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Abstract: This paper presents a multimodal emotion recognition method that uses a feature-level
combination of three-dimensional (3D) geometric features (coordinates, distance and angle of joints),
kinematic features such as velocity and displacement of joints, and features extracted from daily
behavioral patterns such as frequency of head nod, hand wave, and body gestures that represent
specific emotions. Head, face, hand, body, and speech data were captured from 15 participants using
an infrared sensor (Microsoft Kinect). The 3D geometric and kinematic features were developed using
raw feature data from the visual channel. Human emotional behavior-based features were developed
using inter-annotator agreement and commonly observed expressions, movements and postures
associated to specific emotions. The features from each modality and the behavioral pattern-based
features (head shake, arm retraction, body forward movement depicting anger) were combined to
train the multimodal classifier for the emotion recognition system. The classifier was trained using
10-fold cross validation and support vector machine (SVM) to predict six basic emotions. The results
showed improvement in emotion recognition accuracy (The precision increased by 3.28% and the
recall rate by 3.17%) when the 3D geometric, kinematic, and human behavioral pattern-based features
were combined for multimodal emotion recognition using supervised classification.

Keywords: multimodal emotion recognition; depth sensing; infrared sensor; affective computing;
three-dimensional features; geometric features; kinematic features; feature-level fusion

1. Introduction

Emotion responsiveness in automated systems, computers, and assistive robotics greatly improves
the quality of interaction with humans [1]. For these interactions to be successful it is important that
highly accurate emotion recognition systems exist. Emotions can be detected using the data from
audiovisual channels also known as modalities. In the past decade, research interest has shifted towards
multimodal emotion recognition [2–4] as opposed to unimodal or bimodal emotion recognition.
Researchers [5–10] have shown that the integration of various modalities for affect recognition provides
better accuracy over individual modalities. In addition to detecting emotions from the facial features,
studies [4,11] have identified that the features from hand modality and the body modality, also
contribute significantly during the emotion recognition process. Hence, this research adopts the
multimodal emotion recognition approach and uses three-dimensional data from the visual channel
combined with the audio features. Specifically, the implementation in this research uses features
extracted from the head, face, hand, body, and speech input channels for the multimodal emotion
recognition system.

Firstly, this paper proposes the development of novel features deduced from human behavioral
patterns to recognize emotions. The motivation to use behavioral features for emotion estimation
was drawn from research done by Wallbott [12], which found that body form, movement, gestures
and postures are indicative of specific emotions. A comprehensive survey [13] on emotional bodily
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expression discussed several studies that used behavioral patterns representing emotions. For example,
forward whole body movement shows hot anger and symmetric up and down hand movement shows
joy. Thus, daily gestures such as a head nod, head shake, shoulder shrug, raising eyebrows, and rolling
one’s eyes can be attributed to specific emotions. Very few studies [14–21] have attempted to translate
daily behavioral patterns into behavioral rule-based features. For instance, some of the questions that
can be asked to estimate anger are: (1) Did the person raise both arms above the shoulder? (2) Did
the person frown and clench his teeth? These behavioral patterns can be evaluated to obtain (yes = 1,
no = 0) answers to the rules above and can be converted into a series of binary values. Thus, a binary
feature vector for each modality (head, face, hand, and body) can be constructed and concatenated to
geometric and kinematic features. Therefore, this paper uses the movement of tracked points on face,
head, hand, and body to extract behavioral pattern-based features from behavioral rules to represent
specific emotions. There have been other studies that have examined rule-based feature dynamics,
behavior, and gestures for unimodal emotion recognition [18] and adaptive rule-based facial expression
recognition [19]. The studies have demonstrated unimodal affect recognition by using a limited set
of gesture-based rules and low-level descriptors extracted from various facial expression profiles.
Coulson [20] used computer-generated mannequins from shoulder, hand, and head descriptors and
showed that each posture and movement can be attributed to one of the six basic emotions [21].
The study demonstrated that knowledge-based rules for emotion recognition can be developed using
annotator agreement. Bone et al. [14] have shown the successful use of rule-based framework for
arousal rating. The study focused only on vocal features and proposed using rule-based features as
an alternative to supervised learning. On the contrary, instead of using the behavioral pattern-based
features as an alternative, this research proposes combining the novel features with the geometric and
kinematic features to create a joint feature vector. Furthermore, this research examines whether the
multimodal emotion recognition accuracy improved by using the feature-level fusion of the behavioral
features with the geometric and kinematic features. Finally, this research verifies whether the proposed
feature combination improved the emotion recognition accuracy, on spontaneous emotional displays
instead of posed emotions. This study also evaluates the emotion recognition accuracy on external
datasets to measure the generalizability of the multimodal emotion recognition system. 3D data sets
such as Microsoft Research Cambridge 12 (MSRC-12) [22], UCFKinect [23], and MSR Action 3D [24]
dataset contain annotated human activity data. In this research, the annotated actions were mapped to
one of the six basic emotions using inter-annotator agreement. The multimodal emotion recognition
system implementation was evaluated on the mapped dataset.

