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Abstract: Modern cities are full of complex and substantial engineering structures that differ by
their geometry, sizes, operating conditions, and technologies used in their construction. During the
engineering structures’ life cycle, they experience the effects of construction, environmental, and
functional loads. Among those structures are bridges and road overpasses. The primary reason for
these structures’ displacements is land subsidence. The paper addresses a particular case of geospatial
monitoring of a road overpass that is affected by external loads invoked by the construction of a new
subway line. The study examines the methods of machine learning data analysis and prediction for
geospatial monitoring data. The monitoring data were gathered in automatic mode using a robotic
total station with a frequency of 30 min, and were averaged daily. Regression analysis and neural
network regression with machine learning have been tested on geospatial monitoring data. Apart
from the determined spatial displacements, additional parameters were used. These parameters were
the position of the tunnel boring machines, precipitation level, temperature variation, and subsidence
coefficient. The primary output of the study is a set of prediction models for displacements of the
overpass, and the developed recommendations for correctly choosing the prediction model and a
set of parameters and hyperparameters. The suggested models and recommendations should be
considered an indispensable part of geotechnical monitoring for modern cities.

Keywords: geospatial monitoring; machine learning; regression analysis; neural network regression;
network optimization; model performance

1. Introduction

The dynamic development of big cities is an overwhelming challenge for municipali-
ties and facility management services. One of the most significant issues of the big cities is
the enhancement of transport infrastructure. The continuous growth of the populations of
big cities prompts local governments to improve and spread out the transport infrastruc-
ture. This is why the operation of different transport lines (roads, buses, trams, railroads,
subways) that join and intersect with each other has become the ordinary. The meet points
for different transport lines are stations, joints, intersections, interchanges, etc. These condi-
tions lead to additional loads for the transport infrastructure. The additional loads invoke
land subsidence and the deformations of existing infrastructure, which in turn require
geospatial monitoring. This is especially important in cases of new transport lines that
cross existing transport lines being constructed. Among the various transport facilities, the
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construction of subway lines under transport infrastructure results in spatial displacements
that may significantly damage surrounding buildings and structures. In this case, one of the
most vulnerable types of structure are overpasses. C organized geospatial monitoring will
allow the control of spatial displacements and will provide the necessary data to prevent
possible structure failure. Contemporary geospatial monitoring is capable of ensuring
high-frequency observation data in online mode. Equipment such as robotic total stations,
GNSS, sensors (inclinometers, accelerometers, etc.), and their combinations provide ac-
curate and reliable observation results. Considering the overpass monitoring problem,
we may infer that this task is similar to bridge monitoring. The geospatial monitoring of
transport infrastructure is the subject of many studies. Numerous studies have investigated
the problem of bridge monitoring using GNSS [1-6], close-range photogrammetry [7-9],
terrestrial laser scanning [10-13], total stations [14—-17], sensors [18-20], and sensors and
geodetic equipment combinations [21-25]; one may conclude that the problem of bridge
monitoring has been extensively researched in recent decades. However, the majority of
work in this area has focused on data collection rather than analysis. Analyzing monitoring
data is not a trivial task. Before the development of modern, sophisticated analysis meth-
ods, researchers typically used to apply superficial deformation characteristics, e.g., total
displacement, mean displacement, inclination, slag, etc. They applied elementary analysis
methods, e.g., interpolation functions [26], polynomial approximations [27], ordinary statis-
tical analysis [28], filtering and correlation analysis [29], etc. Interpolation methods based
on spline functions are more flexible and precise [30]. Modern ideas regarding geospatial
monitoring data analysis were outlined in [31]. Since that time, the role of new analysis
methods has grown and been extensively studied, respectively. The development of the
new analysis methods is evolving in two directions: structural analysis using methods
of structural mechanics [32-35], and mathematical models based on machine learning
technology achievements [36—42]. Applying the structural mechanics models is justified for
cases of structures for which geometric and material properties are well known. However,
even so, the geology of a given construction site may not be well studied. In this case,
some structural mechanics models will not correspond to the actual structure and its inter-
action with the environment. This is why our choice favors mathematical models based
on machine learning technologies. These models may simulate any physical processes
without the necessity to describe them with actual physical expressions or laws. These
models include regression and neural network regression. The work [1] demonstrates the
capabilities of Fourier analysis for filtering data and analyzing trends in bridge monitoring
results. Fourier analysis has high flexibility, but cannot be treated as a machine learning
approach. The paper [40] considers standard regression models for bridge displacement
monitoring, including traffic loading, temperature, and vertical and horizontal accelerations
due to wind loads. A similar task for dam deformations is addressed in [36,37], but using
neural network simulation. Specifically, the question of urban land subsidence simulation,
especially due to subway construction, is considered in the papers [42-55]. These works
investigate interferometric SAR as an observation method. For subsidence simulations
along subway lines [42] and land subsidence [55,56] in general, the authors have suggested
the LSTM neural network. This neural network is based on the recurrent neural network
and is intended for predicting time series with long intervals [49]. The authors of [50] went
further and examined multi-layer perceptron, convolutional neural network, and LSTM
networks. The study was performed on a suburban lake basin. Paper [52] considers a
random forest machine learning algorithm to classify the factors that majorly affect land
subsidence. A similar study with a random forest model was undertaken in [54]. Despite
the correct approach, the papers do not deal with subsidence prediction. The idea of neural
network simulation for bridge monitoring is examined in [57]. However, the authors solely
considered GNSS data, without additional parameters. The research [58] deals with various
machine learning techniques to rule out the temperature effect from monitoring results. The
main subject of the paper is bridge monitoring, but without prediction model development.
Mainly, machine learning techniques are used for different damage detection. A compre-
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hensive review of these techniques may be found in [59]. To date, no study has explicitly
looked at displacement simulation for road overpass monitoring using machine learning
methods, including different factors affecting the displacements. Therefore, the primary
paper’s goal is the development of prediction models using machine learning approaches
and general recommendations for road overpass displacement simulation. The study’s
results should be considered an indispensable part of geotechnical monitoring for modern
cities. They will help to improve the creation of self-acting monitoring systems capable of
predicting the development of deformations and supporting early warning systems.

The presented paper is focused on the comparative study of regression analysis with
machine learning and neural network regression for displacement simulation of road
overpasses. The paper is divided into five sections. The Section 1 briefly covers the problem
of overpasses and similar structures’ monitoring and displacement simulation. Section 2
presents a description of the study object and a short overview of the monitoring flowchart.
In Section 3, we provide data descriptions of the model simulations: spatial displacements,
temperature, precipitation level, the position of the tunnel boring machine (TBM) according
to the overpass, and subsidence coefficient. Section 4 is dedicated to the simulations, results,
and discussions. Two different models have been considered. The primary stress was used
for the machine learning regression analysis and neural network regression simulations.
The remainder of the paper deals presents our conclusions.

2. Study Object

The study object is located in Kyiv, and is a cloverleaf interchange. In 2012, the city
government decided to extend the existing subway line. The design project of the new
station supposed that new tunnels over 1200 m long would lay under the interchange
(Figure 1). Construction began in May 2012, and around September, two TBMs reached
the interchange.

Figure 1. Cloverleaf interchange and the projections of the new tunnels” axis.

The working depth of the TBMs was 13 m from the top of the tunnel lining. The
tunnels were laid out at a distance of 14 m apart in the region of the interchange, to prevent
the construction works right under the pillars of the interchange overpass (Figure 2).
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Figure 2. Sketch of the overpass cross-section (non-scaled).

A preliminary structural and geotechnical analysis has shown that anticipated land
subsidence Amax should not have exceeded the value of 14 mm. The expected deformation
zone was a circumference with a radius of 25 m and was centered under the left row
of pillars. However, after the beginning of construction works in proximity to the inter-
change, many cracks in the overpass surface and the surrounding ground failures were
observed (Figure 3). Moreover, the overpass demonstrated evidence of displacements in
the horizontal plane.

