
Citation: Sengupta, S.; Kovalevsky,

D.V.; Bouwer, L.M.; Scheffran, J.

Urban Planning of Coastal

Adaptation under Sea-Level Rise: An

Agent-Based Model in the VIABLE

Framework. Urban Sci. 2023, 7, 79.

https://doi.org/10.3390/

urbansci7030079

Academic Editor: Atiq Zaman

Received: 17 May 2023

Revised: 11 July 2023

Accepted: 12 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Urban Planning of Coastal Adaptation under Sea-Level Rise:
An Agent-Based Model in the VIABLE Framework
Shubhankar Sengupta 1,* , Dmitry V. Kovalevsky 2 , Laurens M. Bouwer 1 and Jürgen Scheffran 3

1 Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1,
20095 Hamburg, Germany; laurens.bouwer@hereon.de

2 Institute of Coastal Systems-Analysis and Modeling, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1,
21502 Geesthacht, Germany; dmitrii.kovalevskii@hereon.de

3 Research Group Climate Change and Security (CLISEC), Institute of Geography, Center for Earth System
Research and Sustainability (CEN), Universität Hamburg, Grindelberg 5/7, 20144 Hamburg, Germany;
juergen.scheffran@uni-hamburg.de

* Correspondence: shubhankar.sengupta@hereon.de

Abstract: Coastal flood risk and sea-level rise require decisions on investment in coastal protection and,
in some cases, the relocation of urban areas. Models that formalize the relations between flooding costs,
protective investments, and relocation can improve the analysis of the processes and issues involved
and help to support decision-making better. In this paper, an agent-based model of a coastal city is
represented in NetLogo. This model is based on the VIABLE modeling framework and describes
adaptive dynamic agent behavior in a changing system. The hypothetical city faces damage caused by
gradually rising sea levels and subsequent extreme sea-level events. To mitigate these risks, an “urban
planner” agent has two adaptation measures at their disposal: developing coastal defenses or, as a more
extreme measure, relocating vulnerable areas inland. As the simulation progresses and the decisions
change with rising sea levels, the agent alters investments in these two measures to increase its value
function, resulting in dynamic reactive behavior. Additionally, gradual sea-level rise is implemented in
various modes, along with extreme sea-level events that cause severe short-term damage. The results of
simulations under these modes and with multiple scenarios of agent action are presented. On average,
agent behavior is quite reactive under limited foresight. Individual simulations yield a ‘priming’ effect
when comparing different timings of extreme sea-level events, wherein an earlier extreme event primes
the agent to adapt and thus be better prepared for subsequent events. Agent success with adaptation is
also found to be sensitive to the costs involved, and these varying degrees of adaptation success are
quantified using three parameters of adaptation success.

Keywords: agent-based modeling; urban adaptation; VIABLE framework; coastal city; urban dynamics;
climate change adaptation; relocation

1. Introduction

Urban areas represent a particularly interesting case for planning climate adaptation
strategies. Since 2007, a majority of the world’s population has resided in urban areas [1],
which is projected to continue to grow. Among cities, those residing on the coast are
especially vulnerable to climate change impacts. As a result of climate change, the global
mean sea level is projected to rise between 0.38–0.77 m by 2100 (the latter being the
high greenhouse gas emission RCP 8.5 scenario [2]). This presents a risk to low-lying
areas worldwide, particularly urban agglomerations on the coast, which represent greater
exposure due to higher population density. Aside from the direct hazard posed by sea-level
rise, another consequence is more frequent and severe extreme sea-level events caused by
storm surges brought on by tropical storms and cyclones, which presents another greater
hazard to urban coastal areas [2]. For instance, storm surges and extreme sea-level events
can lead to flooding when they exceed the flood protection of such urban areas. As a result,

Urban Sci. 2023, 7, 79. https://doi.org/10.3390/urbansci7030079 https://www.mdpi.com/journal/urbansci

https://doi.org/10.3390/urbansci7030079
https://doi.org/10.3390/urbansci7030079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/urbansci
https://www.mdpi.com
https://orcid.org/0009-0003-9498-1574
https://orcid.org/0000-0001-7331-1406
https://orcid.org/0000-0003-3498-2586
https://orcid.org/0000-0002-7171-3062
https://doi.org/10.3390/urbansci7030079
https://www.mdpi.com/journal/urbansci
https://www.mdpi.com/article/10.3390/urbansci7030079?type=check_update&version=1


Urban Sci. 2023, 7, 79 2 of 27

the importance of planning and managing climate change adaptation in urban coastal areas
is well recognized in the adaptation literature [3].

Planning adaptation strategies in coastal cities to manage increasing risk requires
transdisciplinary modeling approaches that can account for complex urban dynamics in
addition to the impacts of climate change. Agent-based modeling (ABM) is particularly
well-suited for this purpose, with individual decision rules applied to autonomous agents
leading to complex emergent patterns [4,5]. In the urban coastal environment, ABM is used
to model human responses across multiple spatial and temporal scales to better plan risk
reduction and adaptation, particularly for flood risks. Such social simulation approaches
can be used to build a comprehensive, complex, and behaviorally rich model that forms
the basis for a better understanding of the dynamics and decision processes involved in
coastal planning. In addition, such tools can help urban planners and managers of coastal
protection create potential scenarios and explore possible adaptation pathways.

