time, where
perceptions of gun proliferation drove further proliferation.

More recent research has attempted to examine the contagion of violence on a smaller
empirical time scale. For example, Cohen and Tita [8] found evidence that violence diffuses
from census tracts to adjacent census tracts. Similar research has relied on the assumption
that non-random space-time clustering constitutes a contagion effect. More recent research
by Loeffler and Flaxman [9] improved causal interpretation in estimating violence contagion
by modeling complete gun violence data using a point process. They found that some
diffusion in space and time exists but that it is very limited in scope (126 m and 10 min).

Ultimately, this body of research has been highly uniform in how it considers violence
to diffuse. While some scholars have posited that gun violence spreads through social
networks [10,11], many scholars have conceptualized and measured the diffusion of crime
spatially. While such analyses are well-grounded in the fundamental concept of Tobler’s
Law [12], spatial proximity is not all that matters. Instead, theories suggest that the
central diffusion mechanism is through intergroup exposure, such as retaliation for acts of
violence [9]. Indeed, a model of violence diffusion that is based on the notion that actors
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spread violence suggests violence would not simply spread randomly across space but
should instead follow patterns that align with how people move about urban areas.

In this paper, I utilize mobility patterns and spatial proximity data to examine how
the incidence of violent crime in census block groups in New York City, Los Angeles, and
Chicago predict the subsequent incidence of violent crime in other census block groups.
I choose to focus on these three cities because they constitute the three largest cities in the
United States and vary substantially in geographic and demographic terms.

Across all three cities, I find that the relationship between census block groups, as
operationalized by mobility patterns but not spatial contiguity, predicts the acute diffusion
of violent crime. While the methodology does not justify causal claims of a contagion
effect, this work does provide suggestive evidence regarding the types of neighborhood
relationships that would constitute violence contagion if it were to exist and makes a
significant contribution to the literature in terms of how violent crime can be predicted
before it happens.

2. Literature Review

Gun violence is generally theorized to act as a contagion on a short time scale, “with
individual incidents leading to elevated risk of retaliatory shootings concentrated in the
communities and lives of individuals connected to earlier incidents” [9]. The same has
been argued for acts of violence in general [13]. Indeed, the notion that violence diffuses
between people explains why recent research has studied the diffusion of gun violence
within social networks [10,11]. However, a significant limitation of studies like this is that
the social network data they rely on is based strictly on available co-offending networks.
Thus, it is subsequently incomplete when measuring whom a person is actually socially or
criminally connected to.

Tita and Greenbaum [14] argued that for an accurate model of violence contagion,
“the appropriate unit of analysis must also consider the spatial dimensions of the social
phenomena thought to be responsible for the spatial patterning”. Similarly, Loeffler and
Flaxman [9] said, “Theoretically, diffusing gun violence would provide support for models
of gun violence that emphasize its contagious/infectious features and suggest the need for
additional studies focusing on the exact individual-level and mobility-based mechanisms
through which elevated risk is transmitted through space and time.” Thus, past work has
called attention to and highlighted the need for models of violence contagion to utilize
everyday mobility data.

Beyond contagion being more likely to spread through mobility networks than simply
through proximal space, neighborhoods connected through mobility network ties can
serve as an important sensor for what goes on in a particular neighborhood [15]. Waves
of violence tend to have common underlying causes, which is why the same sets of
neighborhoods tend to experience upticks or reductions in violence together [16]. Indeed,
in the very short term, violence tends to correlate with certain days of the week, holidays,
and weather conditions [17–19]. These shared causes highlight how synchrony in crime
can arise from shared behaviors or cultural practices.

Neighborhoods connected through mobility ties tend to be socially similar and share
many of the same everyday environments and exposures. Specific patterns of mobility
activity predict violent crime. For example, nightlife activities tend to predict violence [20].
Neighborhoods connected through mobility patterns may share common exposures such as
this while causing violence in separate neighborhoods. Similarly, some evidence suggests
that acute usage of drugs and alcohol causes violent behavior [21]. Since the use of drugs
and alcohol may be facilitated by common environmental exposure, which mobility ties
would facilitate, mobility patterns may induce shared exposure which induces synchrony
in violence [22]. Other common practices, such as synchronous engagement in watching
sports, may also affect the incidence of violence [23].