Figure 3. The ramp failure with land subsidence (left picture) and the cracks on the overpass surface
(right picture).

The decision on the establishment of geospatial monitoring was accepted. The robotic
total station was set up on the pillar, approximately 40 m from the overpass (see Figure 1).
The geodetic network around the interchange was created. The observations commenced at
the end of August 2012 and lasted almost three months, until both TBMs left the interchange
zone, and the observable displacements tended to stabilize. For the monitoring, two
observation areas (A and B) were assigned (Figure 4).

Figure 4. Observation areas A and B.
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In total, fifteen deformation targets (reflectors) were set up on the pillars (Figure 5)
and overpass slab (Figure 6).

Figure 6. Deformation targets underneath the overpass’s slab in area B.

This observation scheme allowed us to reliably and with necessary accuracy deter-
mine the spatial displacements of the overpass. A detailed description of this overpass’s
geospatial monitoring design and accuracy analysis may be found in [16]. In an appliance
from [16], the accuracy of displacement determination along the X, Y, and Z axis was equal
to 1.2 mm. This value is vitally important, as it determines the errors allowable in the
analysis and prediction model simulations.

3. Initial Data for Model Simulations

The overpass monitoring was accomplished during subway construction under the
overpass. The data were collected in automatic mode by a robotic total station. As men-
tioned above, the data for model simulations are spatial displacements, precipitation level,
temperature variation, TBM position, and subsidence coefficient (a precalculated value).
Spatial displacements are by far the primary data source for simulation. Over three months,
the total station determined coordinates of the deformation targets in automatic mode. The
measurements were accomplished with a frequency of 30 min and then averaged daily.
Those values were used for the displacement calculation along the coordinate axis. The
displacements along the X, Y, and Z coordinate axes for the right tunnel (see Figure 1)
are presented in Figures 7-9 and in Figures 10-12 for the left tunnel. The position of the
TBMs is also given in Figures 7-12. The intersection points mark the date TBM reached the
middle of the interchange and the overpass, respectively. The left and right vertical lines
mark the points at which TBM reached and left the interchange zone.
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Figure 7. Horizontal displacements along the X-axis for the deformation targets in area A (right tunnel).
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Figure 8. Horizontal displacements along the Y-axis for the deformation targets in area A (right tunnel).
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Figure 9. Vertical displacements along the Z-axis for the deformation targets in area A (right tunnel).
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Figure 10. Horizontal displacements along the X-axis for the deformation targets in area B (left tunnel).

6 1400
1200
1000
E
800 §
.‘%
=
600 =
=-]
o
400
200
0
Date
N [ntersection point TB1Y —TB2Y —TB3Y
TB4Y —TB5Y —TB6Y —TB7Y
—TB8Y —TB9Y = TBMs Position

Figure 11. Horizontal displacements along the Y-axis for the deformation targets in area B (left tunnel).
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Figure 12. Vertical displacements along the Z-axis for the deformation targets in area B (left tunnel).

As shown in Figures 7-12, for the overpass slab (area B), the deformation process
commenced when construction works began near the interchange, and tended to continue
when the active construction works moved further out of the interchange zone. However,
the primary trend demonstrates a slight uplift and horizontal displacements, changing
to tangible subsidence and horizontal movements. Meanwhile, the deformation evolved
significantly for the pillars row (area A) when the active construction works moved out
of the interchange zone. Again, insignificant uplifts were detected, which shifted to

the subsidence.

The third and fourth parameters for the simulation are temperature variation and
precipitation level. For the temperature, the daily average value was used. For the precipi-
tation level, the daily cumulative value was used. Both parameters were tabulated, and
their charts are given in Figure 13.
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Figure 13. Temperature and precipitation charts for the monitoring period.
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One more additional parameter was derived empirically. The subsidence coefficient
relates to the TBM’s position and the precalculated land subsidence value due to excavation
works (see Section 2, Figures 1 and 2).

A;(TBM)

Amax

SC(TBM) = , 1)
where A, is a current precalculated value of land subsidence.

The suggested subsidence coefficient is equal to zero until the TBM reaches the inter-
change, then starts to increase linearly when land subsidence grows; it becomes one when
the TBM reaches the interchange middle point (Figure 14).
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Figure 14. The dependency between the subsidence coefficient and TBM position.

The data presented above have been used to simulate different prediction models
using regression analysis and neural network regression using machine learning methods.
The following section outlines the simulation results in detail.

4. Results and Discussions
4.1. Regression Analysis Results

The first method considered for the simulation of prediction models is regression
analysis with machine learning. Insofar as the primary goal of the analysis is the prediction
of spatial displacements using geospatial monitoring data, the displacements are treated
as responses, while other parameters are predictors or features. The critical question
is the choice of the learning algorithm. As long as the data volume is not significant
(75 observations), we decided to apply a k-fold validation procedure for learning. The
number of folds was accepted to be eight. Another challenge is splitting the data into
training, validating, and testing data subsets. Again, considering the data size, the following
percentages for the subsets were suggested: a training/validation ratio of 80/20, and testing
subsets of 15%. The machine learning flowchart suggested in this study is given in Figure 15.

Multiple linear regression models have been chosen from the diversity of regression
models. A visual analysis of the data presented in Section 2 showed that the displacements
have mostly linear or squared trends. This is why two multiple linear regression models
were considered.

f(x,8) = Bo+ B1T + B2P + B3S + BaTBM, @)
f(x,B) = Bo + B1T* + B2P* + B3S* + B, TBM?, ®)
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where T, P, S, TBM are the temperature, precipitation, subsidence coefficient, and TBM
position, respectively.

Model training

Displacement, mm

sk Bown

TAIX

TASX

TAX
TASK

TASX
TASK

Validation
results

Validation Model validation
Data splitting

Model testing

(=]
7
=l

)
=]

Figure 15. Machine learning flowchart.

The simulation has been accomplished separately for all deformation targets. The
regression learning was carried out for different calculation approaches. The following
approaches for the simulation were considered: simple multiple linear regression, robust
multiple linear regression, multiple linear regression with interactions, stepwise multiple
linear regression, and quadratic regression. The simulation results have been tabulated.
The estimations are given for validation and testing data subsets for each model. Three
statistical metrics were calculated to estimate the validation results: mean absolute error,
root mean square error, and coefficient of determination. The root mean square error and
coefficient of determination were used for model evaluation. The mean absolute error was
considered when two or more models delivered similar statistical metrics. Let us present the
root mean square error metrics for learning validation cases. Figures 16 and 17 demonstrate
colorized tables, wherein colors are assigned according to the threshold values. For the root
mean square error, the threshold value is 1.2 mm. Regarding the comments in Section 2, this
value corresponds to the measurement accuracy. Therefore, any root mean square error that
exceeds the threshold is considered unallowable. Consequently, the green cells correspond
to allowable values, and the red cells do not. For the coefficient of determination, the
threshold value is 0.7. Below this threshold, the values are not acceptable. Those models for
which one or both values do not satisfy the given criteria are considered failed. Following
the link https:/ /public.tableau.com/views/RegressionValidationA /RegValidationDA?:
language=en-US&publish=yes&:display_count=né&:origin=viz_share_link (accessed on
20 September 2023), one may study the mean absolute error and coefficient of determina-
tion metrics for area A. The mean absolute error and coefficient of determination metrics
for area B are available through https:/ /public.tableau.com/views/RegressionValidationB/
RegressionValidationDB?:]language=en-US&publish=yes&:display_count=né&:origin=viz_
share_link (accessed on 20 September 2023).

The following designators are used in Figures and links: Rmse—root mean square
error, Rsq—coefficient of determination, (V)—estimation for the validation data subset.

