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Abstract: This study explored how transportation accessibility and traffic volumes for automobiles,
buses, and trucks are related. This study employed machine learning techniques, specifically the
extreme gradient boosting decision tree model (XGB) and Shapley Values (SHAP), with national
data sources in South Korea collected from the Korea Transport Institute, Statistics Korea, and Na-
tional Spatial Data Infrastructure Portal. Several key findings of feature importance and plots in
non-linear relationships are as follows: First, accessibility indicators exhibited around 5 to 10% of
feature importance except for Mart (around 50%). Second, better accessibility to public transportation
infrastructures, such as bus stops and transit stations, was associated with higher annual average
daily traffic (AADT), particularly in metropolitan areas including Seoul and Busan. Third, access to
large-scale markets may have unintended effects on traffic volumes for both vehicles and automo-
biles. Fourth, it was shown that lower rates of AADT were associated with higher accessibility to
elementary schools for all three modes of transportation. This study contributes to (1) understanding
complex relationships between the variables, (2) emphasizing the role of transportation accessibility
in transportation plans and policies, and (3) offering relevant policy implications.

Keywords: transportation accessibility; traffic volume; interpretable machine learning approach

1. Introduction

Traffic congestion is a major problem in many urban areas, leading to increased travel
time, air pollution, and decreased quality of life [1]. One of the main factors contributing
to traffic congestion is the volume of vehicles on the road, which is influenced by factors
including accessibility to different destinations and transportation modes. Mondschein and
Taylor [2], for instance, suggested that there are sites where individuals make numerous
traffic and engage in numerous activities despite congestion, which tend to be more central,
built-up areas with higher levels of accessibility. Accordingly, a potential strategy for
reducing traffic congestion is to improve accessibility to different destinations and modes
of transportation. By improving access to public transportation, for example, individuals
may be more likely to use public transit rather than drive alone, which can help to reduce
the number of vehicles on the road and alleviate congestion. Similarly, by improving access
to essential services and amenities, such as grocery stores, schools, and healthcare facilities,
individuals may be able to reduce the number of trips they take, which can also help to
reduce congestion.

Therefore, this study aims to offer a deep understanding of how transportation acces-
sibility and traffic volumes are associated and how the association differs by automobile,
bus, and truck utilizing innovative approaches (i.e., ML techniques), extreme gradient
boosting decision tree model (XGB), and Shapley values (SHAP) with nationwide data
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sources in South Korea collected from the Korea Transport Institute, Statistics Korea, and
National Spatial Data Infrastructure Portal. This study makes several contributions, in-
cluding (1) identifying critical factors and understanding their effects, and (2) providing
policy implications. This study can aid in identifying the primary factors that influence
traffic volumes, such as the availability of transportation infrastructure and the degree of
congestion. Transportation planners and policymakers can use this information to devise
strategies to improve transportation infrastructure and reduce congestion. Without study-
ing the relationship between accessibility and congestion, transportation planners may not
fully understand the transportation needs of users, leading to inefficient transportation
systems that may reduce mobility for users. This study can also suggest the efficacy of
various strategies for enhancing transportation infrastructure and reducing congestion. For
instance, studies can assess the effects of constructing new roads or highways, expanding
public transportation options, or instituting congestion pricing policies.

2. Related Works
2.1. Traffic and Accessibility

Previous literature has acknowledged the association between traffic volumes and
accessibility. Broadly speaking, the built environment influences how people move through
and interact with their surroundings, therefore land use and travel behavior are inextricably
related [3]. A substantial body of work has been devoted to the study of the relationship be-
tween the built environment and travel behavior, with several major findings emerging [4].
Mainly, the built environment, operationalized by D variables (e.g., density, diversity, de-
sign, destination accessibility, and distance to transit), was found to have a considerable
impact on the travel behavior of diverse transportation modes, such as automobiles and
car-hailing services [5–8].

More specifically, previous literature has acknowledged the relationship between
the built environment, particularly accessibility, and travel behavior. Built environment
patterns influence travel behavior by determining the accessibility of destinations and the
types of transportation available to individuals. For instance, after controlling for individual
and household variables, Frank et al. [9] discovered that residents of neighborhoods with
higher degrees of accessibility to destinations by foot and bike were more inclined to walk
or bike for transportation. A similar finding was found by Duranton and Turner [10], who
discovered that the amount of traffic congestion is a function of how easily infrastructures
can be accessed, with more accessibility leading to increased traffic volumes and congestion.
Lavieri et al. [11] explored the relationship between active transportation use and virtual
and physical accessibility, controlling for information and communication technology use
measures and other relevant factors. In their model, they considered that individual,
household, and work factors influence activity-travel choices and that these choices are
in turn influenced by both virtual accessibility and physical accessibility. Wang et al. [12]
investigated the association between multi-use path accessibility and active travel behavior
in Salt Lake City and found that multi-use path accessibility and a favorable clustering
impact can influence active travel behavior. Yan [13] concluded that improvements in
accessibility can lead to increases in not only TCS but also destination utility.

2.2. Machine Learning in Urban Sciences

Methodologically, the use of machine learning (ML) in the age of artificial intelligence
(AI) can offer numerous contributions and innovations to the field of urban science. For
instance, ML has the potential to increase the precision of predictions and classifications,
especially when dealing with large and complex datasets [14,15]. This could enable more
precise and nuanced analyses of urban phenomena, leading to improved policy decisions
and planning results. Second, ML can autonomously identify the most significant features
of a dataset, enabling more efficient and effective analysis. This could assist researchers in
concentrating their efforts on the most significant factors influencing urban phenomena,
resulting in more targeted interventions and policy decisions. Thirdly, ML can recognize
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intricate patterns and relationships in urban data that may not be readily apparent to
human analysts [16]. This could contribute to discoveries and insights in the field of urban
analytics, expanding our knowledge of how cities function. Fourth, ML can be trained on
large datasets and executed rapidly, enabling analyses at larger scales and with greater
granularity than conventional techniques. This could enable researchers to analyze urban
phenomena on a regional or even national scale, providing fresh perspectives on urban
challenges and issues.