There are, of course, a multitude of environmental conditions that may induce or
prevent violent crime. These varying environmental conditions constitute shared-exposure
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bias, an important form of bias confounding results in causal peer effects analysis [24].
Shared-exposure bias is a main reason why neighborhoods connected through mobility
patterns may serve as valuable sensors to predict future violence, as well as why results
interpreted from analyses like this (that cannot control away shared-exposure bias) cannot
make causal claims regarding the contagiousness of a phenomenon.

An additional reason why neighborhoods connected through mobility ties may serve
as suitable sensors is because of network properties. In individual social networks, there
are always more friends of friends than friends [25]. This principle has led to friends of
individuals from a random population sample being useful sensors for various network
phenomena. For example, Christakis and Fowler [26] found that friends of a random
sample of university students tended to get the flu about two weeks before the individuals
in the random sample themselves did. Notably, this phenomenon is not necessarily because
friends spread the flu directly to the random sample but because friends are better connected
in general and thus are likely to be exposed to contagions ahead of the general population.
The same properties must hold for mobility networks since mobility networks constitute a
directed network, for which the friendship paradox still holds [27]. Alter neighborhoods
connected through mobility ties inherently must, on average, be better connected and thus
may be a valuable sensor of a coming violence wave.

Ultimately, a more conceptually fitting model of violence diffusion would thus not
simply consider geographical proximity but also human everyday mobility patterns. De-
spite much research being done on spatiotemporal analyses of violence diffusion, little has
taken into account mobility patterns. Much of this is the result that detailed data measuring
everyday mobility patterns have historically been unavailable. Recently, this has changed,
however. The advent of cell phones and software that tracks where people travel at scale
has resulted in the public availability of datasets that map how neighborhood residents
travel in their everyday lives.

Mobility patterns have proven to be helpful in the analysis of violent crime. Looking
at neighborhoods in Chicago, Graif and colleagues [15] found that homophily in violence
patterns between neighborhoods predicted subsequent commuting tie formation between
neighborhoods. Research has additionally found the qualities of neighborhood visitors
to be a critical predictor of neighborhood violence. Levy and colleagues [28] found that
the neighborhood disadvantage associated with a neighborhood’s visitors was a stronger
predictor of homicide than the residential disadvantage of the neighborhood itself. Ulti-
mately, there exists a strong basis by which to hypothesize mobility patterns may better
predict violence than spatial proximity. In the next section, I introduce the data I will use to
empirically test this supposition.

3. Data

This analysis covers the three largest U.S. cities: New York City, Los Angeles, and
Chicago. Using violent crime data, I construct a long-form dataset where each observation
represents a unique combination of census block group and one-hour period. I utilize
two-way fixed effects logit models to predict the odds of a violent crime occurring in a
census block group in a particular one-hour period. The two-way fixed effects account for
omitted variable bias, which otherwise would be an issue given that violent crimes tend to
be more concentrated in certain areas and at certain periods of time. I take advantage of
mobility data to estimate the number of visitors to a census block group in a given hour
and the number of residents in a census block group at home at a given hour since these
variables are important time-varying predictors of the acute likelihood of violent crime
occurring [29]. I estimate the effect of recent violent crime in a census block group’s mobility
network through the inclusion of a time-varying covariate where a zero value indicates
no violent crime occurred in the neighborhoods mobility network in the previous hour,
while a larger value indicates one or more violent crimes occurred in neighborhood(s) that
are strongly connected through mobility ties. I similarly include a time-varying covariate
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operationalizing recent violent crime in a contiguous neighbor of a census block group.
Greater detail on how these measures are calculated is included in the next section.

3.1. Crime Data

Crime data for this project comes from three sources. New York City crime data comes
from the New York Open Data website’s “NYPD Complaint Data Historic” dataset. This
dataset consists of records of all valid felony, misdemeanor, and violation crimes reported
to the New York City Police Department between 2006 and 2019. All incidents in the
dataset have a specific time and date they occurred and latitude and longitude of where
they occurred. They also include an “Offense Description”, based on which I subset violent
crimes. Based on the level of descriptions involved in the dataset, I code five types of
complaints as violent crimes: Assault in the third degree, Felony Assault, Robbery, Rape,
and Murder/Non-negligent manslaughter.