For instance, Yang et al. [6] used the ABM approach to model human responses at
the household level to a flood incident and assess losses. Dawson et al. [7] modeled the
vulnerability of agents at the individual level to calculate risk and plan flood incident
management. A review by Taberna et al. [8] found two schools of flood management
research that employed ABM: one focusing on the hazard and vulnerability aspects of
risk that aimed to calculate expected annual damages, and the other focusing more on
the exposure aspect, modeling urban land use and market dynamics that affect values
at risk. Our work broadly falls into the latter category, characterized by the presence of
endogenous urban relocation. However, it also incorporates elements commonly observed
in the former category, such as temporally varying exogenous hazards due to climate
change. Therefore, our work serves as a much-needed bridge between these two modeling
schools. In addition, we aim to provide a tool to extend this area of urban flood risk research
with a transdisciplinary approach.

In this paper, we apply agent-based modeling to the idealized case of a hypothetical
generalized coastal city. Specifically, we employ the VIABLE (Values and Investments in
Agent-Based Interaction and Learning in Environmental Systems) agent-based modeling
framework [9]. This framework has been applied in multiple contexts across various scales.
The ABM outlined by Yang et al. [10] is an example of a local-scale application within a
single urban area. The model describes a small number of commuters seeking optimal
travel pathways through a city. In contrast, other model applications to bioenergy, land use,
and fisheries [9] apply the ABM framework at subnational and international scales with
much larger numbers of interacting agents. We apply this framework to a hypothetical
coastal city whose adaptation options are governed by a single agent. We use it to form a
complex decision framework for this agent that dynamically responds to increased flood
hazards posed by sea-level rise. Additionally, we illustrate its usage for modeling two
alternative adaptation strategies for a coastal city.

2. Materials and Methods
2.1. Agent-Based Modelling

The modeling approach employed here is agent-based modeling (ABM) within the
VIABLE modeling framework (see the next section). ABM approaches generally involve
multiple autonomous individuals acting on certain rules. These rules govern their in-
teractions with the environment in which they reside and with other agents within that
environment. ABM comprises rules applied across smaller (individual) scales that result in
aggregated behavior at larger (population) scales.

A common aspect of these models is that applying simple rules to multiple agents
results in complex emergent behavior at larger scales, such as in the famous cases of Thomas
Schelling’s models of segregation [4] and James M. Sakoda’s checkerboard model of social
interaction [5]. ABM is greatly aided by the increased computational resources available
in the digital age, allowing more detailed rules to be implemented across larger agent
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populations and shorter computation times. As a result, ABM can now facilitate multiple
simulations under different assumptions and scenarios.

2.2. The VIABLE Framework

We build our model using the VIABLE agent-based modeling framework [5]. This
framework is based on viability theory, which describes conditions for bounding systems
to an area where they are “viable,” termed their viability domain. For example, the global
climate system could be limited by global mean surface temperature change, such as the
1.5 to 2 degrees target defined in the 2015 Paris Agreement, within which the system is
considered viable. Agents in these dynamic systems follow “adaptive control,” which
means they possess limited capabilities in terms of resources and knowledge (bounded
rationality). They use strategic decision rules to adapt to the changing environment and
stay within their viability domain.

The VIABLE framework formalizes the dynamics of an agent using adaptive control to
stay within its viability domain. Agents seek to achieve target states by acting on the system
to alter its state by investing their capital into multiple action pathways. A value–cost
function determines how effective the agent’s actions are. Using certain decision rules, the
agent evaluates the changes in the system and alters how it invests its capital accordingly.
The framework also models the dynamic interactions between agents, allowing for the
study of the emergence of conflict or cooperation. In this study, we employ only single-
agent action in the VIABLE framework.

2.3. The Single-Agent Urban Coastal Model

The agent in the model represents an urban planner tasked with managing a coastal
city. The city is the system that the agent interacts with and generates income through
revenues for the agent. In the current model version, it is represented in a non-spatially
explicit form. A fraction of the area is designated as the coastal territory (50% for this study),
with the rest of the city’s territory being inland. The coastal territory of the city generates
more value per unit area than the inland territory (taken to be twice the value). However, it
is vulnerable to coastal flooding hazards resulting from sea-level rise and extreme events.

To avoid damages from these coastal hazards, the urban planner is presented with
two options for adaptation action: it can either build up the city’s coastal defenses or, as a
more extreme measure, relocate vulnerable parts of the urban territory inland. In keeping
with the VIABLE model, these action paths represent the primary mechanism of agency for
this planner. The planner can allocate any amount of the income it gains from the city as
investments in the adaptation measures. Certain fractions of the invested income allocated
to each adaptation option depend on the agent’s decision rules. The amount remaining
after the investment is consumed by the agent and counts towards its utility. The fraction of
investment allocated to each path is based on a set of variables termed the agent’s priority
for that path. It is also possible for the agent to refrain from any investment at all and
consume all generated value.