2.3. Research Gaps

The empirical evidence demonstrates that land use patterns have a major impact on
travel behavior and, more importantly, that increasing accessibility can assist in reducing
reliance on single-occupancy vehicles while also supporting more sustainable modes of
transportation. However, there have been several research gaps that this study aims to fill.
First, a limited scope has been made to explore traffic volumes of diverse transportation
modes as previous studies have generally used individual or household travel or the use
of a certain transportation mode. Second, a few studies have focused on the relationship
between the built environment, particularly accessibility, and traffic volumes. Also, there is
a research gap when it comes to understanding the impact of accessibility to infrastructures
such as schools, markets, and bus stops on traffic volumes. Third, despite the extensive
research on the relationship between infrastructure accessibility and traffic volumes, there
is a research gap when it comes to comprehending this relationship across various modes
of transportation, including automobiles, buses, and trucks, in a particular context. Fourth,
a few studies have attempted to explore and understand the complex relationship, such as
non-linearity and feature importance, between accessibility and traffic volumes by using
the ML approach [14].

3. Materials and Methods
3.1. Variable
3.1.1. Dependent Variable: Traffic Volumes

The dependent variables in this study were traffic volumes measured as annual
average daily traffic (AADT) in the number of vehicles per day (see Table 1). The traffic
volume used in this study refers to the estimated number of vehicles traveling on the
road predicted via an algorithm that estimates the traffic volume of unobserved roads
using observed actual traffic volume and navigation data. The traffic data was at the finer
level of geographical boundary in South Korea, which is Eup/Myeon/Dong (EMD). The
sample size was around 3200. This study categorized traffic volume into three modes:
truck, car, and bus, as they differ in size, speed, purpose, emissions, and impact on traffic.
Consequently, three different models were generated for each variable in this investigation.

The data were collected from the Korea Transport Institute. The sources offer na-
tionwide representative data and advantages of this research, including generalizability
and reduced bias. Nationwide representative data sources provide a more comprehensive
picture of the population and have the potential to boost the findings’ validity to be gener-
alized to the full population of interest. The use of data sources that are representative of
the entire country can help eliminate bias by ensuring that the sample is not systematically
biased toward any particular groups or locations of the country. However, the data have
limitations. For instance, nationwide analyses may not take into account specific regional
or local contexts, which can limit the applicability of the findings to specific regions or
populations. Also, nationwide data sources often have limited variables available for
analysis, which can make it difficult to fully explore the relationships between different
factors. Acknowledging the limitations, this study used the data sets.
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Table 1. Description and descriptive statistics of variables used in this study.

Variable Description Source Mean St. Dev

Dependent Variables (Target Features)

Truck
Log-transformed the amount of truck traffic in annual average daily
traffic (AADT) in vehicles per day at the Eup/Myeon/Dong (EMD)
level (dependent variable for the truck model)

KTI 6.595 1.030

Car
Log-transformed the amount of car traffic in annual average daily
traffic (AADT) in vehicles per day at the EMD level (dependent
variable for the car model)

KTI 8.038 1.108

Bus
Log-transformed the amount of bus traffic in annual average daily
traffic (AADT) in vehicles per day at the EMD level (dependent
variable for the bus model)

KTI 3.805 1.136

Independent Variables (Input Features)

Transportation Accessibility

Elementary

Log-transformed averaged travel time from each home to the
nearest elementary school in minutes at the EMD level

Accessibilityj =
∑ji∈Λi (Popji×Min(Tji→w))

∑ji∈Λi
Popji

where j is an EMD, Popji denotes population size, and Tji→W
represents aggregated travel time from the population-weighted
centroid of EMD to the facility. The equation is from KTI.

KTI 1.388 0.473

Middle
School

Log-transformed averaged travel time from each home to the
nearest middle school in minutes at the EMD level KTI 1.699 0.552

High
School

Log-transformed averaged travel time from each home to the
nearest high school in minutes at the EMD level KTI 2.025 0.715

Mart Log-transformed averaged travel time from each home to the
nearest mart in minutes at the EMD level KTI 2.570 0.962

Market Log-transformed averaged travel time from each home to the
nearest market in minutes at the EMD level KTI 2.224 0.886

Bus Stop Log-transformed averaged travel time from each home to the
nearest bus stop in minutes at the EMD level KTI 2.805 0.611

Transit
Station

Log-transformed averaged travel time from each home to the
nearest train station in minutes at the EMD level KTI 3.010 0.740

Control Factors

Ave Speed The log-transformed average speed of cars at the EMD level KTI 3.539 0.357

Pop Density The log-transformed population density in persons per km2 at the
Si/Gun/Gu (SGG) level

SK 12.635 0.631

Emp Density Log-transformed employment density in jobs per km2 at the
SGG level

SK 11.776 0.564

Land Use Mix

Land use diversity index at the SGG level

land mix index = 1−
{
| r

T−
1
3 |+| c

T−
1
3 |+| o

T−
1
3 |

4/3

}
where r is areas of residential use permits in km2, c is areas of
commercial/industrial use permits in km2, o is areas of other land
use permits in km2, and T is r + c + o [17,18].

