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Abstract: The urban heat island (UHI) effect is a serious health risk for people living in cities and thus
calls for effective mitigation strategies in urban areas. Satellite data enable monitoring of the surface
urban heat island (SUHI) over large areas at high spatial resolution. Here we analysed SUHI in the city
of Stuttgart (Germany) based on land surface temperature (LST) data from Landsat at 30 m resolution.
The overall SUHI in Stuttgart decreased by 1.4 ◦C between the investigated time periods 2004–2008
and 2016–2020, while the absolute LST increased by 2.5 ◦C. We identified local hotspots of strong
warming and cooling in Stuttgart through the change in SUHI and categorised them based on the
predominant land cover change occurring at the hotspot using the Normalised Difference Vegetation
Index (NDVI) from Landsat as well as visual information on land cover changes from Google Earth
Pro. The establishment of green roofs, as well as albedo changes, are predominantly responsible
for cooling spots, while warming spots are mostly associated with the sealing of surfaces. This
highlights that vegetation has a dominant influence on SUHI development in Stuttgart. Combining
satellite-based LST data with visual information thus provides an effective method to identify local
warming and cooling hotspots, which allows monitoring of the success of city policies against heat
stress and guides future policy.

Keywords: UHI; UHI mitigation; UHI change; heat stress; land surface temperature; climate change;
urban climate; urban land cover; sustainable urban planning; remote sensing

1. Introduction

Climate change has severe consequences for natural and anthropogenic systems.
These encompass an increase in weather and climate extremes with associated damages
and losses to nature and people [1]. Urban areas are particularly vulnerable to the impacts
of climate change due to their high population density. Additionally, temperatures in
urban areas are often higher than in the surroundings due to the urban heat island (UHI)
effect. UHI is caused by different factors, such as the high degree of sealed surfaces in cities
(particularly due to construction materials used for roads and buildings), the anthropogenic
heat produced by industry and traffic, and the high absorption fraction of solar radiation by
dark construction materials due to their low albedo. As a result, the surface temperature in
cities can reach over 60 ◦C on asphalt and concrete surfaces, especially during hot summer
days [2].

In Germany, the frequency of heat waves is expected to triple by 2100 in comparison to
the present climate, and their duration is projected to increase by 25% [2]. As a consequence,
the number of heat-related deaths from ischaemic heart diseases is expected to increase by
about 2.4 times in Germany [3]. High temperatures disproportionately affect vulnerable
groups such as elderly people, children, and people suffering from diseases. Therefore,
effective and adequate adaptation strategies to the impacts of climate change are essential
to minimise the exposure of vulnerable people [1]. The adaptation in cities is particularly
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important due to their high exposure to the impacts of climate change caused, among
others, by the UHI effect [4].

The effects of UHI span a wide range of spatial scales (i.e., from body heat to weather
patterns), with different predominant forces at play [5]. Additionally, the spatial heterogene-
ity of UHI is often large, mostly as a consequence of the spatial heterogeneity of urban land
cover. In order to account for the spatial variability of UHI in a reasonable way, observation-
based UHI studies often use satellite data, which can deliver data at adequate spatial
resolution. Satellite data measure UHI based on land surface temperature (LST) instead of
near-surface air temperature, yielding the surface UHI (SUHI). Several studies correlated
the spatial distribution and temporal changes in satellite-derived SUHI to the prevailing
land cover and land use patterns and their temporal changes. Cover indices and supervised
classifications are often utilised to distinguish between different types of urban land cover.
Hereby, studies investigated several factors influencing SUHI, for example, vegetated
area [6–8], built-up area [7–9], population [10,11], or city growth [12,13]. Chen et al. [14]
found a decrease in the Normalised Difference Vegetation Index (NDVI) with a concomitant
increase in LST for Beijing in areas with intense urbanisation. Mathew et al. [15] identified
a connection between LST and vegetation indices for Jaipur (India), and additionally, they
found a seasonal relation between LST and the normalised difference built-up index (NDBI)
that can be used to identify built-up areas. An example of supervised classification is
the usage of a supervised image classification technique by Pal and Ziaul [9] to detect
land use and land cover classes in the Malda District (India) in order to subsequently
compare them with LST. While some satellite-based studies assessed UHI at a single point
in time [7,8], others analysed the interannual variability [12,15–17] and long-term dynamics
of UHI [6,11,14,18].

The mentioned studies demonstrate the feasibility of satellite data to obtain informa-
tion on SUHI changes and their potential drivers. Building on this, we used LST and NDVI
data from satellites to identify and map hotspots of SUHI changes, which were then manu-
ally categorised into different classes of land cover changes based on aerial images from
Google Earth Pro. This allowed us to quantify the impact of specific land cover changes on
local SUHI. The analysis was performed for the city of Stuttgart (Germany) for the time
periods 2004–2008 and 2016–2020, focusing on the areas with the largest SUHI changes
between both time periods. A somewhat similar approach was applied by Sarahet al. [19],
who used MODIS and Google Earth images to identify two examples of land cover change
that influenced SUHI in Coventry (UK). Our approach substantially extended this approach
by (1) identifying SUHI hotspots based on the LST distribution in the whole city, (2) provid-
ing spatially explicit SUHI data at these hotspots, and (3) categorising the SUHI changes
based on the land cover change that occurred at each hotspot.