Therefore, the agent can have two control variables: the total amount of capital invested
and the fraction of invested capital going to one of the options (since there are only two
options, the fraction allocated to the other derives from this value). At every timestep of the
simulation, the agent can alter its control variables based on its evaluation of the current state
of the system. Essentially, the agent seeks to increase or maximize its value function and will
alter these control variables in the direction that leads to the highest value.

Sea-level rise is present in the model as a prescribed external force. The sea level is set
to its initial (reference) value at the start of the model simulation, which gradually rises over
time as the simulation progresses. Without any adaptation actions, damages are incurred
to the city based on what fraction of the urban territory is coastal. However, if the agent
develops coastal defenses through investment, sea-level rise-related damages are reduced.
Coastal defenses are represented in our model in terms of their “efficient height,” which
represents the maximum sea level that they can protect against. On the other hand, when
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the agent invests in relocation, the damages are also reduced since a smaller share of the
area that generates income is located in the coastal territory of the city.

2.4. Mathematical Formulation of the Model
2.4.1. Agent Dynamics

The agent seeks to increase and, as far as possible, optimize its value function V, which
is a balance between positive utility U and disutility W. Within the framework of a basic
economic model, utility is a function of consumption, which, as stated earlier, corresponds
to the capital remaining after investments are deducted. In contrast, disutility is a function
of damages incurred by the city.

Therefore, the value is given as:

V = U[K− C] – W[D] (1)

where K is the capital available to the agent and C is the total amount invested. Since all
resources remaining after investment are consumed by the agent and do not carry over
to the next timestep, the capital K available to the agent at any time is equal to the total
income Y generated by the city in that timestep:

K = Y (2)

This gives us the following value equation:

V = U[Y− C] – W[D] (3)

The utility and disutility functions are taken to be of a standard non-linear form, as
used in many economic models:

U = (Y− C)α (4)

W = b(D)β (5)

where α and β are constants, such that 0 < α, β < 1 and b > 0 is a parameter describing
the relative importance of negative utility from damages with respect to positive utility
from consumption.

The income Y, generated by the city, is given as:

Y = BCSC + BISI (6)

where Bc is the income generated per unit coastal urban area (Sc being the total coastal
urban area) and BI is the income generated per unit inland urban area (SI being the inland
urban area). We set Bc > BI, i.e., the coastal area of the city is more valuable per unit area, as
mentioned earlier.

2.4.2. Agent Investments (Optimizing Behavior)

The total amount invested C and the fraction of it that is invested in coastal defenses r
are the two control variables of the agent. Since there are two investment pathways, the
fraction invested in coastal relocation is 1-r. So, following the optimizing version of the
VIABLE framework, at every timestep, the agent sets target values for its control variables,
C* and r*, that correspond to the maximum attainable value, V*. The process of computing
the optimal value is detailed further in Appendix B. It then alters the current values of the
control variables by ∆C and ∆r in the direction of these target values. Therefore, these delta
values are proportional to the difference between the target and current values.

∆C = kCC[Y− C][C∗ − C] (7)
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∆r = α[r∗ − r] (8)

The process of altering these control variables is regulated by variables representing
the agent’s adaptation rate (kC for ∆C and α for ∆r). The adaptation rate ensures the
agent cannot instantaneously move to the optimum state. The dynamics of ∆C are further
regulated by the terms C and (Y− C), ensuring that the change slows down as C approaches
the maximum value Y and the minimum value 0.

After C has been altered by ∆C and r by ∆r, the investments in each pathway
would be:

CH = r·C towards developing coastal defenses, and (9)

CR = (1− r)·C towards city relocation (10)

2.4.3. State Dynamics

Towards the end of each timestep, the state variables change in response to these
investments after the agent has allocated them.

The coastal area Sc decreases if any investments in relocation have been made:

∆SC = −kRCR (11)

where kR is the efficiency of investments in urban relocation. The inland area SI increases
by an equivalent amount, depending on the investment allocated by the agent to urban
relocation.

As described by Kind [11], investments in coastal defenses occur periodically, with the
agent evaluating these investments and reallocating them, if necessary, for a fixed period.
In our model, we assume this is conducted every five years, reflecting public investment
policies in several countries. The amount invested is then split into five equal amounts that
are invested over the next five years to represent the project of coastal defense heightening.

The damage-mitigating ability of coastal defenses is represented by their “effective
height,” H*, which is the maximum sea level they can effectively protect against. This was
changed based on the investment CH allocated to developing coastal defenses. Without
investment, the defenses depreciate over time at the following depreciation rate λ:

∆H∗ = kH ·CH − λ·H∗ (12)

where kH is the efficiency of investment in coastal protection.
At this point, sea level H changes exogenously at discrete time points based on the

timestep. We implement various modes of sea-level rise, primarily one where, after every
five timesteps, the sea level increases by one height unit per step for the next five. If the sea
level exceeds the effective height of the defenses, then damage is incurred to the city. This
damage D is a function of the amount by which sea level H exceeds the effective defense
height H*. We define a “minimum threshold height,” h0, which is how much higher than
the sea level the coastal defense height should be to sustain zero damages. In practice, this
means that a coastal planner will build a safety margin so that the effective height is always
higher than the mean annual sea level. This also incorporates some reflection on extreme
events, depending on the appreciation and acceptability of the flood risk (see also [12]). So,
the damage function is zero when H* = H + h0 and increases linearly as H − H* increases.
The damage is also proportional to the vulnerability of the coastal area SC.