Los Angeles crime data come from the Los Angeles Police Department’s “Crime Data
from 2010 to 2019” dataset. This dataset consists of records of every recorded crime that
occurred in Los Angeles between 2010 and 2019. The data originates from transcribed
LAPD reports. All incidents in the dataset have a specific time and date they occurred and
latitude and longitude of where they occurred. All incidents additionally include a crime
code. Based on the level of description involved in the dataset, I code six types of crimes as
violent crimes: Homicide, Robbery, Kidnapping, Rape, Assault (of any type), and Battery
(of any type).

Chicago crime data comes from the Chicago Data Portal “Crimes–2001 to Present”
dataset. This dataset consists of records of every recorded crime that occurred in Chicago
since 2001. The data originates from the Chicago Police Department’s Citizen Law Enforce-
ment Analysis and Reporting system. All incidents in the dataset have a specific time and
date they occurred and latitude and longitude of where they occurred. They also include
a “Primary Description” based on which I subset violent crimes. Based on the level of
descriptions involved in the dataset, I code six types of incidents as violent crimes: Battery,
Assault, Robbery, Criminal Sexual Assault, Homicide, and Kidnapping. Ultimately, the
types of crimes included in the analyses for each of the three cities are in line with the
Bureau of Justice Statistics definition [30]. Coding is just slightly different between the three
cities in order to account for the fact that all three datasets use different offense typologies
and have different state/local statutes by which they refer to certain crimes.

The sets of neighborhoods involved in the dual analyses come from three sources.
A list of 2010 Census Tracts located in the City of Chicago is obtained from the Chicago
Data Portal. A similar list for New York City is obtained from NYC Open Data. A similar
list is obtained from Los Angeles city website. For all three cities, I include all census
block groups that compose the Census Tracts listed in the datasets, with the exception of
census block groups that have fewer than 300 people based on the 2015–2019 American
Community Survey estimates. These exclusions make little difference, and census block
groups included in the final analysis contain 99.6% of the city’s population in New York
City and Los Angeles and 99.7% in Chicago.

3.2. Daily Mobility Data

The mobility data used in this work comes from SafeGraph’s “Social Distancing
Metrics” dataset. SafeGraph is a U.S. company that aggregates anonymized, repeatedly
measured location data from a nationally representative sample of 45 million smartphone
devices provided by Veraset. SafeGraph’s “Social Distance Metrics” dataset provides daily
updated information on individuals’ visits to and from census block groups for every
day in 2019. A visit is defined here as a cluster of proximal location pings with duration
longer than one minute. Individual devices may not count for multiple visitors to the same
neighborhood on the same day. The home location for a device is determined by SafeGraph
using machine learning as the common nighttime (6:00 p.m. to 7:00 a.m.) location of the
device. For each unique directed combination of census block groups, i and j in the United
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States and for each unique day, Safegraph sums up the number of unique devices that
reside in neighborhood i and make at least one visit to neighborhood j on that given day.
Notably, this data has been used substantially in recent research [31], and my usage of the
data follows precisely from this recent research.

Using SafeGraph’s data, I calculate the number of visitors neighborhood i receives
from neighborhood j at hour t using the following formula:

viijt =
viijd × (1− phit)× popi

∑ viijd

where viijd represents the number of visitors from neighborhood i to neighborhood j on
day d (where hour t is part of day d), phit is the percent of residents of neighborhood i
that are home at hour t, popi is the residential population of neighborhood i, and ∑ viijd
represents the total number of visitors to neighborhood j across all neighborhoods on day d.
This formula was devised based off of daily visitor patterns being aggregated to the daily
level while volume of mobility data is available at the hourly level. This formula essentially
estimates the number of visitors from one neighborhood to another for a particular hour.

I additionally construct a year-long aggregated weighted directed network between
census block groups by aggregating these hour-level visitor counts. Subsequently, I conceive
of the set of census block groups in each of the three cities as three networks, where the
directed relationship between neighborhood i and neighborhood j, represents the total
number of visitor-hours residents in neighborhood i spent in neighborhood j. This formula
follows identically from recent research [31].

Vij = ∑ vijt

I additionally calculate the population of people at home in a neighborhood during a
particular hour using the following formula.

popjt = phjt × popj

4. Methods

I manipulate data to fit into a long-form, where each observation represents a unique
combination of census block group, hour, and day. I operationalize the dependent vari-
able, “violent crime” as a binary variable, with a 1 indicating one or more violent crimes
were reported in the given census block group at the given hour on the given day and a
0 indicating no violent crimes were reported.