SK 0.572 0.138

Budget Log-transformed total budgets in 10,000 Won at the SGG level SK 13.811 0.582

Metro 1 if EMD is located in metropolitan areas, such as Seoul and Busan,
0 otherwise NSDIP 0.328 0.470

Rural 1 if EMD is located in rural areas (Eup and Myeon), 0 otherwise NSDIP 0.411 0.492

Abbreviation: Korea Transport Institute (KTI); Statistics Korea (SK); National Spatial Data Infrastructure
Portal (NSDIP).
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Regarding the descriptive statistics, there was a difference in the traffic volumes that
occurred between the three different modes of transportation. More specifically, the traffic
volumes for automobiles were the largest, followed by trucks and buses. Figure 1 shows
the spatial distribution of traffic volumes of the three modes. It shows a large concentration
of traffic volumes in metropolitan regions, such as Seoul and Busan. In addition, the
majority of the truck traffic was concentrated along the key highway corridors, such as the
Gyeong-bu Line and the Ho-nam Line.
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3.1.2. Independent Variables

This study used several independent variables categorized into two sections: (1) trans-
portation accessibility, which is the focus of this study, and (2) control factors. First, this
study employed diverse transportation accessibility indicators, including travel time to
educational infrastructures (i.e., elementary school, middle school, and high school), com-
mercial properties (i.e., mart and market), and public transportation infrastructures (i.e.,
bus stop and transit station). The models in this study were controlled for several factors
that might be able to influence traffic volumes, such as population density, employment
density, and land use diversity.

For the multicollinearity test, we developed ordinary least square (OLS) regression
models for each truck, automobile, and bus, and estimated Variance Inflation Factor (VIF).
The results of OLS models, which have adjusted R-squared of 0.485, 0.669, and 0.382 each
for the three models, in Table 2 reveal that none of the independent variables show VIF of
more than 10. Therefore, we concluded that the inclusion of all variables shown in Table 2
would not produce bias and issues related to the multicollinearity. Additionally, many of
the variables show a significant relationship with traffic volumes of automobiles, buses,
and trucks.

3.2. Methodological Approach

This study used the methodological approach depicted in Figure 2 to develop XGB
models and SHAP values. The process can be categorized into several parts: (1) collect data,
(2) split data into train and test sets, (3) train 5 machine learning algorithms with hyper-
parameter tuning using the grid-search, (4) search for optimal algorithm using the 10-fold
cross-validation, (5) employ SHAP method, and (6) interpret SHAP methods, including
feature importance, summary plot, dependence plot, and interaction value plot. This study
employed several Python packages, such as Sklearn.



Urban Sci. 2023, 7, 91 6 of 16

Table 2. Results of OLS regression models.

Variables
Truck Car Bus

Estimates
(p-Value) VIF Estimates VIF Estimates VIF

Elementary 0.109 **
(0.027) 3.277 −0.016

(0.702) 3.277 0.010
(0.863) 3.277

Middle
School

−0.072 *
(0.079) 3.108 −0.018

(0.619) 2.108 −0.085 *
0.089) 2.108

High
School

−0.183 ***
(<0.001) 3.002 −0.182 ***

(<0.001) 2.002 −0.193 ***
(<0.001) 3.002

Mart −0.405 ***
(<0.001) 4.603 −0.418 ***

(<0.001) 4.603 −0.535 ***
(<0.001) 4.603

Market −0.067 ***
(0.008) 3.052 −0.107 ***

(<0.001) 3.052 −0.022
(0.482) 3.052

Bus Stop 0.033
(0.193) 1.459 0.093 ***

(<0.001) 1.459 −0.165 ***
(<0.001) 1.459

Transit
Station

−0.041 *
(0.052) 1.440 −0.016

(0.385) 1.440 −0.045 *
(0.078) 1.440

Ave Speed 0.916 ***
(<0.001) 5.022 0.564 ***

(<0.001) 5.022 1.824 ***
(<0.001) 5.022

Pop Density −0.339 ***
(<0.001) 4.080 −0.303 ***

(<0.001) 4.080 −0.391 ***
(<0.001) 4.080

Emp Density 0.164 ***
(<0.001) 4.226 0.122 ***

(0.002) 4.226 0.182 ***
(0.001) 4.226

Land Use Mix −0.123
(0.219) 1.154 −0.170 **

(0.049) 1.154 0.005
(0.965) 1.154

Budget 0.435 ***
(<0.001) 1.881 0.423 ***

(<0.001) 1.881 0.386 ***
(<0.001) 1.881

Metro 0.946 ***
(<0.001) 2.925 1.063 ***

(<0.001) 2.925 1.124 ***
(<0.001) 2.925

Rural −0.310 ***
(<0.001) 5.116 −0.349 ***

(<0.001) 5.116 −0.279 ***
(<0.001) 5.116

Constant 1.137 *
(0.069)

3.995 ***
(<0.001)

−2.903 ***
(<0.001)

Model Performance

Observation 3278 3278 3278

Adj. R squared 0.485 0.669 0.382
Significance level: * p < 0.1; ** p < 0.05; *** p < 0.01.
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3.2.1. Extreme Gradient Boosting Decision Tree Model

This study used XGB. The algorithm is a type of gradient-boosting algorithm that
uses decision trees as base learners [19]. It works by iteratively adding decision trees to
the model, with each tree attempting to correct the errors made by the previous tree [20].
During training, XGB calculates the gradient and Hessian of the loss function concerning
each prediction and then fits a decision tree to these values. The algorithm then adds
this new tree to the model and updates the predictions for each sample based on the
new tree’s output. This process is repeated for a specified number of iterations or until
convergence is achieved. One key feature of XGB is its ability to handle missing data and
regularization techniques such as L1 and L2 regularization. Additionally, it has built-in
support for parallel processing and can handle large datasets efficiently [21]. Overall, XGB
is a powerful machine-learning algorithm that has been shown to achieve state-of-the-art
performance on a wide range of tasks [14].