This research hypothesizes that the concatenation of three-dimensional geometric, temporal, and
kinematic features with behavioral pattern-based features would improve the precision and recall
rates for multimodal affect recognition. The behavioral features, geometric features, and kinematic 3D
data were captured from head movement, facial expressions, hand gestures, and body posture and
evaluated on spontaneous emotional display. Thus, the contributions of this research are:

(1) Development of human behavioral pattern-based features from face, head, hand, and body for
multimodal emotion recognition.

(2) Using the concatenation of behavioral features and 3D geometric and kinematic features to
augment the multimodal emotion recognition system accuracy using supervised learning technique.

2. Related Work

Researchers have used single modalities such as audio signal [25], facial expressions [26], and
body modality [27] for the recognition of emotions. Subsequent emotion recognition studies examined
bimodal systems that combined face and body modality [28] or face and audio channels [5,6]. In the
last decade emotion recognition research, has evolved from unimodal (face modality only, audio
modality only) or bimodal systems (face and body modality, face and voice modality) into multimodal
systems (three or more combinations of face, head, shoulder, hand, body, voice modality) [2,9,29–33].
The emotion recognition studies have mostly focused on feature extraction from facial geometry or
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movement of tracked features on the body. For instance, [6,10,11,17] have used coordinates of tracked
facial and shoulder points, distance between the facial pair of points to create a feature vector based on
facial geometry. Similarly, [4,28] used the movement of tracked joints on the body to create temporal
feature vectors. Even though the movement-based temporal features were used, the above studies only
tracked features across few consecutive frames and short bursts (under 1 s). On the other hand, this
paper calculates the kinematic features using multiple frames (13 data frames) for the entire duration
of the emotion specific gestures, actions, and facial expressions (average: 3 s).

Kleinsmith and Bianchi-Berthouze [13] indicated that several behavioral science and psychology
studies have shown that specific emotions can be associated with commonly known human behavior,
actions, static poses, body language, body form, hand gestures, and facial expressions. However, very
few automatic emotion recognition studies have attempted to translate these daily behavioral patterns
into behavioral rules and extracted features from these rules. For instance, some of the questions that
can be asked to describe and recognize anger are: (1) Did the person throw a punch? (2) Did the
person shake their head? These behavioral patterns can be collectively treated as behavioral rules
representing a specific emotion [12]. The rules are nothing but the measurements of the coordinates,
angles, speed and displacement of tracked points and can be evaluated to obtain (yes = 1, no = 0)
answers in the form of a series of binary values. Thus, a binary feature vector for each modality
(head, face, hand, and body) can be constructed and combined with geometric and kinematic features.
Therefore, this paper uses the movement of tracked points on the face, head, hand, and body into
behavioral pattern-based features or behavioral rules to represent specific emotions. The motivation
to use features from behavioral patterns for emotion estimation was drawn from behavioral science
research on emotional gesture recognition [18,20,21,34,35] and adaptive rule-based facial expression
recognitions [19]. The studies have demonstrated unimodal affect recognition by using limited set
of gesture-based rules and rules extracted from various facial expression profiles. Coulson [20] used
176 computer generated mannequins from shoulder, hand, and head descriptors and showed that each
posture and movement can be attributed to one of the six basic emotions. Dael et al. [35] developed
the Body Action and Posture Coding System (BAP) as a tool for expressing emotions.

A survey by Kleinsmith and Bianchi-Berthouze [13] contains a list of gestures from various
behavioral studies that have been attributed to specific emotions. The survey identified the potential
to map these emotional behavioral patterns into features and found that very few automatic emotion
recognition studies have examined such features. Hence, this paper translates these behavioral patterns
and cues into features by modality (face, head, hand, and body), for automatic affect recognition.
The affect recognition studies [2,3] have found that many studies have employed supervised learning
techniques for emotion recognition. Researchers have successfully used classification methods such as
Bayesian classifiers [4], Hidden Markov Models (HMM) [15], and SVM [16,17] for affect recognition.
Results in [6,10,11] and the classification techniques discussed in multimodal research surveys [32]
showed that the performance improved in affect recognition by using SVM classifiers. Hence this
paper uses SVM classification for multimodal emotion recognition. Feature-level fusion (also known
as early binding [32]) consists of the extraction of features from various modalities and combining the
features into a joint feature vector.