D = d(H − H∗)·SC (13)

The damage function d(H − H∗), visually represented in Figure 1, therefore specifies
the damage per unit of coastal urban area. It is zero until (H − H*) equals the minimum
threshold height h0, which increases linearly.
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2.4.4. Extreme Sea-Level Events

In addition to the baseline long-term gradual sea-level rise, we introduce “climate
shocks,” short-term but large-scale perturbations to the sea level representing extreme
sea-level events, such as storm surges caused by cyclone systems. The model includes a
few different climate shock modes (Table 1). However, for the purposes of this paper, we
use the so-called “probabilistic” mode, where the timing and severity of climate shocks
are dependent on a percentage chance at each timestep. Over time, this chance increases,
making shocks, on average, more frequent and severe in the later stages of the simulation,
mirroring the projected effects of climate change on extreme sea-level events.

Table 1. Sea-level rise scenarios implemented in the model.

Scenario Name Scenario Description (Changes in Sea Level H in cm)

Gradual (deterministic) H + 1 for five steps after every five timesteps

Gradual with extreme events (probabilistic)
H + 1 + x for five steps after every five timesteps, where x is a
randomized value that has an increasing chance to be non-zero
with time

Besides providing a mechanism to better simulate the complexity of the urban coast,
probabilistic climate shocks introduce an element of randomness to each simulation. This
leads to more diverse agent behavior and provides another impetus for the agent to work
toward climate adaptation.

2.4.5. Agent Action

As the simulation progresses, the agent observes sea-level changes and forms an
approximate expectation for future sea levels. This is conducted by extrapolating linearly
from all observed sea levels until the current time step. The agent’s expected sea level at
the next investment period forms the basis for the targeted coastal defense height the agent
wishes to achieve. The agent aims to reach a defense height corresponding to a level of
protection that exceeds the expected sea level, and this built-in buffer height is defined
based on the average sea level due to extreme events.

As this expected level is a linear extrapolation of past observed levels, a gradual rise
would mean the agent expects an increased risk at the next investment period and prepares
for it. Effectively, this also means that the agent decreases its expected risk at the next
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timestep in cases where the observed sea level does not change and may underestimate
future sea levels.

Additionally, when the agent observes an extreme sea-level event, the expected risk is
updated to the maximum level observed, and the agent seeks to ensure that an extreme
event of a similar magnitude will not cause damage in the future. This represents the
agent’s learning ability and, in effect, means that the agent prepares for the highest observed
extreme sea-level event.

2.4.6. Investment Efficiency

The efficiencies of investments are important parameters for tuning the model to
represent scenarios analogous to reality, as they signify the crucial link between agent
action and the system’s response to this action. For clarity, the efficiency of an investment
can be divided into two factors: Firstly, there is a fractional efficiency between 0 and 1,
which represents how much of the invested capital is effectively utilized. Secondly, there is
a cost conversion factor, or “cost factor,” which translates monetary units to height units (in
the case of coastal defense development) or area units (for city relocation). In the first case,
this cost factor represents how many centimeters the coastal defenses are heightened by for
each euro spent, and in the second case, how many square kilometers of coastal territory
are relocated inland for each euro spent.

The investment efficiencies kH and kR are both the product of a fractional efficiency
and a cost factor:

kH = kH
f ∗ kH

c (14)

kR = kR
f ∗ kR

c (15)

Breaking down these factors allows us to separate two effects: the cost of the adaptation
actions and the agents’ efficiency in implementing them. Different geographical areas can
be represented by varying the former, where this factor is determined by differences in
the costs of labor and materials in different locations. Different levels of efficiency in
governance and adaptation plan implementation can be represented by varying the latter.
The fractional efficiencies kH

f and kR
f can vary in value from 0 to 1, depending on the

scenario. When the value is 1, all of the agent’s invested resources are allocated to the
chosen adaptation path with 100% efficiency. For our simulations, we take a value of 50%
efficiency for heightening coastal defenses (a sensitivity analysis for different values of this
fractional efficiency is illustrated in Appendix A).

We base our estimates of coastal defense on cost factors from Jonkman et al. [13], where
for a sample area in the Netherlands, the cost of developing coastal defenses is roughly
approximated at 20 M € per m of coastal defense height per km of coastline. This yields the
following kH

c value (in m/M €), dependent on coastline length, LC (km):

kH
c = 1/(20 ∗ LC) (16)

We denote this value as a “high-cost” scenario for coastal defenses, as opposed to a
“low-cost” scenario where the cost factor (drawn from [13] for a sample area in Vietnam) is
given as:

kH
c = 1/(1.0 ∗ LC) (17)

Therefore, we can see the effect of this cost factor by comparing these two scenarios.
On the other hand, the cost factor for coastal relocation is based on the income gener-

ated by the coastal tiles being relocated.

2.4.7. Units and Values of Model Parameters

Table 2 describes the units that model parameters are equated to. The model runs
carried out below in the results section use the values listed in Table 3 for the given
parameters, unless specified otherwise in the text.



Urban Sci. 2023, 7, 79 8 of 27

Table 2. Model units and their equivalents.