Our study city Stuttgart is located in the south-west of Germany. It has around
610,000 inhabitants [20]. Stuttgart’s centre is situated at an altitude of around 250 m above
sea level. The city is characterised by a mild climate with mean annual precipitation of
about 650 mm, an annual mean temperature of 10.8 ◦C, an average summer temperature of
19.3 ◦C, and monthly summer maximum temperatures between 27.0 ◦C and 38.8 ◦C (from
1991 to 2020) [21]. The city’s climate is influenced by its surrounding peripheral heights.
Due to its topography and valley location, Stuttgart is exposed to a low exchange of air
within the urban area, which leads to heat accumulation in the city [22]. The municipality
of Stuttgart actively designs policies to mitigate the impacts of heat and climate change and
has been awarded prizes for its strategies to preserve green spaces and fresh air corridors to
reduce heat stress [23]. Heat stress in Stuttgart was analysed in several studies, for example,
regarding potential adaptation measures to urban heat stress (such as urban trees) [24],
quantifying the impact of UHI mitigation measures on air quality [25], or analysing the
seasonal impacts of factors such as wind and elevation on LST [26]. Further, Stuttgart was
used as an example for analysing frameworks and mitigation measures in place to develop
a cool city [22]. Our study complemented these analyses by focusing on the effects that
specific land cover changes have on SUHI and by examining whether the success of heat
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mitigation policies, such as those implemented by the municipality of Stuttgart, can be
identified and monitored with satellite data.

2. Materials and Methods
2.1. Data

In order to study small-scale features of SUHI in Stuttgart, we employed LST data from
Landsat Level 2 products (derived from the thermal bands of the Landsat satellites [27–30]),
which have a spatial resolution of 30 m. As summarised by Deilami et al. [13], Landsat
data were used in several other studies to examine SUHI. The Landsat archive provides
LST data records from 1982 to the present [31]. Landsat’s revisit time in the Stuttgart area is
around 8–9 days, which yields an advantage over data from other sensors, such as ASTER,
with much longer revisit times, as Landsat can deliver higher amounts of cloud-free data.
For the study periods (2004–2008 and 2016–2020), data from Landsat 5 (L5) and Landsat
8 (L8) were used. Data from Landsat 7 were not included due to the Scan Line Corrector
Failure of its sensor [32]. L5 and L8 data were taken from Landsat Collection 2, which
contains calculated LST derived from the thermal sensors of the Landsat satellites and
further datasets [27–30,33–35]. The underlying spatial resolution of the thermal data from
L5 is 120 m and 100 m for L8. In the final Level 2 product, the data were interpolated to a
30 m grid [36]. The average accuracy of the resulting data from L5 was estimated at 1 ◦C
over non-sealed, mostly vegetated land, with a total uncertainty of 2.5 ◦C [37]. However,
this uncertainty could also be connected to differences in the in situ data resolution and
pixel size and might thus also be lower. The performance of the LST retrieval is consistent
for L5 and L8 [38]. The LST product lacks data on some areas of the study region [31]. These
missing areas are marked in all figures. Further, we used the atmospherically corrected
near-infrared (NIR) and red (L5: 3 and 4; L8 4 and 5) bands from the Landsat Collection
2 to calculate NDVI. Although studies confirm the consistency of NDVI derived from L5
and L7, slight discrepancies of up to 5% were found between L8 and its predecessor, L7,
due to differences in sensor settings [39–41]. The comparison of the resulting NDVI data
from L5 and L8 may thus have to be treated with caution. All used Landsat images were
taken from the platform EarthExplorer as 200 km x 200 km tiles. All satellite images over
Stuttgart are recorded at around 9 a.m. local time.

We masked areas with strongly deviating heights (±100 m) based on data from the
TanDEM-X digital elevation model (retrieved over the period 2010–2015) [42,43] at 90 m
spatial resolution. Further, we identified and distinguished urban and rural areas based on
the CORINE Land Cover dataset [44], which contains satellite-derived land cover data for
Europe in 2018. The administrative boundaries of Stuttgart were taken from the Geoportal
Stuttgart [45]. Lastly, multitemporal high-resolution satellite and aerial images from Google
Earth Pro were used to examine the type of land cover change. We used images from
2000 to 2021 as they exhibited the best image quality.

Additionally, to compare the results from LST data to near-surface air temperature
measurements, hourly temperature data measured at 2 m height from meteorological
stations of the German Weather Service (DWD) located in and around Stuttgart were used
(see Table A2) [46].

2.2. Methods

We calculated SUHI in Stuttgart as the LST difference between the urban area and the
surrounding rural areas. Under the assumption that the larger-scale climate variability in
Stuttgart and its surrounding areas are similar, this approach also eliminates any influence
due to climate variability. Landsat LST data were used to calculate the mean SUHI in two
five-year periods (2004–2008 and 2016–2020) for examining the change in SUHI over time,
i.e., between the two periods. We selected five-year periods to further reduce the influence
of climate variability and to obtain a representative picture of the spatial SUHI patterns
in both analysed time periods. Further, using five-year time periods allows for gathering
enough cloud-free data to enable a robust estimate of the average LST in Stuttgart. In
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order to observe changes in the urban landscape in Stuttgart, we used two periods with a
sufficient temporal gap. Further, we tried to avoid extreme climatic summers (e.g., 2003)
as best as possible. In order to focus on the warmest time of the year (during which
negative impacts on human health due to extreme heat are strongest [47]), we used data
from June, July, and August, which are the hottest months in Stuttgart. The Landsat tiles
were presorted, and only tiles with low cloud coverage were further processed: within the
administrative boundaries of Stuttgart, a maximum cloud and cloud shadow coverage of
0.5% was permitted, while in the surrounding areas, the maximum cloud cover threshold
was set to 10%. All tiles that do not meet these criteria were excluded to avoid biases from
varying cloud cover. After this processing, seven tiles remained for the period 2004–2008
and seven tiles for the period 2016–2020 (see Table A1). The recording dates of the tiles
are equally distributed over the summer months. In order to further exclude influences
from the clouds remaining in the tiles, cloud masks were implemented based on the cloud
detection layer contained in the Landsat level 2 data. For the surrounding area, the mask
includes every cloud from every tile from both time periods to avoid biases that would be
introduced by including areas in one period but not the other. The resulting area for the
calculation of the mean LST for the surrounding area is shown in Figure A1. A cloud mask
was also applied to the urban area of Stuttgart, yet only for single tiles, as cloud coverage in
the selected tiles was very low within the city boundaries due to the low maximum cloud
threshold allowed within the city boundaries.