Figures 18 and 19 demonstrate the root mean square errors for the testing data
subset (T). The tabulated and colorized information about evaluation metrics for test-
ing is available through the link https://public.tableau.com /views/RegressionTraining A /
RegressionTrainingDA?:language=en-US&publish=yesé&:display_count=n&:origin=viz_share_
link (accessed on 20 September 2023), for area A, and through the link https://public.
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tableau.com/views/RegressionTrainingB/RegR2TrainingDB?:language=en-US&publish=
yes&:display_count=né&:origin=viz_share_link (accessed on 20 September 2023), for area B.
For the testing data, the same threshold values were assigned.

Target
Model TAIX TALY TA1Z TA2X TA2Y TA2Z TA3X TA3Y TA3Z TA4X TA4Y TA4Z TASX TASY TASZ TA6X TAGY TA6Z
Linear Regression 1562 0.742 1.205 1.517 0.808 1.324 1.552 0.902 1.626 1.022 1.086 1,058- 1.067
Linear Regression Interactions [1.661 0.851 1.127 1.290 0.800 1071_ 1277‘ 1.216 1648 1021 1623 1.743 1.177
Linear Regression Quadratic 1.025 0.879 1.036 1.177 0.800 1.271 1.271 0.741 1.271 1.767 0.986 1.607 0.986 1.756 1.036 1.756
Linear Regression Robust 1571 0.786 1.212 1.520 0.884 1.331 1.559 0.899 1.637- 1.081 1166 1.071 1.160

Stepwise Linear Regression 1009 0786 0862 1064 0880 1015 1027 0856 1165 1538 1069 1397 1605 1129 0867 1.044

Rmse(V)
0.741] 2.759
Figure 16. Simulation metrics for the validation data, area A.
Target
Model TB1X TB1Y TB1Z TB2X TB2Y TB2Z TB3X TB3Y TB3Z TB4X TB4AY TB4Z TB5X TBS5Y TB5Z TB6X TB6Y TB6Z TB7X TB7Y TB7Z TB8X TB8Y TB8Z TB9X TBSY TBIZ
Linear Regression 0.789 0.417 0.536 0.741 0.173 0.230 0.680 0.617 0.389 0.868 0.389 0.208 0.777 0.433 0.252 0.683 0.556 0.381 0.868 0.311 0.504 0.832 0.382 0.150 0.722 0.608 0.053

Linear Regression Interactions 0.767 0.623 0.625 0.558 0.202 0.2% 0.578 0.817 040 0.771 0585 0.220 0456 0.663 0434-0.339 0.315 0.737 0.570 0658 0.648 0480 0.298 0614 0.736 0438
Linear Regression Quadratic  0.742 0.581 0.678 0.714 0.439 0.436 0.579 0.775 0.407 0.820 0.6%4 0.560 0.776 0.694 0.480 0.611 0.754 0.480 0.825 0.575 0.654 0.756 0.575 0.377 0.756 0.744 -0.061
Linear Regression Robust 0.782 0.409 0.532 0.727 0.165 0.221 0.669 0.613 0.381 0.865 0.378 0.157 0.774 0.429 0242 0.682 0553 0.375 0.866 0.301 0.498 0.831 0.378 0.177 0.718 0.604 0.054
Stepwise Linear Regression ~ 0.795 0.504 0.790 0.734 0475 0.533 0699 0.825 0.713 0.855 0689 0432 0794 0.717 0692 0.706 0.805 0.739 0868 0.609 0.786 0.841 0712 0.538 0.706 0.777 0.350

Rsq(V)
2755 . loses
Figure 17. Simulation metrics for the validation data, area B.
Target
Model TALX TALY TA1Z TA2X TA2Y TA2Z TA3X TA3Y TA3Z TA4X TA4Y TA4Z TAS5X TAS5Y TASZ TAG6X TA6Y TA6Z
Linear Regression 1122 1.0751.189 1.573 0.803 1.519 1.535 0.894 1.669 2.416 0.980 2.014 1.566 0.918 1.486 2.661 0.935 2 211

Linear Regression Interactions 1264 0.891 0822 0.882 0 814 2417 0.932 0586 1426 1.589 0.891 1 510 BE812 933 1 308 HIEEA|0 a20 [
Linear Regression Quadratic  0.868 0.279 1.439 0.724 0.896 0.640 0.536 1.399 0.640 2.222 1.234 1.343 1.973 1.234 2.522 2.261 1439 2.522
Linear RegressionRobust ~ 1.127 1.188 1.187 1.573 0.751 1.533 1.538 1.008 1661 2.407 0.996 2.011 1.581 1.172 1.523 2.688 0.941 2.217
Stepwise Linear Regression  0.916 1.067 0.830 0.894 0.744 1.078 0.848 0.933 1.261 1.480 1.002 1.248 1.245 0.951 1.365 2.328 0.888 1.813

Rmse(T)

0.279| ., 070

Figure 18. Simulation metrics for the testing data, area A.

Target
Model TB1X TB1Y TB1Z TB2X TB2Y TB2Z TB3X TB3Y TB3Z TB4X TB4Y TB4Z TB5X TB5Y TB5Z TB6X TB6Y TB6Z TB7X TB7Y TB7Z TB8X TB8Y TB8Z TB9X TBIY TBSZ
Linear Regression 0.822 0.79¢ 1.244 1.043 0.885 1.825 1.089 1.066 1.011 1016 1.072 0.839 1.026 1.628 1.216 0.741 1428 1442 0.903 1.143 1.034 1.048 1.058 1.340 1.047 1.405
Linear Regression Interactions 1.789 0949 1256 1380 0851 1013-0,858 1310 0845 0880 0907 0545 1005 1884 0678 1917 1479 0902 0840 1110 0.71S 0834 1863 0560 1427

Linear Regression Quadratic 0.675 0.782 0.928 0966 0.706 0.963 0.849 0.375 1586 1131 0659 0805 1148 0659 2.046 1051 0596 2.046 1353 0641 0729 1285 0641 0846 1285 0879 1424
Linear Regression Robust 0817 0.815 1.246 1054 0.888 1.825 1.044 1.075-0.990 1.048 1.059 0.843 1.040 1.626 1.215 0.747 1.432 1.435 0.931 1146 1.039 1.069 1.050 1.285 1.059 1.433
Stepwise Linear Regression  0.775 0.819 1.122 0.945 0.691 1086 1.083 0.792 2.123 1.169 0.816 0.600 0.836 0.597 1.010 1.147 0.623 1485 1.393 0.828 0.834 1.047 0.649 0.607 1.246 0.587 1.169

Rmse(T)

0375 N - -

Figure 19. Simulation metrics for the testing data, area B.

The preliminary analysis shows the low efficiency of the regression models. No model
provides acceptable values for all deformation targets. Moreover, there are many cases in
which no regression model ensures the assigned criteria at all. An in-depth discussion of
the presented results is given in Section 4.3.

4.2. Neural Network Regression Results

Neural network regression provides more flexible tools for simulation tuning. Thanks
to the wide set of hyperparameters, neural network regression allows the simulation of more
complex data. For our case study, the following hyperparameters were examined: activation
function, number of layers, and number of outputs in each layer. The network type is a
feedforward, fully connected neural network. Four activation functions were considered:
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>
rectified linear unit function f(x) = {g’ ;C - 8 ;
hyperbolic tangent function f(x) = % ;

1

the sigmoid function f(x) = =,

identity function f(x) = x.

Apart from the given activation functions, different numbers of layers and outputs
were studied. These hyperparameters create sets of various combinations. These combina-
tions are numbered as models and are listed in Table 1.

Table 1. List of the trained neural network models.