Feature-level fusion produces good results when the emotional display is tightly coupled and the
sensory information is highly synchronized. Researchers [11,15,36] have used facial and audio data
fusion at the feature level for affect recognition. Hence, this paper uses concatenation of features from
face, hand, head, body, audio, and the behavioral rule-based features to form a joint feature vector for
multimodal emotion recognition system implementation. In recent years, researchers [37–39] have
increasingly used Kinect for emotion recognition studies. Konstantinidis et al. [37] used the sensor for
emotions among elders in assisted living; however, the study evaluated the emotions in controlled
lab conditions. Researchers [38] have proposed deep learning techniques for emotion recognition;
however, the study did not address the absence of features from certain modalities at an instance of
time. Zhang et al. [39] used Kinect 3D data for emotion recognition; however, only facial features
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were used for classifier training. In contrast, this paper makes major advancements from a prior
study [40] that only focused on affect intensity estimation. Furthermore, this work made significant
improvements to the global behavioral rule-based features, calculations of low-level local thresholds
used for evaluation of rules from the raw data and list of actions included in the prior work [29,31,41]
by using spontaneous emotional responses instead of enacted recordings.

Recently, studies [42,43] have examined rule-based emotion recognition from audiovisual data
in the context of fusing outcomes from individual modalities (rule-based decision-level emotion
recognition or late binding). However, the rules were not used to extract features in these studies.
In contrast, this paper examines extracting behavioral features using rules for low-level raw features.
Researchers [44] used a combination of recurrent and convolution neural networks and multiple
kernel learning for audio visual sentiment analysis. However, the study extracted only facial features
from every 10th frame of the visual channel and used a dataset with conversations done while
sitting. In contrast, this paper used actions containing higher degree of movement while standing.
A fuzzy rule-based method [45] was developed to detection emotion polarity. However, the study
only examined text and movie review data. Researchers [46,47] used three-dimensional convolution
network cascaded deep belief networks for emotion recognition from audiovisual streams. However,
the study only extracted facial features and did not include features from hand or body movement.
Although recent research on multimodal emotion recognition is moving towards deep learning, most
of the studies still rely only on facial features from the visual channel. Thus, the overall combination
of features from head, face, hand, and body movement in emotional display is largely unexplored.
The studies from psychology and human behavioral analysis discussed above have identified the
potential emotional cues contained by human behavioral pattern. This study proposed extracting
features based in these emotional behavior patterns using three-dimensional, kinematic, rule-based
features extracted from the tracked points across face, head, hands, body, and audio channels.

3. System Overview

In this research, a multimodal emotion recognition system was developed (Figure 1) using an
infrared sensor from Microsoft called Kinect [37–41]. The 3D data from face, head, hand gestures,
and body movement were used for the visual channel. This research used the openEar toolkit by
Eyben et al. [25] for capturing audio data. The data from the various modalities was combined using
feature-level fusion. The classifiers for the multiple modalities were trained using SVM supervised
learning technique. This research used a data mining tool called Weka [48] for training and evaluating
the multimodal classification process.

The system was implemented using C# programming language (v4.0) [49], Microsoft.
Net framework (v4.0) [50], Kinect software development kit (SDK) (v1.8) [51] and Windows
Presentation Foundation (WPF v4.0) [52] for the user interface. The system contains a module for
capturing continuous 3D data from various audiovisual channels. An important module of the system
was a component called behavioral pattern-based rule evaluation engine (see Section 5.2 for the feature
extraction process). This component measured the 3D coordinates, distance between tracked features,
speed and direction from the continuous stream of facial expressions, hand, head, and body data.
These measurements were then evaluated using behavioral pattern-based rules (also called low-level
descriptors, see Section 5.2).

The development of the behavioral patterns used as rules and the mapping between each rule
and the specific emotion represented by the rule was done based on inter-annotator agreement and
existing studies from behavioral science. Several rules were formulated to check a series of conditions
(comparison with threshold) related to location, movement, speed, and frequency of various features.
Each of these rules represented a commonly known facial expression or gesture such as rolling the
eyes, shoulder shrug, head nod, and raising the arms above shoulder. For instance, the system would
evaluate whether the shoulder moved by distance y in the vertical direction and record the outcome
of the evaluation as a yes (value = 1) or a no (value = 0) to form a feature vector consisting of binary
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feature points. This behavioral rule-based feature was then concatenated with the features extracted
from the audio–video channels to form a joint feature vector. After this step, the system used the
feature for a supervised learning-based classification process implemented using an open-source
machine learning library called EmguCV. The system user interface contains a dropdown field for
annotating the facial expressions, gestures, and postures to a specific emotion class. The system also
provided replay capability for the annotators so that they could review a portion of the video segment.
The annotated data were stored in a format (arff file extension) that was compatible to the WEKA data
mining tool [48].Multimodal Technol. Interact. 2017, 1, 19  5 of 19 
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Figure 1. Implementation of multimodal affect recognition system.