The basic method of using a buffer around the city to subtract LST in the rural area
from LST in the urban area to quantify SUHI was adopted from Debbage and Shepherd [48].
However, we subtracted the mean LST of the surrounding area from every pixel in the ad-
ministrative boundaries, not from the mean LST over the entire area of the city. This allows
for the analysis of the temporal and spatial dynamics of SUHI. Further, the confounding
factors that we controlled for when defining the surrounding area to calculate the mean
rural LST were adjusted to the local circumstances. The buffer size of 50 km was reduced
to 20 km, as Stuttgart has a smaller area than the cities in Debbage and Shepherd [48].
Additionally, the maximum height deviation from the mean elevation of Stuttgart was
increased from ±50 m to ±100 m due to Stuttgart’s strong surrounding orography based
on data from TanDEM-X DEM. Only non-urban areas were included in the calculation of
the mean LST of the surrounding area, as identified by the CORINE Land cover dataset.

Eventually, we obtained the spatially explicit SUHI for Stuttgart by subtracting the
five-year LST mean averaged over the entire surrounding area (after masking it based on
the mentioned criteria) from the five-year LST mean on every pixel in the administrative
area of Stuttgart, referred to as SUHI2004–2008 and SUHI2016–2020. The change in SUHI
between both time periods (∆SUHI) is then calculated for each pixel as follows:

∆SUHI =
(
LSTcity,t1 − LSTrural,t1

)︸ ︷︷ ︸
SUHI2016−2020

−
(
LSTcity,t2 − LSTrural,t2

)︸ ︷︷ ︸
SUHI2004−2008

For calculating the change in NDVI within the administrative boundaries of Stuttgart,
a similar approach as for calculating ∆LST was applied. First, the same cloud mask used
for LST was applied within the city boundaries. Then, similarly to SUHI, a five-year mean
was calculated for every pixel, yielding NDVI2004–2008 and NDVI2016–2020. Eventually, the
difference between these means was calculated, resulting in the NDVI change between
both time periods (∆NDVI).

In order to specifically focus on pixels with the most extreme SUHI changes between
2004–2008 and 2016–2020, the 2nd and 98th percentiles of the ∆SUHI values were calculated.
Pixels with lower (higher) ∆SUHI than the 2nd (98th) percentile are referred to as cooling
(warming) spots. Extreme spots consisting of three or fewer pixels were disregarded. We
only focused on urban areas and excluded extreme spots that occurred in any other areas
within Stuttgart (e.g., agricultural land) from the analysis. In order to examine the type of
land cover change that took place at the extreme spots, multitemporal images from Google
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Earth Pro were used. Consequently, only land cover changes that were identifiable by the
visible inspection were analysed.

Near-surface air temperature measured at DWD stations was used for the comparison
with LST data. The mean temperature on all summer days (June, July, and August) within
each five-year period was separately calculated for urban and rural areas using all urban
and rural stations, respectively. UHI was then calculated for every summer day by the
difference between urban and rural temperatures. These daily values were then used
to calculate the overall mean temperature in urban and rural areas and UHI in each
five-year period.

The code used for the analysis is published on Github under: https://github.com/g-
seeberg/UHIPY (accessed on 6 September 2022).

2.3. Categorisation of Land Cover Changes

In order to investigate the influence of different land cover changes on LST in Stuttgart,
we categorised them by different types (Table 1). The categories were chosen based
on the prevalent land cover changes observable at the warming and cooling spots in
Stuttgart. In case multiple land cover changes are identified in a connected area, the area
was manually subdivided according to the individual land cover changes. We identified
the following categories:

Table 1. Overview of the categories used to classify and label land cover changes that occurred at
the spots with extreme surface urban heat island (SUHI) change between 2004–2008 and 2016–2020
in Stuttgart.

Warming Spots Cooling Spots

sealing of fallow land unsealing to fallow land
sealing of vegetated area unsealing to vegetated area

albedo decrease albedo increase
installation of solar panels installation of solar panels

vegetation/vegetation change vegetation/vegetation change
removal of vegetation green roof retrofit

modification of sports grounds green roof after fallow land
temporary construction site green roof after vegetated area

structural change dynamic changes
uncategorised uncategorised

The sealing of surfaces often causes warming due to the usage of materials that retain
less water than vegetation and soil and thus reduce evapotranspirative cooling. As the heat
capacity also often increases, sealed surfaces raise both daytime and nighttime tempera-
tures [13,49]. Conversely, unsealing of surfaces usually leads to cooling. Both categories
were further subdivided depending on whether fallow land (sealing of fallow land/unsealing
to fallow land) or vegetation (sealing of vegetated area /unsealing to vegetated area) was present
before or after the change.

Albedo increase and albedo decrease lead to cooling or warming effects, respectively.
Albedo influences the reflective, absorptive, radiative, and convective transfer properties of
the surface [50]. As most land cover changes go along with a change in albedo, LST changes
were only attributed to albedo change if albedo change appeared to be the dominant cause.

The installation of solar panels can lead to both cooling and warming. Solar panels
extrude energy, as a share of solar radiation is absorbed and transferred into electricity,
while, on the other hand, the heat produced by electric losses may counteract this cooling
effect [51].

The category vegetation/vegetation change can also induce cooling or warming. The
greening of vegetation as well as a denser and healthier vegetation cover, can lead to
evapotranspirative cooling, while a decrease in vegetation cover or vegetation health may

https://github.com/g-seeberg/UHIPY
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cause higher temperatures due to decreased evapotranspirative cooling. Additionally,
changes in vegetation management can also influence LST [52].