Model Units and Their Equivalents

Timestep (time units) Years
Height Units (for sea-level rise and coastal defense height) Centimeters

Monetary Units Millions euro (M €)
Area Units Square kilometers

Table 3. Model Parameters and initial values of model variables.

Model Parameters

Adaptation rate α 0.5
Fractional investment efficiency into coastal defense

development kH
f 0.5

Investment efficiency into city relocation kR
f 0.1

Defense depreciation rate 0.05 cm/yr
Baseline percentage probability of extreme sea-level

events at each timestep 3.00

Increase in percentage probability of extreme sea-level
events per timestep 0.01

Initial Variable Values

Coastal Area 10 sq. km
Inland Area 10 sq. km

Unit Income from the coastal territory 20 M €/sq. km

3. Results
3.1. Agent Response

Broadly speaking, we observe the agent’s response to sea-level rise-related hazards
as mostly reactive, as seen in the scenarios discussed below. With limited information
and expectations based on a linear extrapolation of past observed sea levels, the agent
primarily acts to mitigate damages that it anticipates in the next investment period. This
means that during the simulation, the agent does not increase adaptation investment as
long as expected damages are zero, i.e., the coastal defenses are sufficiently high to prevent
sea-level rise.

When the agent does move towards adaptation, it heavily prefers the option of build-
ing coastal defenses (Figure 2). This preference for coastal defense development over city
relocation can mostly be attributed to the setup of state dynamics. While coastal defenses
serve as an efficient adaptation measure that sufficiently reduces damages related to sea-
level rise, city relocation is a much more expensive process (represented in the model by
the relocation investment efficiency parameter being much lower than the coastal defense
investment efficiency parameter). The coastal urban territory is also twice as valuable
to the agent in terms of income per unit area compared to the inland territory, which
further disincentivizes the agent from city relocation. This reflects the extreme case of city
relocation being implemented as a last resort.

As a result of this preference for coastal defense heightening, we can use effective
defense height as a proxy for agent action to be compared against sea-level rise across the
simulation to see how agent response evolves over time.

Since the model includes a probabilistic element through the randomized climate
shocks occurring with a probability (Table 2), the system state evolves differently in each
simulation. As a result, the agent’s behavior also varies between simulations. For a broader
look at the more generalized trends of agent behavior, we study the mean results from a
large number of model runs (n = 300). These runs differ only in the time of occurrence
of the probabilistic climate shocks, which then lead to differences in agent behavior. In
addition, we simulate different cost scenarios.
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First, we consider the “high-cost” scenario described above, with more expensive
coastal defense increasing, analogous to the case of the Netherlands. With this setup, as
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Another effect seen here is the increase in variability of agent response as the simulation
progresses, as marked by the coastal defense height in Figure 3 and the agent’s coastal
defense investments in Figure 4. This results from the probabilistic element of extreme
sea-level events, arising from their increased frequency as the simulation progresses, and
the effects of the timing of these extreme events on agent action, which are discussed further
in the next section.
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For the “low-cost” scenario, we find agent response much more effective, as seen in
Figure 5. Earlier investments in coastal defense heightening are more than sufficient to
prevent any damages. Therefore, the agent instead opts to decrease these investments
over time (Figure 6), only aiming to keep pace with gradually rising sea levels and slowly
leveling off how much the defenses are heightened in each investment period. As a result,
damages due to extreme sea-level events are sustained primarily towards the start of
the simulation.

3.2. Effect of Timing of Extreme Events

During individual simulations, it is observed that the timing and sequence of random-
ized extreme sea-level events have a noticeable effect on agent adaptation.

An extreme event taking place much earlier in the simulation leads to the agent
building higher defenses earlier, protecting the city against extreme events of similar or
even higher sea levels later (Figure 7). This is reminiscent of the effects of flood protection,
for instance, in the city of Hamburg, where the significant impacts of the 1962 storm surge
led to flood protection measures that later avoided the impacts of storm surges of similar
and higher levels, such as in 1976, 1981, and 2013 [14].

The opposite case can be seen when extreme sea-level events emerge later in the
simulation. An absence of early extreme events leads to lower investments in defense
heights, resulting in the city sustaining damage when extreme events occur later (Figure 8).
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3.3. Adaptation Success

To quantify the effects of agent action and compare them across the scenarios, we
introduce three “adaptation success” parameters.

Firstly, the success parameter for coastal defense development ACD is the total fraction
of timesteps where the effective coastal defense height is higher than the total sea level, or,
equivalently, the fraction of timesteps where the city sustains zero damages. This measures
adaptation success in terms of how effectively the primary adaptation option is followed.
Therefore, if N0 is the number of timesteps with zero damages and Ntot is the total number
of timesteps, the parameter is expressed as:

ACD =
N0

Ntot
(18)
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A more generalized and comprehensive measure of adaptation success is one where
the total amount of damage that was avoided due to adaptation actions is calculated
(see [14]). For this purpose, a hypothetical scenario where the agent is prevented from
carrying out any adaptation for the entire simulation duration is taken as a baseline for
comparison. The total damages sustained throughout this simulation (averaged over
multiple simulations to account for the effect of climate shocks) can then be compared to
the total damages sustained under a specific scenario. The difference between the former
and the latter is the total damages avoided due to adaptation actions in the selected scenario.
For ease of comparison, the avoided damages can be measured as a percentage of D0.