Model Activation Function = Number of Layers = Number of Outputs in Each Layer

Model 1 1 10
Model 2 2 10, 10
Model 3 . . . 3 10, 10, 10
Model 4 Rectified linear unit 3 30, 20, 10
Model 5 1 20
Model 6 1 50
Model 7 1 10
Model 8 2 10, 10
hl}d;(;leell 190 Hyperbolic tangent g ég: ;8; }8
Model 11 1 20
Model 12 1 50
Model 13 1 10
Model 14 2 10, 10
Model 15 Sigmoid function 3 10,10,10
Model 16 3 30, 20, 10
Model 17 1 20
Model 18 1 50
Model 19 1 10
Model 20 2 10, 10
Model 21 . . 3 10, 10, 10
Model22 ~ ldentity function 3 30, 20, 10
Model 23 1 20
Model 24 1 50

For all of the models from Table 1, the neural network regressions have been trained
according to the flowchart in Figure 15. The threshold criteria were accepted the same as
for the regression analysis. Figure 20 presents the root mean square errors for the data
validation subset of area A. Figure 21 gives the same metrics for area B. One may find the
complete set of simulation metrics (mean absolute error, root mean square error, and coeffi-
cient of determination) via the links https:/ /public.tableau.com/views/NeuNetValidationA /
NeuNetValidationDA?:]language=en-US&publish=yesé&:display_count=né&:origin=viz_share_
link (accessed on 20 September 2023), for area A, and https:/ /public.tableau.com/views/
NeuNetValidationB/NeuNetValidationDB?:language=en-US&publish=yesé&:display_count=
né&:origin=viz_share_link (accessed on 20 September 2023) for area B.

If we compare the neural network regression with the regression analysis, we may
notice that the neural network regression demonstrates much better performance than a
simple regression. However, these results correspond to the validation data subset. Let us
look at the output of the neural network regression for the testing data subsets. The model
testing results for areas A and B are presented in Figures 22 and 23. One may find the
complete set of simulation metrics (mean absolute error, root mean square error, and coef-
ficient of determination) via the links https:/ /public.tableau.com /views/NeuNetTesting A /
NeuNetTestingDA?:language=en-US&publish=yes&:display_count=n&:origin=viz_share_
link (accessed on 20 September 2023), for area A, and https:/ /public.tableau.com/views/
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NeuNetTestingB/NeuNetTestingDB?:language=en-US&publish=yesé&:display_count=né&:
origin=viz_share_link (accessed on 20 September 2023), for area B.

Even though the model testing results are not as optimistic as for the validation data
subset, the neural network regression has considerably better accuracy than a simple regres-
sion model. A discussion of the results presented above is given in the following subsection.

Target
Model TALX TALY TA1Z TA2X TA2Y TA2Z TA3X TA3Y TA3Z TA4X TA4Y TA4Z TASX TASY TASZ TAGX TA6Y TAEZ
Modell 0880 0590 0.716 0976 0558 0846 0.725 0.581 0.846c [JBHBEE] 0.695 1150 1217 0695 1565 1170 0716 1565
Model2 0501 0512 0.627 0670 0475 0813 0630 0.583 0813 1017 0.568 0833 0808 0568 1103 0930 0627 1103
Model3 0715 0459 0.632 0666 0.39% 0748 0.741 0.602 0748 1067 0.562 0.816 0860 0562 1101 0902 0639 1101
Model4 0579 0461 0593 0673 0352 0724 0718 0569 0724 1030 0566 0888 0879 0566 1201 0853 0593 1201
Model5 0769 0569 0813 0850 0552 |JEEE 0719 oss7[JEEEE 1420 0613 1139 1180 0613 1455 1198 0813 1455
Model6 ~ 0600 0576 0608 0641 0534 0868 0744 0583 0868 1463 0630 1157 0971 0630 1430 0952 0608 1430
Model7 0460 0.563 0.89% 0628 0471 0717 0579 0617 0717 0.828 0.653 0744 0.665 0653 1057 0859 08% 1057
Model8 0510 0497 0.515 0627 0337 0706 0.577 0.584 0706 0.836 0.603 0700 0.636 0.603 0913 0.808 0515 0913
Modelo 0433 0431 0.386 059 0302 0610 0561 0.623 0610 1035 0458 0647 068l 0458 1023 0816 0386 1023

Model 10 0453 0531 0.383 0595 0.305 0605 0.559 0.607 0.605 0.927 0.478 0.639 0622 0478 0.862 0817 0.383 0.862
Model 11 0463 0633 0.709 0636 0524 0740 0.574 0.598 0.740 0810 0.644 0761 0678 0644 1056 0899 0.709 1.056
Model 12 0455 0635 0.814 0636 0569 0688 0573 0563 0688 0842 06429 0772 0678 0649 0982 1019 0814 08982
Model 13 0462 0633 0781 0633 0623 0849 0573 0610 0849 0771 0638 1091 0701 0638 1.103 0857 0781 1103
Model 14 0462 0525 0.568 0632 0436 0.712 0564 0572 0712 0.743 0.599 0828 0657 0599 0944 0.813 0568 00944
Model 15 0468 0582 0753 0634 0415 0682 0568 0648 0682 0768 0863 0693 0616 0863 1.025 0879 0753 1.025
Model 16 0458 0473 0420 0606 0413 0639 0575 0616 0639 0876 0498 0778 0614 0498 0.8%4 0.755 0420 0894
Model 17 0441 0616 0814 0626 0512 0809 0.571 0635 0809 0765 0646 0758 0718 0646 1.047 0905 0814 1.047
Model 18 0457 0633 0.837 0630 0591 0815 0.564 0.549 0.815 0.787 0.656 0.796 0.702 0.656 1.089 0.902 0.837 1.089

Model 19 1446 0839 0942 1577 0750 1463 1660 0721 1463 0.928 0.928 0.942
Model 20 1446 0837 0.951 1577 0748 1463 1.661 0.722 1.463 0.925 0.825 0.951
Model 21 1446 0841 0.933 1577 0.747 1465 1.661 0.725 1.465 0.923 0.923 0.933
Model 22 1446 0837 0934 1577 0748 1466 1662 0.724 1466 0.923 0.923 0934
Model 23 1445 0839 0.942 1577 0750 1462 1.661 0.721 1.462 0.928 0.928 0.942
Model 24 1446 0843 0942 1577 0750 1466 1660 0.721 1.466 0.928 0.928 0.942

Rmse(V)

0.302 , T 553

Figure 20. Simulation metrics for the validation data, area A, root mean square error.

Target
Model TB1X TB1Y TB1Z TB2X TB2Y TB2Z TB3X TB3Y TB3Z TB4X TB4Y TB4Z TBS5X TBSY TBS5Z TB6X TB6Y TB6Z TB7X TB7Y TB7Z TB8X TB8Y TB8Z TBIX TB9Y TB9Z
Model 1 0.843 0.648 0.924 1.007 0.625 0.993 0.978 0.651 1.780 0.977 0.715 0.823 1.125 0.715 0.968 1.210 0.668 0.968 1.103 0.697 0.770 1.299 0.697 0.805 1.299 0.701 0.937
Model 2 0.852 0.639 0.739 1.067 0.455 0.811 0.995 0.641 1.488 0.975 0.719 0.745 1.156 0.719 0.916 1.217 0.615 0.916 1.213 0.536 0.730 1.294 0.536 0.774 1.294 0.687 0.894
Model 3 0.849 0655 0.749 1.080 0.471 0.843 0.996 1.048 -0 936 0.990 0.752 1.152 0.990 0.865 1.210 0.626 0.865 1.129 0.812 0.739 1.307 0.812 0.837 1.307 0.728 0.863
Model 4 0.849 0640 0.731 1.054 0.457 0.861 0.973 0.649 1.405 0959 0.734 0.767 1.148 0.734 0.845 1.208 0.605 0.845 1.120 0.584 0.731 1.296 0.584 0.739 1.296 0.611 1.008
Model 5 0.843 0.646 0.822 1.004 0.609 1.016 0.973 1.020 1.818 0.903 0.714 0.820 1.131 0.714 1.096 1.261 0.674 1.096 1.139 0.795 0.776 1.283 0.795 0.757 1.283 0.702 0.900
Model 6 0.835 0.653 0.810 1.006 0.584 0.989 0.969 0.710 1.815 0.984 0.724 0.785 1.134 0.724 0.972 1215 0.671 0.972 1.088 0.587 0.767 1.286 0.587 0.802 1.286 0.698 0.919
Model 7 0.841 0621 0.736 0.983 0.472 0.841 0952 0.607 1.503 1.056 0.642 0.795 1.099 0.642 0.834 1230 0.612 0.834 1.222 0591 0.746 1.267 0.591 0.773 1.267 0.605 0.862
Model 8 0.850 0.692 0.797 0.996 0.419 0.887 0.979 0.610 1.228 1.041 0.668 0.865 1.125 0.668 0.879 1.274 0.610 0.879 1.187 0.550 0.758 1.304 0.550 0.876 1.304 0.631 0.922