4. Experimental Setup

4.1. Participant Details

The six basic emotions: anger, surprise, disgust, sadness, happiness, and fear were used as the
candidate emotions for the recognition process. Each of the six emotions was portrayed by 15 different
individuals. The age of the participants was between 25 and 45 years. 5 participants were female and
10 participants were male. Five participants were American and 10 were Asian. All the experiments
were conducted in controlled lighting conditions and fully frontal position. The distance between the
sensor and the participant was 1.5 to 4 m.

4.2. Data Collection

Fifteen volunteers were used for spontaneous emotional display in the study. These participants
displayed naturalistic emotions while standing in front of the Kinect sensor [37–41] at 1.5 to 4 m
(Figure 2). The audiovisual color and depth data were used to capture spontaneously expressed
emotions from each of the six basic emotion categories. To aid in the emotional display, the subjects
were given a list of actions and dialogs as a cue. This list of actions was prepared based on ideas
from existing surveys [2,3,13] and inter-annotator agreement. The principal researcher discussed the
emotion evoking topic with the participants for 5 min. The facial expressions, voice, body language,
hand gestures of the participants, and how they reacted during the dialogue was captured using
the sensor. The participants were given freedom to spontaneously change topic, or share stories
and experiences that evoked various basic emotions during the dialogs. Thus, the data captured
spontaneous and natural emotional display even though they were guided by the scripts, primarily
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because the participants had the freedom to improvise. The open-ended discussions on topics of the
participant’s interest allowed the individuals to express their emotions more naturally, without getting
self-conscious about the sensor and the recording process. The participants were shown a video related
to the following topics and asked about their opinion to evoke emotions corresponding to the expected
emotions shown in parenthesis.

• Discussion of the presidential election (Anger, Disgust, Sadness, Happiness)
• Discussion of the NBA finals (Anger, Disgust, Sadness, Happiness)
• Discussion of the NFL Super Bowl (Anger, Disgust, Sadness, Happiness)
• Discussion of Star Wars movie (Anger, Disgust, Sadness, Happiness)
• Reaction to viral cat videos (Happiness)
• Reaction to funny viral videos (Happiness)
• Reaction to disgusting viral videos (Disgust)
• Reaction to viral music videos (Disgust, Happiness, Anger)
• Reaction to videos on violence (Disgust, sad, Anger)
• Reaction to sad news (Sadness, Anger)
• Reaction to shocking news (Sadness, Surprise, Anger)
• Reaction to seeing an insect (Fear, Surprise)
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The participant’s behavior, facial expressions, body movement, hand gestures, and voice were
recorded during the discussion.

4.3. Annotation Process

Five expert annotators from the behavioral science field were asked to label each emotional
action, expressed by the participant, with one of the six basic emotions. The panel of five
annotators was shown the recording and asked to annotate the emotion for each video segment.
The annotators only labeled the high-level emotional actions, speech, and gestures in the video segment.
The underlying measurements of micro-expressions (low-level descriptors), the 3D and kinematic
feature extraction, and the behavioral rules-based feature calculations were the responsibility of the
automated multimodal system’s data capturing module. The emotion recognition system calculated
the frequency of hand movement, facial expressions, body movement, direction of head gesture, and
direction of hand movement at the rate of 13 calculated data frames per second. The sensor frame
rate was 30 frames per second. The average action, expression or gestures lasted for 3 s (based on
readings from the training set). The resulting 90 frames were used to calculate 13 data frames that
contained kinematic feature information such as speed, displacement, direction, and frequency of
actions, expressions, and gestures. Thus, the annotators only had to annotate the video segment with
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an emotion label, while the feature extraction and association with the emotion label was handled
by the emotion recognition system’s data gathering module. The quality of annotation process was
measured using Fleiss kappa value [53] for inter-annotator agreement. To test the effectiveness of
the approach on inter-corpus test data evaluation was done using MSRC-12 dataset, UCFKinect
dataset, and MSR Action 3D dataset. These datasets are not directly annotated with one of the six
basic emotions. The format of the features is also different from the feature definitions of this study.
To overcome this limitation before testing the proposed method against the external datasets, each
activity in the dataset was mapped to an emotion class as a preprocessing step. Five experts from the
field of behavioral science acted as annotators to label each activity with an emotion class. The mapping
of emotions and various facial expressions, gestures, postures, and behavioral patterns is described in
detail in Section 5.

5. Methods

5.1. Three-Dimensional and Kinematic Feature Extraction

Facial features were extracted by the face recognition application programming interface (API)
available in the Kinect SDK [51]. Sixty non-rigid features out of the 121 features were used (Figure 3).
The intuition behind the initial selection of features was that only the features from the expressive part
of the face were considered.
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Figure 3. Tracked features using face tracking API. The 60 features were chosen from the expressive
part of the face.