XGB algorithm in this study is trained using a comprehensive shear strength database
of 3278 samples, where 80% and 20% of the data are, respectively used for training and
testing. The XGBoost algorithm contributes to the predictive model by achieving ap-
proximately 66.4%, 80.9%, and 54.3% validation accuracy for truck, car, and bus models,
respectively, which exceeds the model performance of linear regression (LR), decision tree
(DT), random forest (RF), and gradient boosting decision tree (GB) models (see Table 3).
Therefore, we selected XGB as an optimal algorithm and interpreted it by using the Shapley
value (SHAP).

Table 3. Model performance comparison.

Algorithms
Truck Car Bus

R Squared Explained Variance R Squared Explained Variance R Squared Explained Variance

LR 0.492 0.495 0.670 0.671 0.389 0.392

DT 0.534 0.536 0.710 0.711 0.403 0.405

RF 0.655 0.657 0.803 0.804 0.525 0.527

GB 0.662 0.663 0.807 0.809 0.538 0.539

XGB 0.664 0.666 0.809 0.810 0.543 0.545

Abbreviation: Linear regression (LR), decision tree (DT), random forest (RF), gradient boosting decision tree (GB),
and extreme gradient boosting decision tree (XGB) models.

The hyper-parameters of the XGB truck model were an alpha of 0.01, a learning rate
of 0.1, a max depth of 6, a number of estimators of 250, and a subsample of 0.9. Those of
XGB car models were an alpha of 0.1, a learning rate of 0.1, a max depth of 6, a number
of estimators of 250, and a subsample of 1.0. Finally, those of the XGB Bus model were
an alpha of 0, a learning rate of 0.1, a max depth of 6, a number of estimators of 250,
and a subsample of 0.8. In addition to the model specification of the XGB algorithm, the
hyper-parameters of DT truck, car, and bus models were a max depth of 6, max features of
auto, and a minimum sample leaf of 5. Also, after the grid search, RF truck, car, and bus
models had a max depth of 10, minimum samples of 5, and a number of estimators of 250.
Lastly, GB had a loss function of ls, a max depth of 6, max features of sqrt, and a number of
estimators of 250.

The mathematical fundamentals will be introduced briefly in what follows. The equa-
tions are from several previous studies, such as Feng et al. [22] and Chen and Guestrin [23].
That is, we declared that we do not have the originality to develop the equations here.
Considering we have a database including n samples, say,

D{(x1, y1), (x2, y2), . . . , (xn, yn)} (1)
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where xi, i = 1, 2, . . . ; n = input variables; yi = output variable. Thus, the task is to train a
model to find the mapping between the inputs and output, say,

ŷi = φ(xi) =
k

∑
k=1

αk f fk(xi) (2)

where ŷi = prediction value φ(·) final strong learner; fk(·) weak learner generated by the
decision tree (DT) method; K = number of weak learners; and αk = learning rate used to
avoid overfitting. According to XGBoost, a loss function L(·) is defined to represent the
error between the prediction ŷi and the real value yi, which has the following form:

L(φ) = ∑
i

L(xi, ŷi) + ∑
k

Ω( fk) (3)

in which the first right-hand-side term, L(·), denotes realistic training loss between real
and predicted values, and the second right-hand-side term, Ω(·), denotes the complexity
of the model, which is usually referred to as the regularization term. These two terms,
respectively measure how well the model fits the data and the complexity of the model. In
general, a squared loss function is adopted for the first term, whereas the second term is
expressed by the tree node number and the L2 norm of the leaf score. That is,

L(xi, ŷi) = (yi − ŷi)
2 (4)

Ω( fk) = γT +
1
2

λ ‖ wk ‖ (5)

where T = number of leaf nodes; wk = leaf scores (or weights); and γ and λ = penalty
coefficients. Therefore, the problem becomes one of finding the appropriate learner ft at
each step t ≤ K to minimize the loss function, as in

ft = arg min
ft ∈ F

L(φt) = arg min
ft ∈ F

[
n

∑
i=1

L(yi, φt(xi)) +
t

∑
k=1

Ω( fk)

]
(6)

Here, at the tth step, the objective can be rewritten as

L(φt) =
n

∑
i=1

L(yi, φt(xi)) +
t

∑
k=1

Ω( fk) =
n

∑
i=1

L
(

yi, ŷt−1
i + ft(xi)

)
+ Ω( ft) + const. (7)

where ŷt−1
i = predicted value at last step; and const. represents ∑t−1

k=1 Ω( ft), which is
indeed a constant.

Considering a second-order Taylor expansion and neglecting the constant term, the
objective loss function in Equation (6) can be further approximated as

L(φt) '
n

∑
i=1

[
L
(

yi, ŷt−1
i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (8)

where gi = ∂ŷt−1
i

L (yi, ŷt−1
i ) and hi = ∂2

ŷt−1
i

L (yi, ŷt−1
i ) are the first and second-order gradi-

ents of the loss function. The term L (yi, ŷt−1
i ) is a constant, so it can be removed in the

minimization process. Meanwhile, denoting the sample set of leaf j by Ij, the objective can
be simplified as

L(φt) =
n
∑

i=1

[
gi fi(xi) +

1
2 hi f 2

t (xi)
]
+ Ω( ft) =

n
∑

j=1

[(
∑

i∈Ij

gi

)
wj +

1
2

(
∑

i∈Ij

hi + λ

)
w2

j

]
+ γT

=
n
∑

j=1

[
Gjwj +

1
2
(

Hj + λ
)
w2

j

]
+ γT

(9)
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where Gj = ∑i=Ij
gi and Hj = ∑i∈Ij

hi. With this loss function, the optimized weight w∗j for
leaf j, as well as the tree structure score Lsplit after splitting, can be derived to build a tree,
that is,

w∗j = −
Gj

Hj + λ
, Lsplit =

1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HRλ

]
− λ (10)

where GL, GR, HL and HR are the first and second gradients of the left and right children
after the split, respectively.