Model 9 0.859 0.648 0.650 1.005 0.429 0.942 0.954 0.605 1.061 1.041 0.663 0.833 1.153 0.663 0.838 1.268 0.622 0.838 1.204 0.552 0.731 1.335 0.552 1.030 1.335 0.670 0.950
Model 10 0.874 0.625 0.599 0.998 0.439 0.830 0.980 0.608 0.983 1.092 0.684 0.678 1.126 0.684 0.780 1.257 0.615 0.780 1.266 0.558 0.735 1.319 0.558 1.012 1.319 0.669 0.822
Model 11 0.872 0.627 0.687 0.965 0.476 0.868 0.955 0.607 1.412 1.010 0.650 0.753 1.069 0.650 0.833 1.211 0.587 0.833 1.166 0.509 0.748 1.239 0.509 0.797 1.239 0.656 0.861
Model 12 0.866 0.627 0.694 0.965 0.474 0.843 0.953 0.599 1.543 0.979 0.653 0.802 1.054 0.653 0.846 1.195 0.608 0.846 1.122 0.625 0.757 1.217 0.625 0.745 1.217 0.630 0.890
Model 13 0.845 0.652 0.661 0.974 0.497 0.790 0.970 0.585 1.122 1.025 0.668 0.787 1.090 0.668 0.824 1.189 0.594 0.824 1.142 0.508 0.755 1.270 0.508 0.778 1.270 0.601 0.865
Model 14 0.869 0.637 0.680 0.995 0.489 0.870 0.995 0.594 1.214 1009 0.678 0.794 1.104 0.678 0.821 1.200 0.589 0.821 1.167 0.552 0.762 1.314 0.552 0.767 1.314 0.631 0.890
Model 15 0.859 0.666 0.746 1.018 0.555 0931 1.031 0.592 1.227 1002 0.783 0.674 1.112 0.783 0.830 1.279 0.598 0.830 1.173 0.591 0.752 1.299 0.591 0.782 1.299 0.668 1.005
Model 16 0.893 0.647 0.530 0.988 0.578 0.921 0.991 0.605 0.998 0.999 0.656 0.693 1.116 0.656 1.040 1.257 0.605 1.040 1.140 0.544 0.712 1.300 0.544 0.763 1.300 0.726 1.309
Model 17 0.845 0.629 0.734 0.966 0.479 0.798 0.953 0.587 1.274 0.972 0.673 0.790 1.067 0.673 0.832 1.202 0.591 0.832 1.125 0.526 0.745 1.244 0.526 0.807 1.244 0.600 0.872
Model 18 0.860 0.622 0.645 0.962 0.472 0.818 0.944 0.579 1.384 0971 0.675 0.781 1.051 0.675 0.824 1.189 0.609 0.824 1.114 0572 0.761 1222 0.572 0.797 1.222 0.598 0.887

Model 19 0.861 0.825 1.179 0.965 0.817 1.640 0.953 0.946 0863 0958 1255 1.049 0958 1.557 1.188 0.983 1557 1.105 0.853 0.883 1.209 0.953 1.219 1.209 0984 1.387
Model 20 0.863 0.825 1.179 0.964 0.817 1.640 0.946 0.946 0.967 0.959 1.257 1.050 0.959 1.557 1.184 0.983 1.557 1.104 0.955 0.981 1.211 0.955 1.221 1.211 0.985 1.391
Model 21 0.859 0.825 1.180 0.962 0.817 1.640 0.945 0.947 0.966 0.959 1.258 1.049 0.959 1.557 1.186 0.983 1.557 1.104 0.955 0.983 1.210 0.955 1.221 1.210 0.986 1.406
Model 22 0.859 0.825 1.180 0.962 0.817 1.640 0.945 0.946 0.964 0.959 1.258 1.047 0.959 1.557 1.185 0.983 1.557 1.104 0.955 0.981 1.211 0.955 1.221 1.211 0.986 1.396
Model 23 0.862 0.825 1.178 0.965 0.817 1.640 0.950 0.946 0.965 0.959 1.255 1.050 0.959 1.557 1.185 0.983 1.557 1.104 0.954 0.982 1.213 0.954 1.219 1.213 0.984 1.387
Model 24 0.863 0.825 1.179 0.973 0.817 1.640 0.949 0.946 0.964 0.959 1.255 1.057 0.959 1.557 1.188 0.983 1.557 1.103 0.954 0.982 1.211 0.954 1.220 1.211 0.984 1.387
Rmse(V)

0419 . Y, 575

Figure 21. Simulation metrics for the validation data, area B, root mean square error.
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Model

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9

Target
TAIX TALY TA1Z TA2X TA2Y TA2Z TA3X TA3Y TA3Z TA4X TA4Y TA4Z TASX TASY TASZ TA6X TA6Y TA6Z
0573 0488 0.666 0.550 0.527 0477 0.567 1256 0477 1477 1262 0.847 1180 1262 1350 1100 0.666 1.350
0.446 0452 0.366 0.325 0418 0.369 0.992 1006 0.369 1.217 0.854 0.863 0.674 0.854 0.947 0.834 0.366 0.947
0.386 0430 0.373 0.326 0818 0.389 0.420 1213 0.389 1.214 0.947 0.843 0.913 0947 0.892 0.537 0.373 0.892
0429 0452 0.449 0.342 0.364 0391 0816 1183 0391 1261 0.895 0.729 0525 0895 1186 0449 1186
0.669 0.540 0.671 0.295 0.535 |[EEEH 0.693 1203 [ENEEEl 1447 1.044 0780 0913 1044 1732 1167 0671 1732
0.430 0476 0.566 0.332 0.535 0469 0.560 1251 0469 1340 1068 0.868 0905 1068 1831 1044 0566 1831
0391 0442 0.822 0.347 0473 0366 0.341 1123 0.366 1201 1137 0.701 0608 1137 0.905 0.508 0822 0.905
0481 0431 0.446 0.319 0.342 0413 0.343 1058 0413 1163 0989 0.688 0472 0989 0.927 0.343 0446 0927
0.404 0451 0.425 0.363 0.322 0.547 0.355 0.985 0.547 1.210 0.381 0.691 0.561 0.381 0.803 0.452 0.425 0.803

Model 10 0.385 0435 0.412 0.372 0317 0410 0.476 0.861 0.410 0.851 0.543 0.667 0.599 0.543 0.816 0.562 0.412 0.816
Model 11 0.391 0582 0.487 0.352 0522 0425 0.345 1.119 0425 1.083 1.140 0.640 0.639 1.140 1.522 0.376 0.487 1.522
Model 12 0.387 0.546 0.443 0.352 0.524 0.446 0.352 1095 0446 1129 1142 0.722 0617 1.142 1459 0.560 0.443 1439
Model 13 0.410 0.544 0.538 0.383 0479 0.369 0.309 1207 0369 1136 1.141 0.674 0659 1.141 0.910 0.409 0.538 0.910
Model 14 0.479 0450 0.276 0.361 0.348 0.552 0.313 1.201 0.552 1.117 0.497 0.669 0.532 0.497 0.985 0.521 0.276 0.985
Model 15 0.463 0446 0.404 0.378 0.357 0.540 0.328 1042 0540 1068 1.173 0.654 0.577 1.173 0.831 0.589 0404 0.831
Model 16 0.453 0447 0.325 0.342 0360 0.441 0.319 0.972 0441 1524 0.347 0.580 0.577 0.347 0.833 0.648 0.325 0.833
Model 17 0.430 0461 0.497 0.389 0485 0.384 0.299 1351 0384 1106 1143 0.631 0699 1143 1127 0413 0497 1.127
Model 18 0421 0540 0.779 0.394 0514 0441 0.298 1091 0441 1115 1144 0.722 0655 1.144 1549 0.382 0.779 1549
Model 19 1.420 0.318 1.527 1.400 0.958 0.772 0.941 1560 0.772 1.263 1.303 1.263 1.527
Model 20 1.414 0.321 1.500 1.400 0.951 0.738 0.941 1556 0.738 1.242 1.295 1242 1.500
Model 21 1.437 0321 1.526 1.400 0948 0.731 0.910 1522 0731 1.247 1.295 1.247 1.526
Model 22 1.419 0.334 1.536 1.400 0948 0.699 0.902 1543 0.699 1.246 1.299 1.246 1.536
Model 23 1.427 0.318 1.527 1.400 0.957 0.749 0.949 1560 0.749 1.253 1.302 1253 1.527
Model 24 1.414 0.318 1.536 1.400 0956 0.697 0.918 1560 0.697 1.250 1.303 1.250 1.536