Areas with newly installed green roofs and other areas with added vegetation exhibit a
cooling effect through increased evapotranspiration and decreased shortwave radiation
if trees are present [53]. We separately investigated green roof retrofits (installed on exist-
ing buildings and new buildings replacing old ones), the installation of green roofs on
new buildings where fallow land was present before (green roof after fallow land), and the
installation of green roofs on formally vegetated areas (green roof after vegetated area).

The removal of vegetation decreases evapotranspiration and, thus, increases LST. This cate-
gory includes areas where vegetation is removed without adding additional sealed surfaces.

Modification of sports grounds refers to sports grounds whose surface material has been
changed. This category mostly includes natural turf and tennis courts that were replaced
by artificial surfaces such as artificial turf, which often leads to warming due to increased
heat capacity, albedo, and surface roughness, as well as decreased evaporative cooling [54].

Temporary construction site is a category for areas under construction during the second
study period (2016–2020). Here, multiple factors such as albedo changes, (un-)sealing,
material changes, and anthropogenic heat may alter LST.

Structural change is a category for spots changed by construction work without any
noticeable change in albedo or vegetation. In this case, non-visible changes in materials or
building interiors may lead to changes in LST.

Dynamic changes include all temporary changes in the land surface, for instance,
changes in parking lot occupancy and temporal buildings at event locations, that alter the
thermal properties of the area at the time of data acquisition.

Uncategorised spots refer to all spots where no land cover change can be identified and
where no other visible explanation causing a change in LST could be found.

3. Results
3.1. SUHI in Stuttgart and Its Temporal Change between 2004–2008 and 2016–2020

Stuttgart reveals a pronounced SUHI in both analysed time periods (Figure 1a,b).
Urban areas within the administrative borders show an average SUHI of about 5.3 ◦C
in 2004–2008 and 3.9 ◦C in 2016–2020, with individual areas exhibiting a SUHI of up to
23 ◦C. The non-urban areas of Stuttgart mostly have a negative SUHI, which is particularly
pronounced in forests. SUHI generally decreased in Stuttgart between 2004–2008 and
2016–2020 (Figure 1c), particularly in the urban area, where ∆SUHI changed by −1.4 ◦C
despite a mean LST increase of 2.5 ◦C (not shown). The SUHI change is statistically
significant (paired t-test, p < 0.01). Contrary to the overall trend, some confined areas in
Stuttgart reveal a positive ∆SUHI. These hotspots of ∆SUHI are analysed in more detail
below. The non-urban areas reveal a smaller change in ∆SUHI compared to the urban areas,
although some rural areas, such as fallow agricultural lands, show an increase in SUHI of
up to 5 ◦C.

In order to investigate the influence of vegetation on LST in Stuttgart, we examined
the correlation between SUHI and NDVI (Figure 2). Higher NDVI values correlate with
lower SUHI values in Stuttgart´s urban area in both time periods. Pixels with high SUHI
and low NDVI are predominantly found in industrial and commercial areas, while pixels
with low SUHI and high NDVI are found in green urban areas (e.g., parks and sports
facilities). A small cluster of values with low SUHI and low NDVI falls outside the overall
linear dependence. For these pixels, no single type of urban land cover was found to be
the most prevalent. Generally, there is a higher variance of SUHI at pixels with low NDVI,
which implies that vegetation is not the only important factor in determining SUHI, as
factors such as albedo or other properties of the material may also have a strong influence,
especially in areas with low vegetation coverage.
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∆SUHI clearly correlates with the initial LST in 2004–2008 (Figure 3). Areas with high
LST in 2004–2008 exhibit a disproportionately stronger decrease in SUHI than areas with
lower LST. As a result, the SUHI variance within the urban area decreased in 2016–2020
compared to 2004–2008.
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3.2. Extreme Warming and Cooling Spots of SUHI

In order to analyse the drivers of the largest changes in SUHI between 2004–2008
and 2016–2020, we isolated the extreme warming and cooling spots based on the spatial
distribution of ∆SUHI in Stuttgart (Figure 4). Overall, 80 cooling spots and 110 warming
spots were identified. Cooling spots were predominantly found in central urban areas,
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while warming spots were especially present at the edges of urban areas. In the following,
we analysed how different types of land cover changes influence ∆SUHI.

As shown in Figure 4b, most of the cooling spots belong to the categories green roof
retrofit (29%), albedo increase (16%), and dynamic changes (15%). Installation of solar panels (8%)
and unsealing to fallow land (6%) are also found frequently, while the other categories only
play a minor role. 19% of the cooling spots remain uncategorised.

All cooling spots are very effective in decreasing SUHI, with the categories unsealing
to fallow land and green roof retrofit exhibiting the highest decrease (−5.1 ◦C) and dynamic
changes the smallest decrease (−4.3 ◦C). At all cooling spots, the absolute LST decreases
despite an increase in the mean urban LST (not shown). The maximum decrease in LST is
−1.3 ◦C (unsealing to fallow land), and the minimum decrease is −0.5 ◦C (dynamic changes).
The NDVI of cooling spots either increases or stays constant, i.e., no decrease in NDVI
is observable. Unsealing to vegetated area (+0.15), green roof after fallow land (+0.09) and
vegetation/vegetation change (+0.05) leads to the highest increases in NDVI. Green roofs after
vegetated area (+0.03) and green roof retrofit (+0.02), both categories that add vegetation to the
site, also exhibit a positive change in NDVI.

Regarding warming spots, the categories sealing of vegetated area (24%), vegetation/vegetation
change (18%), and modification of sports grounds (14%) are most prevalent (Figure 4c), with
other types of changes only occurring rarely (fewer than five spots per category). A large
share of warming spots remains uncategorised (33%).