3.2.2. Interpretable Machine Learning: Shapley Value

The interpretability of machine learning projects is becoming an increasingly signifi-
cant requirement, and as a result, there is a growing need to communicate the complicated
outputs of model interpretation methodologies to non-technical stakeholders [24,25]. There-
fore, this study attempted to not only develop XGB algorithms but also interpret them
using SHAP values. SHAP values are built on a concept from cooperative game theory that
is used to quantify the contribution of each feature in a machine learning model to the final
prediction [26]. In the context of machine learning, the SHAP value can be used to explain
the output of a model by attributing a portion of the prediction to each input feature [22].
That is, it is capable of producing feature attributes for a single instance and allows further
understanding of the prediction behavior of the algorithm [27].

Therefore, this study used SHAP in four ways (see Figure 2): (1) calculate feature
importance, (2) offer summary plots, (3) present dependence plots, and (4) describe in-
teraction plots. First, it can estimate the feature importance of each feature. Specifically,
it calculates the average marginal contribution of each feature across all possible subsets
of features [28,29]. To calculate the Shapley value for a given feature, we consider all
possible subsets of features that include that feature and calculate the difference in model
output when that feature is included versus when it is not included. We then take the
average of these differences across all possible subsets, weighting each subset by its size
relative to the total number of subsets. Second, SHAP can produce several plots for direct
interpretation [30]. For instance, the summary plot shows the impact of each feature on
model output for a single sample, with features ordered by importance. Also, the depen-
dence plot presents how the value of a single feature affects model output by capturing
non-linear relationships while accounting for interactions with other features. Furthermore,
the interaction value plot shows how pairs of features interact to affect model output, with
each point representing a single sample.

The SHAP value, g(x′), can be defined as

g
(

x′
)
= ϕ0 +

M

∑
i=1

ϕix′i (11)

where x′ is the vector of simplified input variables that are obtained from the original input
variables x in the data set; M is the number of features of the data set; ϕ0 is a constant when
all inputs are null; and ϕi is the attribution value for each feature i. It is noted that the
authors do not have the originality of the equation, rather they are collected from previous
studies, including Feng et al. [22] and Lundberg and Lee [27].

4. Results

This section consists of three subsections: (1) feature importance and its corresponding
summary plot, (2) dependence plots to show non-linear relationships, and (3) interaction
value plots to reveal the interaction effects of two variables on the dependent variable. The
SHAP methodology was used to produce all the results in this section, which were based
on the final three XGB algorithms for AADT of trucks, automobiles, and buses.
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We selected XGB algorithms for all three models based on the results shown in Table 3.
Table 3 indicates that XGB showed a significantly higher prediction accuracy compared to
LR, DT, RF, and GB. There was, however, a difference in the model performance of the three
XGB variants. This could be because the set of factors explained car traffic better than the
other two modes of transportation. Furthermore, while many other characteristics, such
as industrial accessibility, can be associated with truck and bus traffic, the model did not
account for all of them. As a result, there is a disparity in model performance. However,
this may not fully explain the variation. Thus, further study is needed to explore this aspect.

4.1. Feature Importance and Summary Plot

There are several methods for enhancing algorithm comprehension using SHAP,
and feature importance is one of them. Feature importance allows us to estimate the
contribution of each independent variable in percent to the model’s prediction. Table 4
shows the results of feature importance and its rank. According to the feature importance
plot, the important features for predicting AADT of trucks were Mart (48.27%), Ave Speed
(17.49%), Metro (15.85%), Pop Density (11.70%), and Budget (11.26%). A similar pattern
was detected for car and bus models. Specifically, Mart, Metro, and Ave Speed showed
a significant contribution when determining the AADT of car and bus. Like the spatial
concentration of AADT of the transportation modes in Figure 1, Metro showed considerable
feature importance in Table 4. Regarding the accessibility indicators, Bus Stop, Transit, and
High showed approximately 10% feature importance when explaining the AADT of the
bus. Other accessibility indicators exhibited around 5 to 10% of feature importance except
for Mart.

Table 4. Results on feature importance of the truck, car, and bus models.

Variables
Truck Car Bus

Mag. Rank Mag. Rank Mag. Rank

Elementary 6.25% 10 6.16% 9 7.04% 9

Middle
School 6.11% 12 3.80% 14 6.49% 12

High
School 9.17% 6 8.44% 7 9.88% 6

Mart 48.27% 1 42.61% 1 46.22% 1

Market 5.19% 13 4.08% 13 6.15% 13

Bus Stop 6.12% 11 4.83% 12 11.70% 5

Transit
Station 6.94% 7 6.92% 8 9.85% 7

Pop Density 11.70% 4 11.68% 5 15.57% 4

Emp Density 6.40% 9 6.15% 10 6.57% 11

Land Use Mix 6.58% 8 5.79% 11 6.81% 10

Budget 11.26% 5 10.44% 6 9.50% 8

Metro 15.85% 3 24.16% 2 19.75% 3

Rural 2.72% 14 14.07% 3 1.66% 14

Ave Speed 17.49% 2 13.49% 4 28.25% 2

The summary plot in Figure 3 adds the effects of independent variables to the feature
importance in Table 4. Each point on the plot represents SHAP values for a feature and
sample. While the y-axis shows each independent variable, the x-axis represents SHAP
values. The color denotes the values of the independent variable, which ranges from low
(red) to high (blue). Similar to the findings in Table 4, Figure 3 shows that the three most
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important features were Mart and Ave Speed for the truck model, Mart and Metro for
the car model, and Mart and Ave Speed for the bus model. Moreover, the plots show
lower values of Mart (i.e., closer to Mart) were associated with higher AADT for all three
transportation modes in South Korea. Interestingly, lower accessibility to elementary
school was associated with lower AADT of the transportation modes. Strict transportation
regulations, such as the speed limit (30 km/h around the elementary school), may explain
the results.
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4.2. Dependence Plot