The 60 non-rigid features included x, y, and z coordinates of the eyes, nose, lips, eyelids, chin,
cheeks, and forehead. In addition to the coordinates, the distance between each pair of features and
the angle made by each pair with the horizontal axis was calculated. The movement of each of these
features was captured for a window of 3 s, which resulted in 39 calculated data frames. The velocity
and displacement of each feature were calculated and used as kinematic features. The features were
stored in a format called arff used by the Weka data mining tool [48].

For tracking the head position and movement, 12 features along the border of the skull, out of
the 121 extracted features, were chosen (Figure 4). The reason for choosing these features was that
they would define the shape of the head as well as capture movements such as a pitch, yaw, roll, nod,
shake, lateral, backward, or forward motion of the head. Additionally, the distance between each pair
of features, the angle with the horizontal, and the movement of features across 90 consecutive frames
were calculated.

In the case of hand gestures, palms, wrist, elbow and shoulder joints of both hands were tracked
resulting in eight features. These features were selected because they capture the vigorous movement of
the arms along all three axes. The distance between each pair of joints, the angle with the horizontal, and
the velocity and displacement of each joint across 90 frames were calculated to create a feature vector.
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Figure 4. Tracked features for head position and movement.

For the body posture, the center of the spine, hip, and left and right hip joints were tracked in
addition to the joints of the hand (Figure 5). The feature vector was constructed using the distance
between pairs of joints, the angle with the horizontal, and the velocity and displacement of each joint
across 90 frames. For the audio modality, the openEar toolkit [25] was used to extract the features and
the pre-built SVM-based classifiers were not used for emotion recognition.
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5.2. Human Behavioral Features

This research developed low-level descriptors to capture daily behavioral patterns such as a head
nod, head shake, shoulder shrug, or raising the arms in the air. The research developed emotion
recognition behavioral pattern-based features from raw 3D geometric and kinematic data. To develop
these behavioral features, five experts were asked to annotate static poses (Figure 6) and video segments
containing gestures, actions, and expressions to a specific emotion class. For each emotion to action
mapping and development of behavioral pattern-based rule, the Fleiss Kappa value [53] was calculated
as a measurement of inter-annotator agreement. The quality of agreement was measured using the
interpretation scale provided by Landis & Koch [54].

Both the motionless body form as well as movement-based spontaneous emotional displays
were used for creating behavioral pattern-based features. The annotators used the video segments
containing emotional actions to create behavioral features by evaluating facial expressions and head,
hand, and body movements. Each movement and pose was mapped to a set of behavioral features
defined using the coordinates, angle, and distance of the features from various modalities. Similarly,
each action, facial expression, and gesture was mapped to a set of behavioral features by calculating
the movement along a certain axis, the frequency of movement, the velocity, and the displacement of
the features discussed earlier. The multimodal emotion recognition system enabled the annotators
to pause, replay, rewind, fast-forward, and play the video segments for detailed evaluation and
labeling. Hence, the annotators could pause the video and evaluate the pose or could replay the
emotional actions for a few seconds before associating the behavioral pattern with a specific emotion.
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The experts could accurately annotate and examine the static poses using the pause and replay features.
This process simplified the annotation process because the annotators did not have to analyze each
individual micro-expression (low-level descriptor) and calculation of each feature associated with
the emotion.
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The feature extraction, measurements (coordinates, angles, distance, and speed), rule evaluation,
and threshold calculations were calculated as described in Section 5.1 and Table 1 during the video
segment playback and the annotators only had to apply the emotion label to the action that was being
examined. Once the annotation was complete, the threshold values for each descriptor were calculated
using the average of each measured angle, distance, velocity, and frequency. The threshold distances
and T angles were calculated for each of the six basic emotions. Measurements were normalized using
the max width and height distances of the Kinect sensor’s field of vision. Different humans have
different heights, sizes, and shapes. Taking the average to calculate thresholds and using normalized
measurements (using screen size) accounted for the variations in shape and size. The feature reduction
was performed using Information Gain and Ranker search method in the Weka tool. Table 1 shows a
list of low-level measurements for computing behavioral pattern-based features. Table 2 contains the
high-level expressions, poses, gestures, and actions associated with specific emotions by the panel of
experts. Please refer to Appendix A for a complete list of low-level descriptors, with the corresponding
threshold values per each modality and emotion combination.