Out of these categories, the removal of vegetation causes the strongest increase in SUHI
(+1.6 ◦C), followed by structural change (+1.4 ◦C), albedo decrease (+1.2 ◦C), and modification of
sports grounds (+1.1 ◦C). Sealing of fallow land has the lowest effect on SUHI increase (+0.6 ◦C).
Although the SUHI increases at warming spots are relatively small compared to the SUHI
decreases at cooling spots, the absolute LST increases strongly at all warming spots (by
4.4 ◦C to 5.4 ◦C). Most warming spots exhibit a negative change in NDVI, even though
the change is not as pronounced as at the cooling spots. Warming spots with removed
vegetation (sealing of vegetated area, removal of vegetation) exhibit the highest decrease in NDVI
(−0.08, −0.07), while a smaller decrease in NDVI was found for sealing of fallow land (−0.02),
albedo decrease (−0.02), and modification of sports ground (−0.03). The vegetation/vegetation
change and uncategorised categories have no NDVI change, while areas with structural change
show a slightly positive NDVI change (+0.01).

Overall, the increase in SUHI at warming spots (+1 ◦C on average) is relatively low
compared to the strong SUHI decrease in cooling spots (−4.7 ◦C on average). This is in
line with the general decrease in SUHI in Stuttgart between 2004–2008 and 2016–2020
(Figure 1c). SUHI decreases do not only occur at spots with a change in land cover but
also in areas that remain unchanged. Thus, the change in SUHI at extreme spots is affected
by both the local change in land cover as well as the general UHI decrease in Stuttgart.
When accounting for this (by subtracting the average SUHI decrease of 1.4 ◦C), the average
∆SUHI of all cooling spots amounts to −3.3 ◦C and the average SUHI change in warming
spots to +2.4 ◦C.

Figure 5 shows several examples of the influence of land cover changes on ∆SUHI. At
the construction site of Stuttgart´s new central station (Stuttgart 21), albedo increased com-
pared to the previous state (Figure 5a), while NDVI only changed slightly. The replacement
of a large industrial hall with less dense housing and vegetation led to cooling (Figure 5b),
as did the installation of green roofs on new houses and green roof retrofits (Figure 5c).
In both cases, the additional vegetation led to an increase in NDVI. Figure 5d shows an
example of warming caused by the removal of vegetation and surface sealing, which is
reflected by the decrease in NDVI. An example of a vegetated surface with positive ∆SUHI
but no land cover change is shown in Figure 5e. The decrease in NDVI indicates a decline
in vegetation health, which may point to less evapotranspirative cooling and, thus, higher
SUHI. Similar effects of increased SUHI at grassland sites can be seen all over the city.
Figure 5f gives an example of a modified sports ground, where a concrete tennis court was
converted into a pitch with artificial turf at the beginning of 2017 [55]. Such conversions of



Urban Sci. 2022, 6, 82 10 of 20

concrete surfaces to artificial turf, as well as conversions of natural turf to artificial turf or
other artificial surfaces, were found at the same facility and all over the city.

Urban Sci. 2022, 6, x FOR PEER REVIEW 9 of 20 
 

 
Figure 4. (a) Change in the surface urban heat island (ΔSUHI) in the urban area of Stuttgart between 
the five-year averages of 2004–2008 and 2016–2020, with highlighted extreme spots of ΔSUHI. Ex-
treme warming (cooling) spots are defined as pixels above the 98th (below the 2nd) percentile of the 
spatial ΔSUHI distribution. Categorisation of the (b) cooling spots and (c) warming spots according 
to the predominant land cover changes and the respective changes in SUHI and Normalised Differ-
ence Vegetation Index (NDVI). 

All cooling spots are very effective in decreasing SUHI, with the categories unsealing 
to fallow land and green roof retrofit exhibiting the highest decrease (−5.1 °C) and dynamic 
changes the smallest decrease (−4.3 °C). At all cooling spots, the absolute LST decreases 
despite an increase in the mean urban LST (not shown). The maximum decrease in LST is 
−1.3 °C (unsealing to fallow land), and the minimum decrease is −0.5 °C (dynamic changes). 
The NDVI of cooling spots either increases or stays constant, i.e., no decrease in NDVI is 
observable. Unsealing to vegetated area (+0.15), green roof after fallow land (+0.09) and vegeta-
tion/vegetation change (+0.05) leads to the highest increases in NDVI. Green roofs after vege-
tated area (+0.03) and green roof retrofit (+0.02), both categories that add vegetation to the 
site, also exhibit a positive change in NDVI. 

Regarding warming spots, the categories sealing of vegetated area (24%), vegetation/veg-
etation change (18%), and modification of sports grounds (14%) are most prevalent (Figure 4c), 

Figure 4. (a) Change in the surface urban heat island (∆SUHI) in the urban area of Stuttgart between
the five-year averages of 2004–2008 and 2016–2020, with highlighted extreme spots of ∆SUHI. Extreme
warming (cooling) spots are defined as pixels above the 98th (below the 2nd) percentile of the spatial
∆SUHI distribution. Categorisation of the (b) cooling spots and (c) warming spots according to the
predominant land cover changes and the respective changes in SUHI and Normalised Difference
Vegetation Index (NDVI).



Urban Sci. 2022, 6, 82 11 of 20Urban Sci. 2022, 6, x FOR PEER REVIEW 11 of 20 
 

 
Figure 5. Six examples for cooling (blue) and warming spots (red) identified in Stuttgart with the 
respective changes in surface urban heat island (ΔSUHI) and Normalised Difference Vegetation In-
dex (ΔNDVI). Examples are: (a) material changes at the construction site of Stuttgart’s new central 
station (Stuttgart 21), (b) replacement of a large industrial hall by houses with vegetation, (c) green 
roof retrofit on existing and new buildings (note the presence of artefacts in the bottom left corner), (d) 
removal of trees and sealing of grassland with asphalt, (e) potential impacts of decreased evapotran-
spirative cooling on grassland due to a decrease in vegetation health, and (f) replacement of a tennis 
court surface by artificial turf. Note that images are recorded in different seasons, which might influ-
ence the vegetation coverage displayed. Missing data for ΔSUHI and ΔNDVI is marked as hatched. 