For each given observation, I calculate an in-degree of violent crime-hours in the
previous hour using the following formula:

INVjt =
∑ vit × viij

∑ viij

Here, vit corresponds to the level of violence in neighborhood i, at time t, in the
previous one hour.

I additionally calculate an out-degree of violent crime-hours in the previous T hours
using the following formula:

ONVjt =
∑ vit × viji

∑ viji

Notably, the formulas for these measures follow similar formulas from recent research
on neighborhood mobility networks [31]. I subsequently operationalize mobility lag as
the sum of in-degree violence and out-degree violence in the previous hour. Conceptually,
mobility lag can be thought of as the preceding level of violence in alter neighborhoods
that an ego neighborhood is connected to through mobility patterns. As an example, if a
neighborhood X received 2.5% of its visitors from neighborhood Y and sent 2.5% of the
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visitors that visited neighborhood Y, and neighborhood Y was the only neighborhood
connected to neighborhood X where a violent crime occurred at a particular time, the
mobility lag for neighborhood X in the next hour would 0.025 + 0.025, which is 0.05.
Mobility lag may range from 0 to 2.

Figure 1 compares the geographical distribution of yearly summed violent crimes
with yearly summed mobility lag in Chicago. The left figure depicts simply the number
of violent crimes in each census block group in 2019. Distinctly, the right figure shows
the aggregated number of violent crimes in each census block group’s mobility network,
weighting by the strength of the tie and summing across all hours in 2019. This visualization
reveals violent crimes being concentrated mostly in the western and southern areas of
the city. The areas where violent crime tends to be highest or lowest are not necessarily
mirrored by mobility lag. Indeed, many of the safer neighborhoods on the west and south
sides have far above-average mobility lag, while the most dangerous neighborhoods on
the north side have far below-average mobility lag. While mobility lag appears to be
much smoother spatially compared to violent crime, notable exceptions exist. While spatial
proximity tends to predict mobility patterns, the two are not duplicitous [32]. The figure
visually depicts substantial exceptions. Figures S1–S6 in the Supplementary Materials
provide similar visualizations for New York City and Los Angeles.
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To operationalize spatial lag, I look at the census block groups that are contiguous
with a given census block group. This approach aligns with past research [8]. Subsequently,
I specifically operationalize spatial lag as the proportion of contiguous tracts that experi-
enced a violent crime in the previous hour. As an example, if a given neighborhood was
contiguous with five other neighborhoods and exactly one of them experienced a violent
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crime, the spatial lag for the given neighborhood in the next hour would be 0.2. Spatial
lag, as I conceptualize it here, effectively refers to the level of violence in spatially proximal
neighborhoods in the preceding hour. This measure of spatial lag provides a variable by
which to test if spatial pathways predict the diffusion of violent crime.

I estimate a two-way fixed effects model for all three cities in the exact same form. For
New York City, 309 census block groups and 28 h of the year were dropped because no
violent crimes were reported there or then. For Los Angeles, 73 census block groups and
162 h of the year were dropped because no violent crimes were reported there or then. For
Chicago, 21 census block groups and 55 h of the year were dropped because no violent
crimes were reported there or then.

Tables 1–3 contain summary statistics for New York City, Los Angeles and Chicago,
respectively.

Table 1. Summary statistics for New York City.

Variable Mean Sd Min 25th % 75th % Max

Violent Crime 0 0.039 0 0 0 1

Mobility Lag 0 0.01 0 0.001 0.004 0.769

Spatial Lag 0 0.017 0 0 0 1

Logged Visitors 6.2 0.871 0.448 5.622 6.704 10.815

Logged Population 6.3 0.578 1.041 5.943 6.681 8.868

Table 2. Summary statistics for Los Angeles.

Variable Mean Sd Min 25th % 75th % Max

Violent Crime 0 0.05 0 0 0 1

Mobility Lag 0 0.014 0 0.001 0.009 0.614

Spatial Lag 0 0.022 0 0 0 1

Logged Visitors 6.3 0.93 −0.603 5.663 6.891 10.523

Logged Population 6.4 0.622 1.956 6.047 6.86 9.035

Table 3. Summary statistics for Chicago.