For each action, facial expression, and gesture, the rule evaluation component used the
69 measurements shown in Table 1 and compared these values with the thresholds from Appendix A.
This comparison was performed for each emotional behavioral pattern expressed by the participants.
If the measurement was above a threshold or satisfied a condition, the result of the evaluation was a
yes (value = 1) or a no (value = 0). The outcome of the series of such comparisons was a binary feature
vector of size 69. The computed behavioral feature vector was then fed into the multimodal system for
feature-level fusion with the geometric, 3D, and kinematic features from facial expression, head, hand,
body, and audio channel. Thus, each action in the video segment resulted in a joint feature vector
that was the concatenation of 3D coordinates, distance, velocity, and binary feature points. The list of
high-level actions, facial expressions, gestures [12,13,20,34,55], and the corresponding emotion based
on manual inter-annotator agreement is as follows:
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Table 1. Low-level descriptors for behavioral pattern-based feature extraction.

Angle-, Frequency-, and Distance-Based List of Features

Angle of left elbow = T Shaking head sideways (yaw) frequency
Angle of right elbow = T Head bob (roll) frequency

Angle (left shoulder and arm) = T Body forward movement frequency
Angle (right shoulder and arm) = T Body backward movement frequency

Angle of spine = T (x, y, z axis) Sideways movement frequency
Angle of head = T (x, y, z axis) Wrist movement (x, y, z axis) frequency

Y (wrist)–Y (elbow) Elbow movement (x, y, z axis) frequency
Y (elbow)–Y (shoulder) Hip movement (x, y, z axis) frequency

X (wrist)–X (elbow) Forehead movement (x, y, z axis) frequency
X (elbow)–X (shoulder) Spine tilting (x, y, z axis) frequency

Z (wrist)—Z (elbow) X (shoulder) movement frequency
Z coordinate (elbow)–Z (shoulder) Waving hand frequency
X coordinate (wrist)–X (shoulder) Head nod (pitch) frequency

X (elbow)–X (spine) Eyebrow movement (x, y, z axis) frequency
Y (elbow)–Y (spine) Upper lip movement (x, y, z axis) frequency

Distance between right cheek and lip corner Lower lip movement (x, y, z axis) frequency
Distance between nose tip and upper lip Cheek movement (x, y, z axis) frequency

Distance between corners of lip Lip corner movement (x, y, z axis) frequency
Distance between upper and lower eyelid Distance between eyebrow and eyes
Distance between left cheek and lip corner Distance between upper and lower lip

Distance between nose tip and forehead Distance between left wrist and head top
Distance between upper lip and forehead Distance between right wrist and head top
Distance between left and right eyebrow

Table 2. High-level poses and actions associated with spontaneous emotions.

Emotion Action Fleiss Kappa Agreement Level

Anger

Throwing an object.
Punching.

Holding head in frustration.
Folding hands.

Holding hands on waist.
Moving forward threateningly.

Throwing a fit.
Raising arms in rage.

Moving around aggressively.
Shouting in rage.

Pointing a finger at someone.
Threatening someone.

Scowling.

1
1

0.8
0.6
0.6
0.8
0.8
0.6
0.6
1

0.6
0.8
1

Perfect
Perfect

Substantial
Moderate
Moderate

Substantial
Substantial
Moderate
Moderate

Perfect
Moderate

Substantial
Perfect

Happiness

Jumping for joy.
Fist pumping in joy.

Raising arms in air in happiness.
Laughing.
Smiling.

1
1
1
1
1

Perfect
Perfect
Perfect
Perfect
Perfect

Disgust
Holding nose.

Looking down, expressing disgust.
Moving back in disgust.

1
1

0.6

Perfect
Perfect

Moderate

Sadness

Looking down, leaning against wall.
Looking down with hands on waist.
Looking down with hands folded.

Crying.
Toothache.

Head hurting.

0.8
0.6
0.8
1

0.8
0.8

Substantial
Moderate

Substantial
Perfect

Substantial
Substantial
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Table 2. Cont.

Emotion Action Fleiss Kappa Agreement Level

Surprise

Raising arms in surprise.
Moving back in surprise.

Walking forward and getting startled.
Holding arms near chest in surprise.

Covering mouth with hands.

0.8
0.8
1

0.8
0.8

Substantial
Substantial

Perfect
Substantial
Substantial

Fear

Moving backwards, trying to evade.
Moving sideways.

Looking up and running away.
Getting rid of an insect on shirt.

1
0.8
0.8
0.8

Perfect
Substantial
Substantial
Substantial

Neutral Standing straight with no facial expression. 1 Perfect

For testing the generalizability of the proposed method, the human activity datasets were mapped
to emotion labels using inter-annotator agreement between five experts. The mapping between each
activity from the external datasets and an emotion class along with the inter-annotator ratings are
shown in Table 3 (MSRC-12), Table 4 (UCFKinect), and Table 5 (MSR Action) below:

Table 3. Mapping for MSRC-12.