4. Discussion 
Combining satellite-based LST data with visual images to quantify SUHI in Stuttgart 

and its change between 2004–2008 and 2016–2020 allows us to quantify the spatiotemporal 
effect of specific land cover changes on SUHI. Our results show that this method can suc-
cessfully be used to evaluate which changes in land cover affect SUHI in urban areas the 
most. This makes it possible to monitor, quantify, and assess the success of urban mitiga-
tion strategies at spatial scales down to 30 m (limited by the spatial resolution of the Land-
sat LST product). Additionally, the data are readily available and require no further pro-
cessing to convert the measured thermal radiation into a usable surface temperature. We 
demonstrated the applicability for the city of Stuttgart, but the methodology can be applied 
analogously to other cities. Municipalities and city planners can benefit from this approach 

Figure 5. Six examples for cooling (blue) and warming spots (red) identified in Stuttgart with the
respective changes in surface urban heat island (∆SUHI) and Normalised Difference Vegetation
Index (∆NDVI). Examples are: (a) material changes at the construction site of Stuttgart’s new central
station (Stuttgart 21), (b) replacement of a large industrial hall by houses with vegetation, (c) green
roof retrofit on existing and new buildings (note the presence of artefacts in the bottom left corner),
(d) removal of trees and sealing of grassland with asphalt, (e) potential impacts of decreased evap-
otranspirative cooling on grassland due to a decrease in vegetation health, and (f) replacement of
a tennis court surface by artificial turf. Note that images are recorded in different seasons, which
might influence the vegetation coverage displayed. Missing data for ∆SUHI and ∆NDVI is marked
as hatched.

4. Discussion

Combining satellite-based LST data with visual images to quantify SUHI in Stuttgart
and its change between 2004–2008 and 2016–2020 allows us to quantify the spatiotemporal
effect of specific land cover changes on SUHI. Our results show that this method can
successfully be used to evaluate which changes in land cover affect SUHI in urban areas
the most. This makes it possible to monitor, quantify, and assess the success of urban
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mitigation strategies at spatial scales down to 30 m (limited by the spatial resolution of the
Landsat LST product). Additionally, the data are readily available and require no further
processing to convert the measured thermal radiation into a usable surface temperature.
We demonstrated the applicability for the city of Stuttgart, but the methodology can be
applied analogously to other cities. Municipalities and city planners can benefit from this
approach by learning which measures to reduce SUHI are most suitable and successful in
their specific local context, which facilitates the planning of future SUHI mitigation actions.

4.1. Robustness of LST and SUHI Trends

LST values in the Stuttgart area were derived using seven Landsat tiles for each of
the analysed periods 2004–2008 and 2016–2020. The relatively small number of utilisable
tiles is determined by several factors: Landsat’s limited revisit time of the Stuttgart area
(about 8–9 days), the presence of clouds at the time of recording, and our focus on summer
months (June, July, August). Our estimates of LST and LST changes in Stuttgart may be
influenced by the low number of utilisable tiles. In order to assess the robustness of our
Landsat-based results, we compared them with data from meteorological stations of the
DWD, using daily near-surface air temperature data recorded at 9 a.m. of stations lying in
the Stuttgart area (see Table A2 for the list of stations) [46]. The average LST increase in
Stuttgart (2.5 ◦C between 2004–2008 and 2016–2020) is in line with the trends of summer
mean temperatures measured by DWD stations, which indicate an increase by 0.9 ◦C (from
20.3 ◦C to 21.2 ◦C) for the urban area and by 1.7 ◦C (from 19.5 ◦C to 21.2 ◦C) for the rural
surroundings between 2004–2008 and 2016–2020.

In contrast to the LST increase, SUHI in Stuttgart decreased by 1.4 ◦C between
2004–2008 and 2016–2020. This decrease is consistent with results by Streutker [56] and
Scott et al. [57], who found a negative relationship between increasing rural LSTs and SUHI
intensity. Moreover, we found a similar result when using near-surface air temperature
measurements from the DWD stations, yielding a UHI decrease of −0.77 ◦C [46]. An
explanation for the decrease in SUHI and UHI might be the warming of some agricultural
areas, especially fallow fields, in the surroundings of Stuttgart, which may have led to a
disproportionate increase in the mean LST in these areas. Such a warming effect can also
be observed in some non-urban areas of Stuttgart (Figure 1c). Further, ∆SUHI negatively
correlates with the initial LST in 2004–2008 (Figure 3), with larger SUHI decreases for pixels
that had higher initial LST, leading to a more homogeneous spatial LST distribution. In
agreement with Alavipanah et al. [58], we found a negative correlation between vegeta-
tion cover and SUHI when analysing the urban area pixelwise (Figure 2). Albedo and
surface material constitute further factors for LST changes, which may cause the larger LST
variance in areas with low NDVI.

4.2. Drivers of Warming and Cooling Spots

All land cover changes made at cooling spots locally decrease SUHI and LST during a
period of generally increasing summer LSTs in Stuttgart. Efforts to reduce LST through land
cover changes may thus represent a valuable and powerful tool to mitigate both the SUHI
effect and rising urban LSTs. Hereby, vegetation plays an important role, as enhancing
NDVI clearly correlates with lower urban LST (Figures 2 and 4b). However, the results
of NDVI change may have to be treated with some caution due to slight discrepancies in
NDVI retrievals between the satellites [39–41].

The impacts on LST may both extend beyond the pixels affected by land cover changes
or be smaller. This suggests that the effect of land cover changes may also influence
temperatures in neighbouring areas. Additionally, part of this effect might be explained by
the percentiles set to identify warming and cooling spots (2% and 98% percentiles of the
∆SUHI distribution), as they limit the extent of the identified spots, while in some cases, an
effect outside of the identified spot is clearly visible (e.g., Figure 5c).