Rmse(T)
0.276

Model
Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9
Model 10
Model 11
Model 12
Model 13
Model 14
Model 15
Model 16
Model 17
Model 18
Model 19
Model 20
Model 21
Model 22
Model 23
Model 24

Rmse(T)
0.337

I .12

Figure 22. Simulation metrics for the testing data, area A, root mean square error.

Target
TB1X TB1Y TB1Z TB2X TB2Y TB2Z TB3X TB3Y TB3Z TB4X TB4Y TB4Z TBSX TBSY TBS5Z TB6X TB6Y TB6Z TB7X TB7Y TB7Z TB3X TB8Y TB8Z TBOX TBIY TBSZ
0.7480.830 0.702 0974 0.776 0.955 1.017 0464 1137 1.244 0636 0.762 1108 0.636 0.620 1.218 0689 0.620 1616 0612 0654 1.156 0612 0614 1156 0.925 1229
0.7050.816 0.647 0.962 0.566 0.790 1.028 0456 0.733 1466 0.609 0.767 1117 0609 0.719 1153 0676 0.719 2166 1.389 0.591 1.206 1.389 0604 1206 0.850 1.190
0.6750.929 0.674 0.894 0.560 0.537 1.005 0.603 -1.404 033707551111 0337 07721198 0611 0.772 1665 0.898 0554 1.273 0.898 0.618 1273 0.955 1197
0.7650.639 0.584 0937 0.500 0.626 0.964 0.520 0.7151.276 0.605 0656 1.058 0.609 0.742 1191 0698 0.742 1642 0959 0527 1.205 0555 0611 1205 0.782 1655
0.7450.772 0690 0972 07300977 0976 0901 12211370 0598 0648 1116 0.598 08321178 06870832 16521222 06801.175 12220623 11750895 1263
0.7740.754 0.697 0.976 0.566 0.996 0.980 0.640 1.058 1.101 0.600 0.739 1.097 0.600 0.682 1.142 0691 0.682 1.713 0906 0672 1.181 0906 0602 1.181 0.919 1.250
0.8500.705 0.632 0.939 0.589 1.092 1.056 0.624 0.704 1.189 0.542 0.758 1.074 0.542 0.642 1.305 0644 0642 14350988 05991.201 0988 0.782 1201 0.732 1223
0.8430.619 0.727 0.918 0.598 0.979 1.061 0.492 0.588 1.057 0.385 0.790 1.086 0.385 0.659 1.199 0.753 0.659 1.283 0.805 0604 1.131 0.805 0666 1131 0.732 1.197
0.8140.796 0.597 0.912 0.604 0.719 1.079 0.362 0499 1.079 0414 0.725 1105 0414 0.696 1298 0666 0.696 1.328 0.755 0.5751.099 0.755 0852 1095 0.747 1194
0.827 0.639 0.594 0908 0.601 0.555 1.076 0.353 05091072 03530698 1071 0353 05831377 05740583 13120791 05171135 07910634 11350626 1172
0.8100.709 0613 0957 0589 1.106 0981 0357 07141163 05520758 10920552 06131271 07030613 14061170 05941144 11700711 11440735 1215
0.7950.876 0.656 0.970 0.591 1.103 0.996 0.350 0653 1.126 0.5450.777 1109 0.549 0.614 1210 0683 0.614 1.362 0571 0567 1.155 0.571 0.791 1155 0.733 1208
0.7480.644 0.627 0.959 0.594 1.100 1.014 0.521 0673 1.140 0.553 0.751 1146 0.553 0.702 1.204 0662 0.702 1.289 0.720 0554 1.165 0.720 0.778 1165 0.730 1199
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Figure 23. Simulation metrics for the testing data, area B, root mean square error.

4.3. Best Model Performance Analysis and Discussions

Using the obtained results, an in-depth analysis is possible. The main goals of the
analysis and discussion are two: the first is to determine the approach that ensures better
results, and the second is to suggest the best set of parameters and hyperparameters. A
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visual analysis of the results in Sections 4.1 and 4.2 has shown that linear regression analysis
models generally ensure inappropriate results. To comprehend the efficiency of the linear
regression analysis and to prove it qualitatively, the best regression model has been chosen
for each deformation target. When no one regression model satisfies the assigned threshold
values for the specified deformation target, the simulation for this target fails. Thus, there
are no linear regression models that may describe the deformation process, respectively.
The results of such a survey are outlined in Table 2 for area A and Table 3 for area B. The
failed simulations are designated (F).

Table 2. Model performance for validation, area A, regression analysis.

Target Validation Testing

TA1X Stepwise Linear Regression Linear Regression Quadratic
TA2X Stepwise Linear Regression Linear Regression Quadratic
TA3X Stepwise Linear Regression Linear Regression Quadratic
TA4X F F

TA5X F F

TA6X F F

TA1Y Stepwise Linear Regression Linear Regression Quadratic
TA2Y F F

TA3Y F F

TA4Y F F

TA5Y F F

TA6Y F F

TA1Z Stepwise Linear Regression Stepwise Linear Regression
TA2Z F Linear Regression Quadratic
TA3Z F Linear Regression Quadratic
TA4Z F F

TA5Z Stepwise Linear Regression F

TA6Z F F

The data in the tables above are presented in histogram view. The histograms have
been built for the validation and testing data of areas A (Figures 24 and 25) and B (Figures 26
and 27). These Figures provide a presentable overview of the different model performances.

Regression Model Validation

12

10

Model Performance
[*)]

F Stepwise LR
Models

Figure 24. Model performance for validation data subset, area A.
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Table 3. Model performance for validation, area B, regression analysis.

Target Validation Testing
TB1X Stepwise Linear Regression Linear Regression Quadratic
TB2X Stepwise Linear Regression F
TB3X Stepwise Linear Regression Linear Regression Quadratic
TB4X Linear Regression Linear Regression Quadratic
TB5X Stepwise Linear Regression Stepwise Linear Regression
TB6X Stepwise Linear Regression Linear Regression Quadratic
TB7X Stepwise Linear Regression F
TB8X Stepwise Linear Regression Linear Regression Robust
TB9X F F
TB1Y F F
TB2Y F F
TB3Y Stepwise Linear Regression Linear Regression Quadratic
TB4Y F F
TB5Y Stepwise Linear Regression Stepwise Linear Regression
TB6Y Stepwise Linear Regression Linear Regression Quadratic
TB7Y F Linear Regression Quadratic
TB8Y Stepwise Linear Regression Linear Regression Quadratic
TBoY Stepwise Linear Regression F
TB1Z Stepwise Linear Regression F
TB2Z Stepwise Linear Regression F
TB3Z F F
TB4Z F Stepwise Linear Regression
TB5Z F Stepwise Linear Regression
TB6Z F F
TB7Z Stepwise Linear Regression F
TB8Z F Stepwise Linear Regression
TB9Z F F
" Regression Model Testing
10
S
< 8
T
£
o
t 6
@
o
8 4
=
2
5 [
F LR Quadratic Stepwise LR

Models

Figure 25. Model performance for testing data subset, area A.