Action Emotion Fleiss Kappa Agreement Level

Crouch or hide Fear 1 Perfect
Shoot with a pistol Angry 0.8 Substantial

Throw an object Angry 0.8 Substantial
Change weapon Angry 0.2 Slight

Kick to attack an enemy Angry 1 Perfect
Put on night vision goggles Neutral 0.4 Fair

Had enough gesture Angry 0.6 Moderate
Music-based gestures Neutral 0.4 Fair

Table 4. Mapping for UCFKinect.

Action Emotion Fleiss Kappa Agreement Level

Balance, climb ladder, climb up Neutral 1 Perfect
Duck Fear 0.8 Substantial
Hop Surprise 0.6 Moderate
Kick Anger 0.8 Substantial
Leap Surprise 0.6 Moderate

Punch Anger 1 Perfect
Run Fear 0.8 Substantial

Step back Fear 0.8 Substantial
Step back Disgust 0.6 Moderate
Step front Anger 0.6 Moderate
Step left Disgust 0.8 Substantial

Step right Disgust 0.8 Substantial
Turn left, Turn right, Vault Neutral 1 Perfect

Table 5. Mapping for MSRAction.

Action Emotion Fleiss Kappa Agreement Level

Sit down, stand up Neutral 1 Perfect
Hand clapping Happiness 1 Perfect
Hand waving Happiness 0.6 Moderate

Fist pump gesture Happiness 1 Perfect
Boxing Anger 1 Perfect

Toss a paper in frustration Anger 0.8 Substantial
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The MSRC-12, UCFKinect, and MSRAction 3D datasets are intended for human activities and not
specifically for emotion representation. However, this limitation was overcome by mapping the actions
to specific emotions using inter-annotator agreement between five experts. Based on the results of the
mapping, a version of each dataset was created so that it could be tested with the emotion recognition
implementation in this paper. If the dataset did not contain an action representing a specific emotion,
then the actions from the general list of emotional behavioral patterns were included to complete the
dataset for all the six basic emotions.

5.3. Classification Process

Researchers [12,13,20,34,55] have shown that static head, hand, and body positions can be
associated with specific emotions. Hence, this research associates daily human behavioral patterns with
six basic emotions using human annotator agreement. Next, the high-level behavioral patterns were
evaluated as micro-expressions that involved comparison between tracked point coordinates, distance,
and velocity measurements and the threshold values. The behavioral pattern-based features were
developed based on the position of the hands and body posture as well as kinematic movement-based
features such as speed, displacement, and frequency of the tracked points from the head, facial
expressions, hand, and body. This resulted in a behavioral pattern-based binary feature vector
(69 data points). This behavioral pattern-based feature vector computation was then implemented
in the multimodal emotion recognition system and was concatenated with geometric, 3D, kinematic
features using feature-level fusion. The resulting joint feature vector was used to train the multimodal
emotion recognition classifier. The classification process was performed using SVM, which is a
popular supervised learning technique. The data were split into 80% training and 20% test data.
The multimodal classifier was trained using the data obtained from spontaneous emotions and
evaluated using 10-fold-cross validation and the radial basis function as the non-linear kernel function.
The optimal parameters were computed using the GridSearch method and the values (Table 6) for each
modality; the specific classifiers are as follows:

Table 6. SVM parameters for baseline.

Modality C Gamma

Head 1 1/12
Face 1 1/60

Hand 1 1/8
Body 1 1/14

Multimodal 1 0.09
Audio 1 0.009

6. Results and Discussion

Fifteen participants displayed spontaneous emotions while discussing topics of their choice.
The extracted feature vectors were annotated with the emotion class using the action–emotion
mapping based on daily behavioral patterns by a panel of five experts. First, the baseline multimodal
emotion recognition results were obtained using the affect recognition technique described in [17].
The study used 2D geometric features (coordinates and distance) and kinematic features (speed
and displacement). Next, the multimodal emotion recognition results using the proposed method
were measured. These included features extracted from face, head, hand, body, and audio channels.
The feature vector was the concatenation of 3D geometric features (position, distance, and angle
across three dimensions) and kinematic features (speed, displacement across 13 consecutive data
frames) and the behavioral rule-based features (daily human behavioral patterns). The classification
was done using SVM classification. The precision results of the SVM-based multimodal emotion
recognition using the state-of-the-art 2D geometric and kinematic features, the proposed method, and
an evaluation of external datasets are shown in Table 7.



Multimodal Technologies and Interact. 2017, 1, 19 13 of 19

Table 7. Precision comparison for multimodal emotion recognition.