An important measure for increasing urban vegetation coverage is the installation of
green roofs (Figure 5c), as they exhibit a high cooling effect (Figure 4b). Their installation
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lowers air temperatures not only on the roofs but also on the pedestrian level [59]. Installing
green roofs can be a very effective UHI mitigation effort, as existing buildings can be
retrofitted without allocating valuable urban real estate space for additional vegetation.
An additional benefit of green roofs is the decreased energy consumption for cooling in
summer and heating in winter [60]. For Stuttgart, the extension of green roofs might be
an appropriate option to mitigate UHI, as another 25% of Stuttgart´s existing roof area
is suitable for installing green roofs [61]. Similarly, retrofitting high-albedo materials and
paints on buildings or in public spaces could also effectively decrease SUHI in Stuttgart
(Figure 4b). Increased albedo mitigates heat, especially during times of direct solar radiation,
i.e., during the daytime [60]. The installation of solar panels can lead both to SUHI increases
and decreases, potentially due to a combined effect of albedo change and heating from
electricity losses, making the cooling or heating effect dependent on the properties of the
previously used surface material. Different technical approaches have also been found
to be successful in combining solar panels with green roofs [62,63]. We found dynamic
changes to frequently have an impact on LST. Areas with strong surface dynamics, such as
parking lots, can exhibit large LST changes depending on their occupancy at the time of
data capture. Such temporary land cover changes, which may only be present within a few
days of data capture, can impact the five-year LST mean. Although they have no permanent
impact on SUHI, they may still be relevant in enhancing or mitigating the local SUHI effect
when present. The method used here is not suitable for assessing such temporary land
cover changes, as it rather focuses on LSTs averaged over longer time periods.

Vegetation also plays a core role in increasing SUHI, as most warming spots are
characterised by the removal of vegetation and sealing of surfaces (Figure 5d), which
is the most common land cover change causing extreme warming in Stuttgart. Other
land cover changes with strong warming impacts are the decrease in albedo and the
installation of artificial turf on old tennis courts or grass turf (Figure 5f). Substantial
SUHI increases are also observed for spots with continuous vegetation (in contrast to
areas with increasing vegetation, which generally result in a SUHI decrease, see above).
Although no change in NDVI is observed for the average overall vegetation spots with
increased SUHI, individual spots exhibit NDVI increases (max: +0.44) and decreases (min:
−0.56). Warming of vegetated spots with a decrease in average ∆NDVI may be caused
by a reduction in evapotranspirative cooling due to deterioration of vegetation health or
a decrease in vegetation cover. Isolated areas of strong NDVI decrease can be identified
even at most spots with increasing or constant NDVI. These are, however, surrounded by
pixels with increasing NDVI, which raise the average ∆NDVI of the spot by their quantity
(similar to Figure 5e, although there the average ∆NDVI is negative). Nevertheless, in
such configurations, pixels with ∆NDVI > = 0 also exhibit an increase in SUHI, suggesting
that the warming effect extends beyond the pixels experiencing a decrease in NDVI. In
such cases, it is difficult to identify the exact cause for the observed warming with the data
available, as factors such as changes in vegetation management, soil moisture limitations,
or other changes not observable by satellites may have led to the increase in SUHI. Further,
discrepancies in NDVI derived from different Landsat satellites (as discussed above) or
∆LST (see below) could have an influence on the estimated values.

The SUHI increase at warming spots is much lower compared to the decrease seen
at cooling spots. This is likely caused by the overall decrease in SUHI in Stuttgart, which
can be observed even in areas with no land cover change due to the negative relationship
between rural LST and SUHI, as discussed above. However, even when correcting for
the average SUHI change, the SUHI decrease in cooling spots is still larger than the SUHI
increase in warming spots. Simultaneously, the absolute urban LST increased strongly in
most areas, especially at warming spots. This trend is alarming, for example, at sports
grounds (∆LST = +4.9 ◦C), where children are especially exposed to high temperatures, as
the resulting increase in heat stress can cause serious health threats [53,64,65].

A relatively large fraction of SUHI increases (33%) and SUHI decreases (19%) could
not be categorised, which might be due to several reasons. Changes in the surface cover
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may remain undetected if they are not visible on the images from Google Earth Pro. These
may be non-visible material changes, changes in the cultivation of vegetation, changes in
building upkeep, and the internals of buildings emitting more or less heat. This could be
a major reason for the lack of visible changes at extreme warming and cooling spots at
industrial buildings. Further, these uncategorisable extreme spots could be caused by issues
with Landsat data retrieval, such as artefacts of the blockiness described for the LST product
due to the interpolation of coarser raster data onto the 30 m grid, the change in spatial
resolution between L5 and L8, as well as artefacts from surrounding warm surfaces [36,37].
The latter is supported by the fact that, at some spots, relevant land cover changes were
found close to the areas of extreme LST change. Moreover, uncategorisable spots could also
be caused by greater LST biases in areas with high spatial variability or high water vapour
content, as these may decrease the LST accuracy and lead to errors in the identification of
extreme warming and cooling spots [37].

4.3. Limitations of the Study

The method used in this study enables detailed insights into the temporal and spatial
dynamics of the SUHI effect in urban areas. However, some limitations have to be taken
into account. The pixel resolution of 30 m does not allow for the detection of small-scale
changes, such as the planting of individual urban trees or greening tramway tracks, which
are both parts of the UHI mitigation strategy of Stuttgart [66]. With satellite products that
deliver higher spatial resolution, the identification of such measures and the analysis of
their impacts might become possible, which would greatly improve the ability to detect
and quantify how small-scale heat mitigation measures impact UHI.

The Landsat images of Stuttgart used in this study are all recorded at around 9 a.m.
local time. While this guarantees temporal consistency between the satellite images from
different scenes, the highest LSTs, which are usually reached in the afternoon, are missed.
Likewise, nighttime UHI cannot be assessed. In fact, nighttime UHI is often stronger
than daytime UHI, as was, for example, found for Birmingham [67] and Paris [68], the
latter of which showing differences between nighttime and daytime UHI of up to 7 ◦C.
In Stuttgart, the flow of cold air from the surrounding hills plays a key role in nighttime
temperatures [69]. However, an assessment of the nighttime UHI in Stuttgart yielded
inconclusive results regarding its strength relative to the daytime UHI [24].