Figures 4–6 show selected dependence plots for the important accessibility indicators.
The plot gives a graphical description of the marginal effect of an independent variable
on AADT, after accounting for the average influences of all other variables used in the
XGB model [31]. One of the strengths of this method is that it is not constrained by the
linearity assumption in the econometrics, rather it can reveal non-linear relationships [32].
In the plots in the figures, each sample of the dataset appears as its point, and the point
is presented as a scatterplot of the value of an independent variable on the x-axis and its
corresponding SHAP values on the y-axis.
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In Figure 4, all else equal, the SHAP values for the accessibility index for Mart were
comparable between 0 and 4, but then decreased sharply, meaning that better access to Mart
showed a higher AADT of truck for a certain range, while AADT considerably decreased
after the range. Also, accessibility to transit was comparable, whereas the plot exhibited a
negative approximately linear trend after a certain point. Figure 5 demonstrates dependent
plots that show the non-linear association between Mart, High, Transit, and AADT of
cars. For accessibility to Mart (Mart), the AADT of cars was high when the travel time to
high school was lower. However, AADT substantially decreased after the log-transformed
travel time of 3. Also, the effect of accessibility to high school (High) did not change, but it
reduced by more than 2.5 away from the high school. The effective range of accessibility
to transit stations (Transit) on AADT of cars was between 2.5 and 3.5. Figure 6 shows the
non-linear relationship between the AADT of bus and Bus Stop, High, and Transit. The
AADT of buses was higher the closer they were to the bus stop, which is in line with the
findings of earlier research and makes intuitive sense. Complex non-linear relationships
were observed in High and Transit. Specifically, the effects of High and Transit were
substantially large when the log-transformed travel times to high school and transit station
were 1.5 and 2, respectively.

4.3. Interaction Value Plot

The interaction value plots in Figures 7–9 visualize interaction effects between two
independent variables on the AADT of the truck, car, and bus. Figure 7 demonstrates
that controlling for the independent variables, the effect of accessibility to Mart in the
metropolitan areas on AADT of trucks (red dots) was substantially larger than that in other
areas (blue dots). Also, the interaction effect between Metro and Transit was the second
degree in Figure 7, suggesting that while the lower or higher travel time to transit stations
in rural areas was associated with higher AADT of trucks, the AADT of trucks reached
the peak with medium travel time to the infrastructure in other areas. Figure 8 reveals
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that in the metropolitan areas, better accessibility to elementary school was associated
with substantially lower AADT of cars. However, in other areas with lower car ownership
and ridership, the direction of the association was the opposite. The interaction effects
in Figure 9 were significant. Specifically, better accessibility to the bus stop or transit
station particularly in metropolitan areas was associated with the AADT of buses, but
the accessibility in other areas seems to have a nearly linear and positive influence on the
AADT of buses.
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5. Discussion
5.1. Key Findings

There are several key findings in this study. First, accessibility indicators exhibited
around 5 to 10% of feature importance except for Mart (around 50%). Also, the important
features for predicting the AADT of trucks were Mart (48.27%), Ave Speed (17.49%), Metro
(15.85%), Pop Density (11.70%), and Budget (11.26%). A similar pattern was detected for car
and bus models. Second, the dependence plots indicated threshold effects. For instance, the
SHAP values for the accessibility index for Mart were comparable between 0 and 4 but then
decreased sharply, indicating that better access to Mart showed a higher AADT of trucks
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for a certain range, while AADT considerably decreased after the range. Third, this study
found interaction effects in the interaction plots. For instance, better accessibility to public
transportation infrastructures, such as bus stops and transit stations, was associated with
higher annual average daily traffic (AADT), particularly in metropolitan areas including
Seoul and Busan.

5.2. Implication

The results of this study indicate a significant and non-linear relationship between
transportation accessibility indicators and traffic volumes. The findings of this study have
important implications for transportation planning and policy. Specifically, they suggest
that improving accessibility to public transportation infrastructures can help increase traffic
volumes of buses, particularly in metropolitan areas, including Seoul and Busan, which can
promote sustainable modes of transportation. Additionally, they suggest that increasing
accessibility to large-scale marts may have unintended consequences on traffic volumes
for both trucks and automobiles and induce congestion, which implies that it should be
approached with caution. Interestingly, given that better accessibility to elementary schools
was associated with lower AADT for all three transportation modes, strict transportation
regulations, such as a speed limit of 30 km/h, may be an adequate approach to lower traffic
volumes and congestion.

5.3. Limitation of this Study and Future Research Direction

This study has several limitations. First, the findings of this study may be limited to
the specific area and transportation system examined in this study. The results may not
necessarily apply to other areas or transportation systems with different characteristics.
Second, the study relies on data from various sources, including traffic volume counts,
transportation infrastructure maps, and demographic data. Some data may be incomplete
or inaccurate, which could affect the results of the study. Third, the study examines the
association between accessibility to infrastructures and traffic volumes but cannot establish
causality. Other factors not examined in this study, such as land use patterns and travel
behavior, may also influence traffic volumes. Fourth, the study examines traffic volumes
over a specific time frame, and the relationship between accessibility to infrastructures and
traffic volumes may vary over longer or shorter periods.