If D0 is the total amount of damages sustained in the “no-action” scenario and D’ is the
total damages sustained in the selected scenario, the second adaptation success parameter
in terms of damages avoided for this scenario, denoted as ADA, will be expressed as:

ADA =

(
D0 − D′

D0

)
∗ 100 (19)

Lastly, we can compare adaptation success in terms of adaptation efficiency from a
cost–benefit perspective. Essentially, we can compare the damages avoided as a result of
adaptation actions with the resources invested in these actions. So, taking Ctot as the sum of
all investments over the time period of the simulation, a third adaptation success parameter
can be expressed as:

ACB =

(
D0 − D′

Ctot

)
∗ 100 (20)

These three success parameters can be used to further compare the differences in the
high-cost and low-cost scenarios, as shown in Table 4 below.

Table 4. Adaptation success parameters for high-cost and low-cost scenarios.

Scenario ACD ADA (%) ACB (%)

High-cost 1.00 97.07 69.78
Low-cost 1.00 97.12 201.63

The use of these measures more clearly illustrates the contrast between the scenarios.
Though the percentage of damages avoided is quite similar, the low cost of coastal defenses
in the second scenario results in significantly higher adaptation efficiency since fewer
resources have to be utilized for the same result. In fact, from a cost–benefit perspective,
the city in the low-cost scenario avoids monetary damages for a comparatively low amount
of resources invested in coastal defense.

3.4. Scenarios of Sea-Level Rise

We further investigate agent behavior by implementing projected sea-level rise under
different shared socioeconomic pathways (SSPs) outlined in the IPCC AR6. The SSPs are
narratives that represent different pathways of future socioeconomic development, includ-
ing sustainable development (SSP1), middle-of-the-road development (SSP2), regional
rivalry (SSP3), and fossil-fueled development (SSP5). On the other hand, the RCP scenarios
outlined in IPCC AR5 represent the Earth system in terms of the atmospheric radiative
forcing in W/m2 reached by the year 2100. SSPs are combined with RCPs to form “marker”
scenarios, of which we take four below.

Regional sea-level projections derived for various SSPs [15,16] and RCPs [17] can be
used to provide the exogenous sea-level rise to construct these scenarios in the model. We
take the regional sea-level projections for the “Cuxhaven 2” tide gauge, located in the Elbe
Estuary close to the German city of Cuxhaven. This location is important for studying
storm surges and possible upstream effects in the Elbe Estuary, particularly in the major
urban agglomeration and harbor city of Hamburg. Projected decadal sea levels from 2020 to
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2100 are taken for this location from the FACTS dataset [16], interpolated between decades,
and shown below (Figure 9).
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The agent response curves for these projections with probabilistic extreme-level events
for the high-cost scenario, with all other variables except the sea-level rise mode being
the same as in the above simulations, are shown below. Figure 10 shows averaged de-
fense height compared to sea level, and Figure 11 shows averaged damages compared to
investments in coastal defense.
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The agent is most successful at adapting to the SSP126 scenario. On average, damages
are sustained from extreme events in the initial stages of the simulation. However, by the
end of the simulation, coastal defenses are sufficiently developed to minimize damages
from extreme sea-level events. In scenarios with more warming, i.e., SSP370 and SSP585,
damages from extreme events are more evenly distributed throughout the simulation.
Success parameters for these scenarios are shown in Table 5.

Table 5. Adaptation success parameters for different scenarios of sea-level rise.

Scenario ACD ADA (%) ACB (%)

SSP126 1.00 97.06 55.81
SSP245 1.00 97.05 52.81
SSP370 1.00 97.05 49.86
SSP585 1.00 97.03 46.45

3.5. Effect of “Hedging”

In addition to reacting purely to expected sea-level rise, the planner can hedge against
risks as a precautionary measure. Effectively, this means the planner prepares defenses
corresponding to even higher sea levels than expected. We define a hedging factor fh,
which changes the agent’s expected sea level H as per the expression:

Hhedged = H ∗ (1 + fh) (21)

For the “high-cost” scenario, we observe the following agent-averaged response curves
for three different values of the hedging factor, as shown in Figure 12.
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As observed, even in a scenario with high costs of coastal defense, the agent’s precau-
tionary hedging leads to much more developed defenses due to higher investments. Due
to this hedging, the agent does not start decreasing investments once an acceptable defense
level is reached, heightening defenses to a much higher point than the sea level.

The success parameters in Table 6 show that precautionary defense heightening is
slightly more effective from a pure damage avoidance perspective, with the city sustaining
nearly zero damages from sea-level rise-related hazards. From a cost–benefit perspective,
it is also seen that hedging against damages in this manner turns out to be much more
inefficient. The expenses incurred by investments in coastal defense that hedge against
possible risks far outweigh the damages avoided. In practice, this means that the precise
costs of defense heightening and potential damages from flooding need to be known
in order to determine the optimal level of investment [11,12]. Here, we have calculated
the results for a hypothetical case. This framework can be applied to real-world cases
to simulate trade-offs between different investments, hedging levels, and sea-level rise
scenarios. It should also be noted that adaptation success is not significantly increased
when the hedging factor h is increased from 1 to 2, as all of the agent’s available capital is
already being utilized for heightening coastal defenses. Precautionary hedging is a trade-off
between the efficiency of resources invested and a decrease in the risk of damages.