Variable Mean Sd Min 25th % 75th % Max

Violent Crime 0 0.064 0 0 0 1

Mobility Lag 0 0.018 0 0.002 0.016 0.595

Spatial Lag 0 0.028 0 0 0 1

Logged Visitors 6.1 0.869 0.564 5.536 6.594 11.169

Logged Population 6.2 0.59 1.309 5.787 6.556 8.891

My preferred model specification can be written as follows:

logit[P(Yit = 1)] = Yi(t−1) × θ1 + VISit × θ2 + POPit × θ3 + MOBi(t−1) × θ4 + SPATi(t−1) × θ5 + ∆i +∇t + ε

where Yit is an indicator variable denoting whether or not CBG i experienced any violent
crimes in hour t. VISit represents the natural log of the number of visitors to CBG i in hour
t. POPit represents the natural log of the number of residents of CBG i at home in hour t.
MOBi(t−1) represents the sum of In-degree violence and out-degree violence for CBG i in
hour t − 1. SPATi(t−1) represents the spatial lag for CBG i in hour t − 1. ∆i represents fixed
effects for all CBGs. ∇t represents fixed effects for all hours in 2019. ε is an error term with
the assumed statistical properties for a two-way fixed effect logit model.



Urban Sci. 2022, 6, 74 8 of 12

The intuition behind the model is that the incidence of violence may vary substantially
between certain neighborhoods and certain periods of time. Conditioning on the neigh-
borhood and time period, I expect time-varying covariates for the number of people in
the neighborhood to be a significant predictor of the incidence of violence. I also expect
mobility lag to be a significant predictor of violent crime [33]. While I do not necessarily
expect spatial lag to be significant, I do expect any significant effect that is to occur to
be minute in comparison the effect size for mobility lag. Interpretation-wise, a positive
and significant coefficient for mobility lag suggests that mobility pathways can predict
the diffusion of violent crime between neighborhoods, while a positive and significant
coefficient for spatial lag suggests that pathways related simply to spatial proximity can
predict the diffusion of violent crime between neighborhoods. Ultimately, I believe the
model I use here is quite parsimonious and aligns with past criminological research by
taking advantage of two-way fixed effects and including the most theoretically meaningful
time-varying covariates.

5. Results

Table 4 presents the main model results for New York City. Model one estimates the
presence of hourly violence based on logged visitors and logged population at home that
hour. Visitors are a strong predictor of the likelihood of violence, while population at home
makes a more modest contribution. This aligns with recent research, which has found the
volume and composition of visitors to an area to predict violence [28,29]. Model two adds
in lagged violent crime, a dichotomous variable indicating whether or not a violent crime
was reported in the census block group in the previous hour. Interpreting these results as a
risk ratio, which is reasonable given the rarity of the outcome, the presence of violent crime
in the prior hour increases the risk of a violent crime in the current hour by 116.4%.

Table 4. New York City Hourly Violent Crime Models.

Model 1 Model 2 Model 3 Model 4 Model 5

Lagged Dependent Variable 0.772 *** 0.772 *** 0.773 *** 0.773 ***
(0.042) (0.042) (0.042) (0.042)

Logged Visitors 0.193 *** 0.192 *** 0.192 *** 0.192 *** 0.192 ***
(0.016) (0.016) (0.016) (0.016) (0.016)

Logged Population 0.064 ** 0.064 ** 0.064 ** 0.064 ** 0.064 **
(0.020) (0.020) (0.020) (0.020) (0.020)

Mobility Lag 1.708 *** 2.313 ***
(0.289) (0.417)

Spatial Lag 0.457 ** −0.459
(0.160) (0.235)

CBG and Hour Fixed Effects X X X X X

N 50,799,923 50,799,923 50,799,923 50,799,923 50,799,923
AIC 1,112,129.164 1,111,824.572 1,111,818.811 1,111,793.986 1,111,792.228
BIC 1,341,101.253 1,340,812.403 1,340,822.386 1,340,797.561 1,340,811.547

Pseudo R2 0.080 0.080 0.080 0.080 0.080

*** p < 0.001; ** p < 0.01.

Model three adds spatial lag, which is operationalized here as the fraction of spatially
contiguous neighborhoods that experienced a violent crime in the previous hour. The
estimates reveal a positive effect of spatial lag on the odds of a violent crime, significant at
p < 0.01. Assuming a neighborhood is bordered by five neighborhoods, and one of them
experiences a violent crime in the previous hour, the risk of a violent crime in the subsequent
hour would be increased by 9.6% relative to if none of the contiguous neighborhoods had
experienced any violent crime.