This study suggests several future research directions. For instance, further studies are
needed to explore how transportation accessibility impacts traffic volumes within diverse
regional or local contexts. Also, future study needs to expand diverse sets of accessibility
indicators, such as accessibility to employment, and explore the associations.

6. Conclusions

This study aimed to explore the relationship between accessibility to infrastructures
and traffic volumes across different modes of transportation in South Korea using XGB
and SHAP approaches. We believe this research is an important step in understanding
the complex relationship between accessibility to infrastructures and traffic volumes. By
understanding the factors that influence traffic volumes, the study aims to provide impor-
tant insights into how transportation systems can be developed and managed to meet the
needs of users while also addressing social, economic, and environmental challenges [33].
The findings of this study have important implications for transportation planning and
policy and highlight the need to consider accessibility to infrastructures when developing
transportation plans and policies [10].

Author Contributions: Conceptualization, S.L., J.Y., K.C. and D.C.; methodology, S.L. and D.C.;
software, S.L.; validation, S.L., J.Y. and K.C.; formal analysis, S.L., J.Y. and K.C.; investigation, S.L., J.Y.
and K.C.; data curation, J.Y.; writing—original draft preparation, S.L.; writing—review and editing,
K.C. and D.C.; visualization, S.L.; supervision, K.C. and D.C.; project administration, J.Y.; funding
acquisition, K.C. All authors have read and agreed to the published version of the manuscript.



Urban Sci. 2023, 7, 91 15 of 16

Funding: This research was supported by the Ministry of Trade, Industry, and Energy in the Republic
of Korea (Funding Number: P0020670, Research Title: Establishing a Demonstration Infrastructure of
Autonomous Cargo Transportation Service for Commercial Vehicles in Saemangeum).

Data Availability Statement: The three main data sets used in the analysis of this study are publicly
available on websites: (1) https://www.bigdata-transportation.kr/ (accessed on 10 February 2023),
(2) http://www.nsdi.go.kr/lxportal/?menuno=2679 (accessed on 12 February 2023), and (3) https:
//kostat.go.kr/ansk/ (accessed on 1 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arnott, R.; Small, K. The Economics of Traffic Congestion. Am. Sci. 1994, 82, 446–455.
2. Mondschein, A.; Taylor, B.D. Is traffic congestion overrated? Examining the highly variable effects of congestion on travel and

accessibility. J. Transp. Geogr. 2017, 64, 65–76. [CrossRef]
3. Boarnet, M.G. A Broader Context for Land Use and Travel Behavior, and a Research Agenda. J. Am. Plan. Assoc. 2011, 77, 197–213.

[CrossRef]
4. Ewing, R.; Cervero, R. Travel and the Built Environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [CrossRef]
5. El-Assi, W.; Salah Mahmoud, M.; Nurul Habib, K. Effects of built environment and weather on bike sharing demand: A station

level analysis of commercial bike sharing in Toronto. Transportation 2017, 44, 589–613. [CrossRef]
6. Ding, C.; Cao, X.; Wang, Y. Synergistic effects of the built environment and commuting programs on commute mode choice.

Transp. Res. Part A Policy Pract. 2018, 118, 104–118. [CrossRef]
7. Guan, X.; Wang, D. Influences of the built environment on travel: A household-based perspective. Transp. Res. Part A: Policy Pract.

2019, 130, 710–724. [CrossRef]
8. Bai, S.; Jiao, J. Dockless E-scooter usage patterns and urban built Environments: A comparison study of Austin, TX, and

Minneapolis, MN. Travel Behav. Soc. 2020, 20, 264–272. [CrossRef]
9. Frank, L.D.; Sallis, J.F.; Saelens, B.E.; Leary, L.; Cain, K.; Conway, T.L.; Hess, P.M. The development of a walkability index:

Application to the Neighborhood Quality of Life Study. Br. J. Sports Med. 2010, 44, 924–933. [CrossRef]
10. Duranton, G.; Turner, M.A. Urban Growth and Transportation. Rev. Econ. Stud. 2012, 79, 1407–1440. [CrossRef]
11. Lavieri, P.S.; Dai, Q.; Bhat, C.R. Using virtual accessibility and physical accessibility as joint predictors of activity-travel behavior.

Transp. Res. Part A Policy Pract. 2018, 118, 527–544. [CrossRef]
12. Wang, C.-H.; Chen, N.; Tian, G. Do accessibility and clustering affect active travel behavior in Salt Lake City? Transp. Res. Part D

Transp. Environ. 2021, 90, 102655. [CrossRef]
13. Yan, X. Toward Accessibility-Based Planning: Addressing the Myth of Travel Cost Savings. J. Am. Plan. Assoc. 2021, 87, 409–423.

[CrossRef]
14. Lee, S. Exploring Associations between Multimodality and Built Environment Characteristics in the U.S. Sustainability 2022,

14, 6629. [CrossRef]
15. Alzubi, J.; Nayyar, A.; Kumar, A. Machine Learning from Theory to Algorithms: An Overview. J. Phys. Conf. Ser. 2018,

1142, 012012. [CrossRef]
16. Bhavsar, P.; Safro, I.; Bouaynaya, N.; Polikar, R.; Dera, D. Machine Learning in Transportation Data Analytics. In Data Analytics for

Intelligent Transportation Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 283–307. ISBN 978-0-12-809715-1.
17. Bhat, C.R.; Gossen, R. A mixed multinomial logit model analysis of weekend recreational episode type choice. Transp. Res. Part B

Methodol. 2004, 38, 767–787. [CrossRef]
18. Lee, S.; Wang, L. Intermediate Effect of the COVID-19 Pandemic on Prices of Housing near Light Rail Transit: A Case Study of the

Portland Metropolitan Area. Sustainability 2022, 14, 9107. [CrossRef]
19. Lao, Y.; Qi, F.; Zhou, J.; Fang, X. A Prediction Method Based on Extreme Gradient Boosting Tree Model and its Application. J. Phys.