Table 6. Adaptation success parameters for different values of hedging factor fh.

Scenario ACD ADA (%) ACB (%)

fh = 2 1.00 97.12 20.15
fh = 1 1.00 97.12 32.87

fh = 0.5 1.00 97.11 42.95
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4. Discussion

The urban planner agent in our model is characterized by reactive behavior with a
learning aspect, leading to the overall effect of the agent keeping pace with sea-level rise.
Damages to the city from extreme sea-level rise and flood events are sustained primarily at
the start of the simulation when defenses are not sufficiently heightened. In particular cases,
extreme sea-level events occur earlier in the simulation, causing damages and spurring
an agent response that decreases damages from similar (and even higher) extreme events
later. However, this pattern is sensitive to the costs of heightening coastal defenses, and
in the case of lower costs, earlier damages are also mitigated. When the agent’s expected
damages in the next year decrease, adaptation investments decrease, leading to stagnation
in the city’s coastal defenses.

The single-agent VIABLE-based model of the coastal city serves as an interactive
tool that can be used to model adaptation responses across diverse scenarios in a user-
friendly manner due to its being coded in NetLogo. However, from its concrete foundation
of decision rules and dynamic adaptation action, it can also be further developed by
extending these rules to multiple agents (as the VIABLE framework models multi-agent
interactions) or implementing them in a spatially explicit environment.

5. Conclusions

The VIABLE model framework is successfully implemented for the case of a single-
agent model of an urban planner of a coastal city managing adaptation actions in response
to climate change-induced sea-level rise and related hazards.

We find that early extreme events have a priming effect that leads to more successful
adaptation to later such events. This effect is borne out by similar real-world examples,
which should be considered when planning adaptation policies. However, the timing of
adaptation actions is also dependent on the costs involved.

We introduce three aspects of adaptation success that can be used to compare diverse
scenarios in a quantifiable manner: the fraction of timesteps with zero damages sustained,
total damages avoided, and the ratio of avoided damages to adaptation costs. This leverages
the advantages of agent-based models to construct and analyze various possible futures of
agent action. We apply these parameters to our sample scenarios and projected sea-level
rise under different SSP scenarios.

With the addition of a system of precautionary hedging, the agent allocates much
larger amounts of its resources to developing coastal defenses, and its adaptation actions
show increased success. However, this leads to a worse outcome in terms of adaptation
efficiency from a cost–benefit perspective, highlighting the trade-off involved in such
measures. Nevertheless, it should be stressed that the costs involved are based purely on
the potential damages avoided within the time horizon of the simulation, and the long-term
effects of building coastal defenses should be incorporated into the cost–benefit analysis
for adaptation planning.
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Appendix A

To investigate the effect of varying the fractional efficiency of coastal defense heighten-
ing on agent adaptation action, we carry out a sensitivity analysis for this parameter, taking
values of 25%, 50%, 75%, and 100% (at 0% efficiency, the agent cannot invest in defense
heightening at all and effectively cannot act). As described above, fractional efficiency
represents inefficiencies in governance and adaptation plan implementation and is heavily
system-dependent.

From the agent response curves in Figure A1, we observe that at 25% efficiency, the
agent takes much longer to adapt to rising sea levels and overshoots the optimal defense
height due to slower plan implementation. The speed of agent response increases with
increasing efficiency until 100%, where the agent’s averaged response is completely linear,
following the gradual sea-level rise.
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Appendix B

At every timestep, the optimizing agent has to calculate the optimal value V*, which
will represent its target. We have defined the value of the agent as follows:

V = U[Y−C] – W[D]

where utility U and disutility W are given by:

U = (Y−C)α and

W = b(D)β



Urban Sci. 2023, 7, 79 23 of 27

where 0 < α, β < 1, and income obtained from the city Y = capital K, and b > 0 is a
parameter describing the relative importance of negative utility with respect to positive utility.

The damage function is taken as:

D = d(H−H∗)·SC

From the state dynamics equations, at the end of every timestep:

H∗ = H∗ + ∆H∗ = H∗ + kH·CH − λ·H∗ = (1− λ)H∗ + kH·r·C

SC = SC + ∆SC = SC − kRCR = SC − kR·(1− r)·C

Substituting these in the damage function, the value equation becomes:

V = [K−C]α – [ d (H − (1− λ)H∗ − kH ·r·C ) . (SC − kR·(1− r)·C)] β

To obtain a linearly increasing function for d that starts rising after the value of excess
height h = H − H∗ crosses a threshold value h0 > 0, we take it as a piecewise function
defined as:

d(h) =

{
h+h0

hS
, i f h + h0 ≥ 0

0, i f h + h0 < 0

where hs > 0.
Taking Z = H − H∗(1− λ), the value equation in terms of CH and CR becomes:

V(CH , CR) = (Y− CH − CR)
α − b

hβ
S

(z + h0 − kHCH)
β(SC − kRCR)

β. θ(z + h0 − kHCH)

where θ is a step function defined as:

θ(x) =
{

1, x ≥ 0
0, x < 0

We make a few substitutions for brevity:

C0
H =

z + h0

kH

C0
R =

SC
kR

B = b
(

kHkR

hS

)β

This reduces the value equation to:

V(CH , CR) = (Y− CH − CR)
α − B

[(
C0

H − CH

)(
C0

R − CR

)]β

With the constraint that C0
R ≥ 0.