Model four excludes spatial lag but includes mobility lag. Mobility lag is operational-
ized here as the sum of all neighborhoods that experienced a violent crime in the previous
hour, weighting by the percent of visits made by residents of the target neighborhood to
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those neighborhoods and by the percent of visitors to the target neighborhood that are from
those neighborhoods. The coefficient estimate reveals this is a strong predictor of the risk
of violent crime, significant at p < 0.001. For example, if a neighborhood that sends and
receives 2.5% of the visitors to another neighborhood experiences a crime in a particular
hour, the risk of the other neighborhood experiencing a neighborhood increases by 8.9%.

Model five includes both spatial lag and mobility lag. The effect of spatial lag becomes
negative here but is not statistically significant. The effect of mobility lag actually slightly
increases. Ultimately, the results indicate that any effect of spatial lag in New York City
can be explained by mobility lag. Mobility lag appears to be an essential form of relation
through which violence in one hour can predict violence in the next.

Tables 5 and 6 present the results of models for Los Angeles and Chicago. The results
mostly follow those of New York City. Visitors and population at home are important
predictors of violent crime, with visitors being a dominant driver. Lagged violent crime is
a consistently strong predictor, although slightly less so in Los Angeles and Chicago (73.7%
and 55.7% increase in risk) compared to New York City (116.4%).

Table 5. Los Angeles Hourly Violent Crime Models.

Model 1 Model 2 Model 3 Model 4 Model 5

Lagged Dependent Variable 0.552 *** 0.553 *** 0.555 *** 0.555 ***
(0.059) (0.059) (0.058) (0.058)

Logged Visitors 0.087 *** 0.086 *** 0.086 *** 0.087 *** 0.087 ***
(0.018) (0.018) (0.018) (0.018) (0.018)

Logged Population 0.048 * 0.047 * 0.047 * 0.047 * 0.047 *
(0.024) (0.023) (0.023) (0.023) (0.023)

Mobility Lag 0.723 ** 0.903 **
(0.250) (0.346)

Spatial Lag 0.179 −0.153
(0.149) (0.208)

CBG and Hour Fixed Effects X X X X X

N 20,915,534 20,915,534 20,915,534 20,915,534 20,915,534
AIC 696,083.743 695,916.218 695,916.786 695,910.849 695,912.250
BIC 859,707.757 859,555.088 859,570.511 859,564.575 859,580.832

Pseudo R2 0.092 0.092 0.092 0.092 0.092

*** p < 0.001; ** p < 0.01; * p < 0.05.

Table 6. Chicago Hourly Violent Crime Models.

Model 1 Model 2 Model 3 Model 4 Model 5

Lagged Dependent Variable 0.443 *** 0.443 *** 0.445 *** 0.445 ***
(0.033) (0.033) (0.033) (0.033)

Logged Visitors 0.237 *** 0.236 *** 0.236 *** 0.236 *** 0.236 ***
(0.018) (0.018) (0.018) (0.018) (0.018)

Logged Population 0.054 ** 0.053 ** 0.053 ** 0.053 ** 0.053 **
(0.021) (0.020) (0.020) (0.020) (0.020)

Mobility Lag 0.561 * 0.825 **
(0.220) (0.286)

Spatial Lag 0.056 −0.203
(0.107) (0.138)

CBG and Hour Fixed Effects X X X X X

N 18,539,449 18,539,449 18,539,449 18,539,449 18,539,449
AIC 941,836.133 941,651.888 941,653.596 941,646.874 941,646.626
BIC 1,101,229.078 1,101,059.569 1,101,076.012 1,101,069.290 1,101,083.778

Pseudo R2 0.082 0.082 0.082 0.082 0.082

*** p < 0.001; ** p < 0.01; * p < 0.05.
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Notably, spatial lag is not a significant predictor of violent crime in Los Angeles or
Chicago. Both coefficients are positive, however, suggesting the substantially smaller
number of observations in Los Angeles and Chicago (and subsequent reduced statistical
power) may be responsible for why spatial lag is not significant in either city. In either case
though, mobility lag is a significant predictor. Again, the effect is smaller in Los Angeles
or Chicago versus New York City. If a neighborhood that sends and receives 2.5% of the
visitors to another neighborhood experiences a violent crime in a particular hour, the risk
of the other neighborhood experiencing a violent crime increases by 8.9% in New York City,
3.7% in Los Angeles, and 2.8% in Chicago. In all three cases, when spatial lag and mobility
lag are included in a model, the effect of spatial lag is negative and non-significant, while
the effect of mobility lag is positive and significant.