Conf. Ser. 2021, 1995, 012017. [CrossRef]
20. Chang, Y.-C.; Chang, K.-H.; Wu, G.-J. Application of eXtreme gradient boosting trees in the construction of credit risk assessment

models for financial institutions. Appl. Soft Comput. 2018, 73, 914–920. [CrossRef]
21. Liu, J.; Wang, B.; Xiao, L. Non-linear associations between built environment and active travel for working and shopping: An

extreme gradient boosting approach. J. Transp. Geogr. 2021, 92, 103034. [CrossRef]
22. Feng, D.-C.; Wang, W.-J.; Mangalathu, S.; Taciroglu, E. Interpretable XGBoost-SHAP Machine-Learning Model for Shear Strength

Prediction of Squat RC Walls. J. Struct. Eng. 2021, 147, 04021173. [CrossRef]
23. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794.

24. Bibal, A.; Frénay, B. Interpretability of Machine Learning Models and Representations: An Introduction. In Proceedings of the
24th European Symposium on Artificial Neural Networks ESANN, Bruges, Belgium, 27–29 April 2016; pp. 77–82.

25. Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable; Leanpub: Victoria, BC, Canada, 2021.

https://www.bigdata-transportation.kr/
http://www.nsdi.go.kr/lxportal/?menuno=2679
https://kostat.go.kr/ansk/
https://kostat.go.kr/ansk/
https://doi.org/10.1016/j.jtrangeo.2017.08.007
https://doi.org/10.1080/01944363.2011.593483
https://doi.org/10.1080/01944361003766766
https://doi.org/10.1007/s11116-015-9669-z
https://doi.org/10.1016/j.tra.2018.08.041
https://doi.org/10.1016/j.tra.2019.10.003
https://doi.org/10.1016/j.tbs.2020.04.005
https://doi.org/10.1136/bjsm.2009.058701
https://doi.org/10.1093/restud/rds010
https://doi.org/10.1016/j.tra.2018.08.042
https://doi.org/10.1016/j.trd.2020.102655
https://doi.org/10.1080/01944363.2020.1850321
https://doi.org/10.3390/su14116629
https://doi.org/10.1088/1742-6596/1142/1/012012
https://doi.org/10.1016/j.trb.2003.10.003
https://doi.org/10.3390/su14159107
https://doi.org/10.1088/1742-6596/1995/1/012017
https://doi.org/10.1016/j.asoc.2018.09.029
https://doi.org/10.1016/j.jtrangeo.2021.103034
https://doi.org/10.1061/(ASCE)ST.1943-541X.0003115


Urban Sci. 2023, 7, 91 16 of 16

26. Sundararajan, M.; Najmi, A. The Many Shapley Values for Model Explanation. In Proceedings of the 37th International Conference
on Machine Learning, Vienna, Austria, 21 November 2020; pp. 9269–9278.

27. Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874.
28. Rodríguez-Pérez, R.; Bajorath, J. Interpretation of machine learning models using shapley values: Application to compound

potency and multi-target activity predictions. J. Comput. Aided Mol. Des. 2020, 34, 1013–1026. [CrossRef]
29. Ndichu, S.; Kim, S.; Ozawa, S.; Ban, T.; Takahashi, T.; Inoue, D. Detecting Web-Based Attacks with SHAP and Tree Ensemble

Machine Learning Methods. Appl. Sci. 2022, 12, 60. [CrossRef]
30. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. Explainable

AI for Trees: From Local Explanations to Global Understanding. arXiv 2019, arXiv:1905.04610. [CrossRef] [PubMed]
31. Ding, C.; Cao, X.; Næss, P. Applying gradient boosting decision trees to examine non-linear effects of the built environment on

driving distance in Oslo. Transp. Res. Part A Policy Pract. 2018, 110, 107–117. [CrossRef]
32. Molnar, C.; Freiesleben, T.; König, G.; Casalicchio, G.; Wright, M.N.; Bischl, B. Relating the Partial Dependence Plot and

Permutation Feature Importance to the Data Generating Process. arXiv 2021, arXiv:2109.01433.
33. Papa, E. Transport and Mobility Planning; Parker, G., Ed.; Macmillan: London, UK, 2021; ISBN 978-1-352-01192-0.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10822-020-00314-0
https://doi.org/10.3390/app12010060
https://doi.org/10.1038/s42256-019-0138-9
https://www.ncbi.nlm.nih.gov/pubmed/32607472
https://doi.org/10.1016/j.tra.2018.02.009

	Introduction 
	Related Works 
	Traffic and Accessibility 
	Machine Learning in Urban Sciences 
	Research Gaps 

	Materials and Methods 
	Variable 
	Dependent Variable: Traffic Volumes 
	Independent Variables 

	Methodological Approach 
	Extreme Gradient Boosting Decision Tree Model 
	Interpretable Machine Learning: Shapley Value 


	Results 
	Feature Importance and Summary Plot 
	Dependence Plot 
	Interaction Value Plot 

	Discussion 
	Key Findings 
	Implication 
	Limitation of this Study and Future Research Direction 

	Conclusions 
	References