In addition, whenever C0
H ≤ 0, the optimal total investment amount would be zero,

so we can take C0
H > 0 as another constraint.

To find an analytical solution for V*, we introduce:

C̃H = C0
H − CH

C̃R = C0
R − CR
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Y = Y− C0
H − C0

R

Defining the value equation in terms of these new parameters:

V
(

C̃H , C̃R

)
=
(

Y + C̃H + C̃R

)α
− B

(
C̃H .C̃R

)β

In this equation, when CH > C0
H , the disutility term disappears, leaving value de-

pendent decreasingly on CH , i.e., V = (Y− CH − CR)
α, so for maximizing, we impose the

constraint that C̃H > 0.
So, we have the following boundary constraints:

0 ≤ C̃H ≤ C0
H

0 ≤ C̃R ≤ C0
R

Y + C̃H + C̃R ≥ 0

Staying within the domain bound at C̃H = 0, C̃H = C0
H, C̃R = 0, and C̃R = C0

R (Figure A2),
we can vary a parameter x > 0 such that Y + C̃H + C̃R = x ⇒ C̃H + C̃R = constant . Thus,
keeping C̃H + C̃R constant, we find that the minimum value of V is reached at C̃H = C̃R, and
increases towards the edges of the domain. Thus, we can infer that the maximum value of V is
reached at the boundary of this domain. Applying this to both C̃H and C̃R, we can see that V is
maximized when either C̃H = C0

H or C̃R = C0
R.
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To find a solution analytically, we assume α = β:

V
(

C̃H , C̃R

)
=
(

Y + C̃H + C̃R

)α
− B

(
C̃H .C̃R

)α

Since only the boundary conditions result in a maximization, either C̃H = C0
H or

C̃R = C0
R holds true (in both cases, the other parameter is variable).
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To maximize the above, we consider an auxiliary function f defined as:

f (x) = (p + x)α − qxα

where q > 0 and x lies between the bounds xmin and xmax. f(x) has an extremum point at x0
where:

f ′(x0) = 0 ⇒ (p + x0)
α−1 = qxα−1

0 ⇒ x0 =
p

q
1

α−1 − 1

Thus, the maximum value of f(x) is reached at xmin, xmax, or x0. The terms f(xmin),
f(xmax), and f(x0) would have to be computed, and the corresponding value of x would
therefore be the target value.

So, to maximize V
(

C̃H , C̃R

)
, we use the following algorithm:

1. Since either C̃H = C0
H or C̃R = C0

R holds true, we first make these substitutions:

C̃R = C0
R

p = Y + C0
R

q = B
(

C0
R

)α

2. We then compute V
(

C̃H
1
, C0

R

)
, V
(

C̃H
2
, C0

R

)
and V

(
C̃H

3
, C̃0

R

)
, where:

C̃H
1
= max(0,−p)

C̃H
2
= C0

H

and C̃H
3
=

p

q
1

α−1 − 1

3. We conduct a similar substitution for the case, where C̃H = C0
H :

p = Y + C0
H

q = B
(

C0
H

)α

4. We now similarly compute V
(

C0
H , C̃R

1)
, V
(

C0
H , C̃R

2)
and V

(
C0

H , C̃R
3)

, where:

C̃R
1
= max(0,−p)

C̃R
2
= C0

R

and C̃R
3
=

p

q
1

α−1 − 1

5. The values of C̃H and C̃R that correspond to the maximum value of V
(

C̃H , C̃R

)
out of

the terms computed in Steps 2 and 4, are the target values C̃H
∗

and C̃R
∗
.

The above algorithm yields target values C̃H
∗

and C̃R
∗
, which are used to calculate C*

and r* as follows:
CH
∗ = C0

H − C̃H
∗

and CR
∗ = C0

R − C̃R
∗
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Then C∗ = CH
∗ + CR

∗ and r∗ =
CH
∗

C∗

Appendix B.1. Special Case for α and β

To take a more generalized scenario, we can prescribe that utility increases linearly
and disutility changes at an arbitrary rate > 0, i.e., α = 1 and β > 0.

We start with the value equation as computed earlier, this time substituting α = 1
instead:

V
(

C̃H , C̃R

)
=
(

Y + C̃H + C̃R

)
− B

(
C̃H .C̃R

)β

where β is an arbitrary positive value.
We take a similar auxiliary function:

f (x) = (p + x)− qxβ, q > 0

As a result, the same algorithm is followed, with only the terms C̃H
3

and C̃R
3

calculated
in Steps 2 and 4, respectively, being changed:

C̃H
3
= (βq)

−1
β−1

C̃R
3
= (βq)

−1
β−1

where q = B(C0
R) and q = B(C0

H).
The rest of the algorithm remains unchanged.
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