6. Discussion

The diffusion of gun violence has been well-studied within criminology. Most recently,
a spatiotemporal test found that while gun violence is contagious, diffusion is limited to
short distances, 126 m, and short times, 10 min [9]. While this research makes a cogent
argument, spatiotemporal tests are useless when theory suggests that violence does not
spread randomly across space. Indeed, in this research, I find that spatial pathways are
insignificant in predicting the diffusion of violent crime between census block groups,
while mobility pathways are significant across all three jurisdictions examined. Notably,
these three jurisdictions constitute the three largest cities in the United States and vary
substantially in geographic and demographic terms.

A notable shortfall of this work is the inability to draw causal inferences from these
empirical analyses. A standard method for causal inference in work like this is to utilize
weather conditions as an instrumental variable and analyze diffusion between distant
people or places. However, this type of analysis necessitates people or places be distant
enough that weather conditions may vary substantially, which tends not to be the case
with local neighborhoods. Ultimately, the analysis completed here does not justify causal
interpretations of a contagion effect.

However, this research does suggest that if a violence contagion did exist, the form
through which diffusion would occur would be mobility patterns rather than spatial
contiguity. Indeed, this notion aligns closely with theory. Retaliatory acts constitute a
central mechanism through which violence contagion may manifest [9]. Such retaliatory
acts should constitute a network of people whose movement patterns are approximately
captured by aggregated, nuanced mobility metrics, not simply spatially proximal patterns
of movement.

In addition to a contagion effect, mobility patterns may predict violent crime diffusion
as a result of shared-exposure bias. Various common exposures tend to cause violence, and
mobility ties may indicate that residents of different neighborhoods share these common
exposures. Spatially proximal neighborhoods need not be strongly connected through
mobility patterns, so the same is not necessarily true for spatially proximal neighborhoods.

If violence is contagious and spreads through mobility patterns, such a finding would
have substantial implications for neighborhood inequality in contagion-induced violence.
Specifically, a major implication would be that neighborhoods connected through mobility
patterns to violent neighborhoods would experience more contagion-induced violence.
Notably, recent analyses of violence and other adverse neighborhood outcomes find that
mobility connections with disadvantaged neighborhoods is an extremely powerful pre-
dictor [28,31]. Furthermore, connections to disadvantaged neighborhoods also tend to
be racially unequal. Since disadvantage and violence are highly correlated, contagious
violence may ultimately be even more concentrated in already-violent neighborhoods and
also may concentrate in Black neighborhoods. Future research needs to better assert the
validity of these claims though.

The ability to predict violent crime is valuable regardless of the awareness of the causal
mechanism. For example, research using social networks to predict the diffusion of gun
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violence has blossomed into targeted violence prevention programs in Chicago [34]. This
program, and other similar ones, operate outside the criminal justice system and provide
alternatives to traditional policing in preventing violence. While this analysis is done over
the short term, this work lays a blueprint for utilizing mobility patterns to predict violence
before it happens, which may eventually be usable in preventing violence. Future research
should build off this work by further disentangling the mechanisms that make mobility
patterns meaningful, and policy interventions should consider utilizing these findings in
creating violence prevention programs.

7. Conclusions

In this work, I compared mobility and spatial pathways in the hourly patterning of
violent crime in New York City, Los Angeles, and Chicago. Across all three cities, I find
that recent violence in the neighborhoods a neighborhood is connected to through mobility
ties can strongly predict that neighborhood’s odds of violent crime in the subsequent hour.
Furthermore, spatial proximity has no significant effect on the likelihood of violent crime
after controlling for mobility ties in any of the three cities. I encourage future research on
violence contagion to more greatly consider mobility patterns as a potential pathway and
empirically take advantage of the rich data that has become recently available.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/urbansci6040074/s1, Figure S1. Manhattan, Figure S2. Brooklyn,
Figure S3. Queens, Figure S4. Bronx, Figure S5. Staten Island, Figure S6. Los Angeles.
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