The regression models’ performance for area A is mostly poor. No one model is able
to ensure reliable results.
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Figure 26. Model performance for validation data subset, area B.

Regression Model Testing
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Figure 27. Model performance for testing data subset, area B.

There is no doubt that regardless of the monitoring area, the linear regression analysis
mostly fails to describe and predict the overpass displacements due to land subsidence.
In monitoring area A, more than half of the simulations failed (see Figures 24 and 25).
There is no relationship between the coordinate axis or displacement direction and model
performance (see Table 2). Stepwise linear regression provides the most stable solution
for the validation data subset among the different linear regression models. In contrast,
quadratic linear regression is more suitable for the testing data subset. However, in both
cases, the percentage of successful models is just 30%. The results of area B show a slightly
different trend. Stepwise linear regression is successful for more than 50% of cases for
the validation data subset (Figure 26), but the percentage of failed simulations is still
inadmissibly high (more than 40%). The percentage of the failed simulations for the testing
data subset is almost 50% (Figure 27). Critical remarks should be made regarding the
simulations along different coordinate axes. It was found that stepwise linear regression
works pretty well for the displacement simulation along the X-axis. Let us see the simulation
output for the stepwise linear regression for the deformation target TB5 along the X-axis.
Figure 28 portrays the determined displacements and predicted displacements compiled
using stepwise linear regression.
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Figure 28. Actual displacements and predicted displacements TB5X.

The relationships between the actual and predicted responses are given in Figures 29

and 30.
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Figure 29. Correspondence between actual displacements and predicted displacements for validation
data TB5X.
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Figure 30. Correspondence between actual displacements and predicted displacements for testing
data TB5X.
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Residuals (TB5X),

The responses for the validation and testing data subsets are grouped along straight
lines. If we assume that our regression model is correct, then most of the data (displace-
ments) variability is explained by this model. Consequently, the choice of parameters and
their relationships was correct.

The residuals between actual and predicted values give a nice view of the model’s
efficiency. The residuals for the validation and testing data subsets are given in Figures 31
and 32.
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Figure 31. Residuals for the validation data subset TB5X.
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Figure 32. Residuals for the testing data subset TB5X.

The residuals for the validation data subset do not exceed the doubled accuracy of the
displacements. The distribution of the residuals shows no systematic trends or blunders.
In general, we may infer that the stepwise linear regression appropriately describes the
displacements of this particular deformation target. Therefore, if a model obeys the assigned
thresholds, the simulation results are adequate for the deformation process. The prediction
model is not underfitted nor overfitted. This means that linear regression is capable of
grasping the main trends of the deformation process. The same conclusions are valid for
the testing data subset. The parameters’ importance scores were estimated using F-test
(Figure 33).

Importance scores: 33.5719
Features: TBMPosition |
o

Importance scores: 32.0737
Features: Temp |
0 g

Importance scores: 17.2611
Features: SC

Importance scores: 0.544244
Features: PP

1 1 1 1

0 5 10 15 20 25 30 35
Importance scores

Figure 33. Importance scores for regression model parameters TB5X.

For this particular case, precipitation is the only parameter we must neglect. This is
evident because during monitoring, the precipitation level was not significant, and conse-
quently should not affect the observable displacements. All the rest of the parameters have
high importance scores. Despite the presented results, the studied linear regression models
generally do not provide suitable outputs. One of the reasons for this is the insufficient num-
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ber of regression parameters. Consequently, we must admit that the suggested regression
models are underfitted in general. Thus, additional regression parameters, e.g., transport
loads, soil parameters, etc., must be included to grasp hidden trends in monitoring data.
Another probable solution is the use of nonlinear regression models.

Let us embark on an analysis of the neural network regression results. As in the case
of simple regression, all simulation results have been checked, and the best model for each
deformation target has been chosen. The results of this selection are shown in Tables 4

and 5.

Table 4. Model performance for testing, area A, neural network regression.

Target Validation Testing
TA1X Model 17 Model 7,11, 12
TA2X Model 9,10 Model 6
TA3X Model 9, 10, 14 Model 17, 18
TA4X Model 14 Model 10
TA5X Model 16 Model 8
TA6X Model 16 Model 8
TA1Y Model 9, 10 Model 9, 10
TA2Y Model 9, 10 Model 9, 10
TA3Y F F
TA4Y Model 9 Model 9
TA5Y Model 9 Model 16
TA6Y Model 10 Model 16
TA1Z Model 10 Model 16
TA2Z Model 10 Model 2, 13
TA3Z Model 10 Model 2,7, 13
TA4Z Model 10 Model 16
TA5Z Model 10 Model 9
TA6Z Model 10 Model 9

The data in the tables above are presented in a histogram view. The histograms have
been built for validation and testing data for areas A (Figures 34 and 35) and B (Figures 36

and 37).
- Neural Network Regression Validation
.
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Figure 34. Model performance for validation data subset, area A.
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Table 5. Model performance for testing, area B, neural network regression.

Target Validation Testing
TB1X Model 16 Model 3
TB2X Model 22 Model 3
TB3X Model 18, 21, 22 Model 19
TB4X Model 5 Model 16
TB5X Model 22 F
TB6X F Model 24
TB7X Model 6 F
TB8X F F
TB9X F F
TB1Y F Model 16
TB2Y Model 8 Model 4
TB3Y Model 18 Model 10, 12
TB4Y Model 7 F
TB5Y Model 7 F
TB6Y Model 11, 14 Model 10
TB7Y Model 11, 13 Model 12
TB8Y Model 11, 13 Model 12
TB9Y Model 7,13, 18 Model 16
TB1Z Model 16 Model 4
TB2Z Model 13 Model 3, 10
TB3Z Model 10, 16 Model 9, 16
TB4Z Model 15 F
TB5Z Model 10 Model 10
TB6Z Model 10 Model 10
TB7Z Model 16 Model 16
TB8Z F F
TB9Z F F

Neural Network Regression Testing

T T T T T T T T T T T

Model Performance

0

NN '\ d X
ST S
Models

OF n ©

Figure 35. Model performance for testing data subset, area A.
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Figure 36. Model performance for validation data subset, area B.

Neural Network Regression Testing

9 :
8_ -
o 7T ]
O
& 6f -
E
o5r T
‘£
@ 4f ]
3 3t -
O
=, ]
1F _
0

< Q o 1 > Y O D o
WP 0P W o (Y (T et
Models

Figure 37. Model performance for testing data subset, area B.

For areas A and B, we have totally different pictures. Area A has only one failed
simulation for the validation and testing data subsets. The highest performance for the
validation data ensures Model 10 (a one-layer network with twenty outputs and hyperbolic
tangent activation function) and Model 9 (a three-layer network with ten outputs in each
layer and hyperbolic tangent activation function). The success of these models is almost
75%. 1f we look at the testing data, there is no apparent domination of one model in favor
of another. However, 50% of successful simulations correspond to models with hyperbolic
tangent activation function, and 30% correspond to those with sigmoid activation function.
For deformation processes similar to those in area A, it is advisable to use neural network
regression with hyperbolic tangent or sigmoid activation functions. The number of layers
and outputs is not so critical. It is recommended to apply networks with one or two layers.
The output number must be between ten and thirty. It is undesirable to apply a rectified
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linear unit function and identity function. The latter failed almost all simulations for the
studied data sets.

As a case study of the neural network regression performance, let us consider the
simulation results for the deformation target TA6 along the X-axis. Figure 38 demonstrates the
determined and predicted displacements compiled using neural network regression for Model
16 (sigmoid activation function, three layers, and thirty, twenty, and ten outputs, respectively).

Predicted Values vs. Actual Values
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Figure 38. Actual displacements and predicted displacements TA6X.