Furthermore, it should be kept in mind that only the LST-based UHI effect (i.e., SUHI)
was analysed in this study. Although a correlation between LST and near-surface air
temperature can be identified in Stuttgart (with a correlation of R2 = 0.6; see Figure A2),
LST measurements cannot be directly translated into near-surface air temperature due to
the complex heat transfer between the land surface and the air. LST and near-surface air
temperature are thus not perfectly comparable [70,71]. Establishing a relationship between
LST and near-surface air temperature is even more complicated in urban environments,
where warming and cooling sources that are not detectable by satellites (e.g., anthropogenic
heat sources, facade greening), and wind can strongly influence near-surface air tempera-
ture [72–74]. Similarly, the effects of changing material properties, such as heat capacity and
heat conductivity, that strongly affect surface properties cannot be quantified, as material
changes can only be estimated properly by in situ measurements.

5. Conclusions

In this study, we analysed the surface urban heat island (SUHI) effect in Stuttgart using
LST and NDVI data from Landsat and high-resolution visual images from Google Earth
Pro. We assessed the SUHI change between the time periods 2004–2008 and 2016–2020
(∆SUHI). Cooling and warming spots were identified based on the 2nd and 98th percentiles
of the spatial distribution of ∆SUHI in Stuttgart and manually categorised based on the
prevalent land cover changes occurring at each cooling and warming spot.

The average SUHI in the urban areas of Stuttgart decreased by 1.4 ◦C between
2004–2008 and 2016–2020, while LST increased by 2.5 ◦C. When examining warming
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and cooling spots, the results show a strong influence of vegetation on SUHI in Stuttgart
(Figure 2). Regarding cooling spots, newly installed green roofs and increased albedo
(33% and 16% of cooling spots) are among the most prominent and effective land cover
changes to decrease SUHI (Figure 4b), making them a valuable measure in mitigating UHI
in Stuttgart. On average, land cover changes at cooling spots decreased SUHI by 4.3 ◦C
to 5.1 ◦C between 2004–2008 and 2016–2020. Warming spots are mostly connected to a
decrease in vegetation (Figure 4c), either through the sealing of surfaces or the removal of
vegetation (25% and 5% of warming spots, respectively). Additionally, sports grounds with
newly installed artificial turf (14% of warming spots) show an increase in SUHI. Although
SUHI at warming spots only increased by about 0.6 ◦C to 1.6 ◦C, the corresponding increase
in LST is much larger, ranging from 4.4 ◦C to 5.4 ◦C.

As data resolution is a limiting factor in identifying cooling and warming spots, data
with better spatial and temporal resolution would be preferable for further studies, as these
would allow for analysing changes at even smaller scales (e.g., the plantation of single
trees). Such data could be provided by novel techniques, such as machine learning data
fusion from Sentinel 2 and 3, producing LST data with 20 m resolution [75].

The method presented here constitutes a flexible approach that can easily be applied
to other cities and could, for example, allow for evaluating the success of similar UHI
mitigation measures in cities with different climates and urban structures. It can further
provide a valuable contribution to assess the potential of specific land cover changes aiming
at mitigating UHI, validating their success, and possibly guiding future policy in urban
areas, including mandatory green roofs, usage of high albedo materials, planning of green
spaces, and unsealing of surfaces. Such measures can help improve the quality of life for
urban citizens in the midst of global warming.
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Appendix A

Table A1. Overview of the Landsat tiles used in this study for the calculation of the land surface
temperature (LST), surface urban heat island (SUHI), and Normalised Difference Vegetation Index
(NDVI). The satellites used are Landsat 5 (L5) and Landsat 8 (L8).

Tile Date Satellite

LT05_L2SP_195026_20040730_20200903_02_T1 30 July 2004 L5
LT05_L2SP_195026_20050717_20200902_02_T1 17 July 2005 L5
LT05_L2SP_194026_20060611_20200901_02_T1 11 June 2006 L5
LT05_L2SP_195026_20060618_20200901_02_T1 18 June 2006 L5
LT05_L2SP_194026_20070716_20200830_02_T1 16 July 2007 L5
LT05_L2SP_194026_20070801_20200830_02_T1 1 August 2007 L5
LT05_L2SP_194026_20080702_20200829_02_T1 2 July 2008 L5
LC08_L2SP_194026_20160825_20200906_02_T1 25 August 2016 L8
LC08_L2SP_195026_20170718_20200903_02_T1 18 July 2017 L8
LC08_L2SP_194026_20180714_20200831_02_T1 14 July 2018 L8
LC08_L2SP_194026_20190818_20200827_02_T1 18 August 2019 L8
LC08_L2SP_195026_20190724_20200827_02_T1 24 July 2019 L8
LC08_L2SP_194026_20200820_20200905_02_T1 20 August 2020 L8
LC08_L2SP_195026_20200624_20200823_02_T1 24 June 2020 L8

Table A2. Overview of all stations of the german weather service (DWD) used in this study with
their names, ID numbers, and location.

ID Name Longitude Latitude Elevation [m] Location

4926 Stuttgart (Neckartal) 9.216739 48.789592 224 urban
4928 Stuttgart (Schnarrenberg) 9.200028 48.828085 314 urban
3278 Metzingen 9.273366 48.537658 354 rural
4160 Renningen-Ihinger Hof 8.923969 48.742509 478 rural
4349 Sachsenheim 9.071028 48.95689 248 rural
4931 Stuttgart-Echterdingen 9.223535 48.688307 371 rural
6275 Notzingen 9.462662 48.670482 325 rural
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