The relationships between the actual and predicted responses are given in Figures 39

and 40.
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Figure 39. Correspondence between actual displacements and predicted displacements for the
validation data TA6X.
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Figure 40. Correspondence between actual displacements and predicted displacements for the testing
data TA6X.

The responses for the validation and testing data subsets are grouped along straight
lines. The residuals between actual and predicted values give a nice view of the model’s
efficiency. The residuals for the validation and testing data subsets are given in Figures 41
and 42.
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Figure 41. Residuals for the validation data subset TA6X.
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Figure 42. Residuals for the testing data subset TA6X.

The residuals for the validation data subset almost fit into the region of the doubled
accuracy of the displacements (£2.4 mm), while the residuals for the testing data subset are
in the range of £1 mm. The distribution of the residuals has no systematic trends or blun-
ders. The prediction model is not underfitted or overfitted. The parameters” importance
scores were estimated using an F-test (Figure 43).
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Figure 43. Importance scores for neural network regression model parameters.

For this case, precipitation again has the lowest score, and should be neglected. All the
rest of the parameters have high importance scores. Neural network regression mainly pro-
vides acceptable results. However, the inclusion of additional parameters is also advisable.

For area B, we may observe a significant percentage of failed simulations. This
percentage equals 17% for the validation data subset and 33% for the testing data subset.
The most successful models are with sigmoid activation function: 37% for the validation
data subset, and 20% for the testing data subset; and with hyperbolic tangent activation
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35

Minimum MSE

function: 28% for validation, and 20% for testing. Again, the number of layers and outputs
is not so critical. Conclusions regarding the number of parameters drawn from the linear
regression analysis are also valid for the neural network regression. Through the inclusion
of new parameters, we may improve the simulation quality.

For the case of neural network regression, we have an additional option for tuning
the hyperparameters. Thus, we may reach the necessary threshold criteria by varying
the number of layers and outputs. In this case, we deal with optimizable neural network
regression. We took the deformation target TB8 and its displacements along the Z-axis
to prove this statement. Both validation and testing procedures for the standard neural
network regression failed to reach this target. Let us run the optimization process and search
the optimal number of layers and outputs for hyperbolic tangent and sigmoid activation
functions. Additionally, we have increased the number of cross-validation folds to ten. The
optimization of the number of outputs shows acceptable results. The simulation results
indicate that the optimizable neural network regression can adjust the hyperparameter
values to satisfy the threshold values. Figure 44 shows charts of the mean square errors
(MSEs)’ optimization for successful hyperparameters.

Optimizable Neural Network Optimizable Neural Network

—O— Estimated minimum MSE 3 —O— Estimated minimum MSE
—®&— Observed minimum MSE —@— Observed minimum MSE
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Figure 44. MSE graphs for optimizable neural networks for the deformation target TB8Z.

The obtained values for the hyperparameters that satisfy the assigned criteria are
outlined in Table 6.
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Table 6. Hyperparameters for optimizable neural network regression for the deformation target TB8Z.

e . Validation  Validation Testing Testing
Layerl Layer2 Layer3 Activation Function MSE RMSE, mm R-Square RMSE, mm R-Square
1 2 68 Hyperbolic tangent 0.56 0.75 0.77 0.78 0.72
1 300 - Hyperbolic tangent 0.63 0.74 0.77 0.80 0.70
1 4 46 Sigmoid 0.59 0.76 0.76 0.79 0.71
2 - - Sigmoid 0.60 0.78 0.75 0.71 0.76
Figure 45 demonstrates the determined and predicted displacements compiled with
the optimizable neural network regression.
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Figure 45. Determined and predicted displacements for the optimizable neural network regression
for the deformation target TB8Z.

There is no significant difference between networks with various hyperparameters.
This means that any of the neural network models in Table 6 may be used for the prediction
model. The earlier discussion implies that the optimizable neural network regression is
considerably flexible, and additionally provides lower values for root mean square errors
and mean absolute errors (see Section 4.1). The obtained evidence seems to recommend that
the optimizable neural network regression simulation must include the following steps:
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(1) Assigning the validation procedure. For small datasets (up to 300 responses), this is a k-
fold validation with at least ten folds, and for large datasets (more than 1000 responses),
a hold-out validation procedure.

(2) Assigning the testing data subset, which is 15-20%, depending on the dataset size.

(8) Choosing the set of parameters (predictors).

(4) Choosing the optimizable hyperparameters (activation function, number of layers,
and outputs).

(5) Assigning the activation function (hyperbolic tangent or sigmoid).

(6) Optimizing the number of layers and the number of outputs.

(7) Comparing the estimation metrics.

Generally speaking, optimizable neural network regression is the best solution for
creating prediction models compared to ordinary regression.

The urban environment is prone to continuous changes. The construction processes
affect the surrounding structures and lead to ground displacements. On the other hand, ad-
verse geological and meteorological conditions may overplay the construction process and
make city management a complex issue. These conditions dictate the usage of the models
that allow the parameters to be tweaked and the algorithms to be adjusted depending on
the changes. Optimizable neural network regression models are applicable for simulating
various deformation processes. In an urban environment, these models may successfully
describe not only land subsidence but also bridge deformations subject to static and dy-
namic loads, high-rise building deformations that may undergo extreme environmental
loads (temperature, wind gusts, etc.), and underground structure displacements.

The studied models and the suggested optimizable neural network regression are
recommended as an indispensable part of geotechnical monitoring. Practically, after each
new observation epoch, these models allow for on-the-fly estimation of the structure
deformation process or land subsidence. Therefore, it is highly recommended to embed
these models into software for the analysis of monitoring results.

5. Conclusions

Land subsidence in cities may lead to significant damage to and collapsing of engi-
neering structures. The simulation and prediction of these structures’ deformations due to
land subsidence is a great challenge. The present paper addresses the problem of applying
machine learning methods for analyzing spatial displacements of engineering structures.
The results of geospatial monitoring of a road overpass affected by external loads invoked
by the construction of a new subway line were used as a case study. The primary stress
has been placed on applying machine learning methods for the development of a predic-
tion model. Two methods have been examined: regression analysis and neural network
regression with machine learning. Regression analysis was accomplished using a k-fold
cross-validation scheme with the testing data subset. The overall analysis has shown that
the regression analysis does not provide the necessary accuracy and reliability of prediction
models. The regression analysis learning failed for almost 50% of simulations. The main
drawback is the model underfitting. One of the recommendations is increasing the number
of regression parameters. Notably, the level of traffic loads, underground soil structure,
subsidence parameters due to underground excavation works, etc. should be considered.
Unlike the regression analysis, the neural network regression ensured essentially better
results. In general, only nearly 25% of the neural network regression simulations failed.
Neural network regression is able to grasp the local deviations of the displacements and
convey the pattern of the deformation process. Finally, optimizable neural network re-
gression has been considered. The study found optimizable neural network regression to
be highly reliable. Thanks to the optimization procedure, it is almost possible to adjust
the hyperparameters of the neural network in such a way that its output will satisfy the
preliminary assigned criteria. As a general conclusion, we recommend using optimizable
neural network regression methods to construct prediction models. In future, research will
have to address machine learning methods for analyzing spatial displacements in more
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detail. Perspective studies will have to explore deep learning methods for the development
of prediction models. Of course, future studies will have to concentrate on the issue of
parameter choice for correct data simulation and to prevent models” underfitting.
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en-US&publish=yes&:display_count=né&:origin=viz_share_link (neural network regression valida-
tion area B, accessed on 20 September 2023); https:/ /public.tableau.com /views/NeuNetTestingA /
NeuNetTestingDA?:language=en-US&publish=yes&:display_count=né:origin=viz_share_link (neu-
ral network regression testing area A, accessed on 20 September 2023); https:/ /public.tableau.com/
views/NeuNetTestingB/NeuNetTestingDB?:language=en-US&publish=yes&:display_count=né&:origin=
viz_share_link (neural network regression testing area B, accessed on 20 September 2023).
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