2D Geometric Features Proposed Method MSRC-12 UCF Kinect MSR Action Label Emotion

80.5 86.2 81.7 77.4 84.6 0 Anger
82.8 87.2 77.3 79.8 84.6 1 Happiness
79.5 82 78.9 73.9 75.1 2 Surprise
81.1 88.3 83.1 73.5 80.9 3 Disgust
83.2 85.2 75.3 72.2 76.7 4 Fear
85 84.1 78.4 75.3 80.4 5 Sadness

94.7 96.8 94.6 88.6 88.9 6 Neutral

Table 7 shows that the emotion recognition precision rate increased by an average of 3.28% when
using the proposed method for all emotions as compared to the precision rate obtained using the 2D
geometric and kinematic features. The proposed method was evaluated on three different datasets
(MSRC-12, UCF-Kinect, and MSR Action). The precision rate decreased by an average of 5.78% for the
MSRC-12 dataset, 9.78% for UCF-Kinect, and 5.51% for the MSR-Action dataset, respectively.

Table 8 shows that the emotion recognition recall rate increased by an average of 3.17% when
using the proposed method for all emotions as compared to the recall rate obtained using the 2D
geometric and kinematic features. The proposed method was evaluated on three different datasets
(MSRC-12, UCF-Kinect, and MSR Action). The recall rate decreased by an average of 6% for the
MSRC-12 dataset, 10% for UCF-Kinect, and 5.71% for the MSR Action dataset, respectively.

Table 8. Recall comparison for multimodal emotion recognition.

2D Geometric Features Proposed Method MSRC-12 UCF Kinect MSR Action Label Emotion

80.1 86 78.6 78.4 83.4 0 Anger
80.4 86.3 80.6 72.5 79.8 1 Happiness
80.5 85.2 81.2 79.7 83.4 2 Surprise
79.7 82.4 79.7 79.5 84.8 3 Disgust
84.8 87 80.1 78.3 80.1 4 Fear
88.5 90.9 83.8 75.5 79.9 5 Sadness
92.9 91.3 83.1 73.9 77.7 6 Neutral

Table 9 shows that the emotion recognition F-score increased by an average of 3.18% using
the proposed method for all emotions as compared to the F-score obtained using the 2D geometric
and kinematic features. The proposed method was evaluated on three different datasets (MSRC-12,
UCF-Kinect, and MSR Action). The F-score decreased by an average 5.94% for the MSRC-12 dataset,
10.14% for UCF-Kinect, and 5.68% for the MSR Action dataset, respectively.

Table 9. F-Score comparison for multimodal emotion recognition.

2D Geometric Features Proposed Method MSRC-12 UCF Kinect MSR Action Label Emotion

80.3 86.1 80.1 77.9 84 0 Anger
81.6 86.7 78.9 76 82.1 1 Happiness
80 83.6 80 76.7 79 2 Surprise

80.4 85.2 81.4 76.4 82.8 3 Disgust
84 86.1 77.6 75.1 78.4 4 Fear

86.7 87.4 81 75.4 80.1 5 Sadness
93.8 94 88.5 80.6 82.9 6 Neutral

Figure 7 shows a consistent F-score value greater than 75% for all the emotions (including
neutral) when the proposed method was used on external datasets. The results also indicated that
the concatenation of 3D, kinematic, and human behavioral pattern-based features improved the
multimodal emotion recognition accuracy compared to techniques that use 2D geometric and kinematic
features alone. The F-score was lowest for the UCF-Kinect dataset, which mostly contained complex
facial expressions and fewer emotional displays using overall body movement. Even though the
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accuracy dropped when the proposed method was evaluated on external datasets, the consistent
F-score value (>75%) indicates that the proposed method was robust and generalizable to inter-corpus
test data.Multimodal Technol. Interact. 2017, 1, 19  14 of 19 
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The values in Table 10 along the diagonal represent the recall rate for each emotion. The overall
recall rate was 83.84 (average of recall rate across all emotions) for multimodal emotion recognition
using 2D geometric and kinematic features. Anger (80.1%) was most often misclassified as surprise
(9.6%). Happiness (80.4%) was most often misclassified as anger (9.7%). Surprise (80.5%) was most
often misclassified as happiness (10.8%). Disgust (79.7%) was misclassified as fear (8.9%). Fear (84.8%)
was sometimes misclassified as disgust (6.2%). Sadness (88.5%) was most often misclassified as
neutral (2.2%).

Table 10. Confusion matrix using geometric and kinematic features.

0 1 2 3 4 5 6 Label Emotion

80.1 4.9 9.6 4.8 0.3 0.2 0 0 Anger
9.7 80.4 6 3.6 0.1 0.1 0.1 1 Happiness
7.4 10.8 80.5 0.4 0.2 0.5 0.1 2 Surprise
1 0.6 0.6 79.7 8.9 8.4 0.9 3 Disgust

0.8 0.3 3.1 6.2 84.8 3.3 1.5 4 Fear
0.5 0.5 0.1 3.2 5 88.5 2.2 5 Sadness
0.4 0.1 0.8 0.8 2.6 2.4 92.9 6 Neutral

The values in Table 11 along the diagonal represent the recall rate for each emotion. The overall
recall rate was 87% (average of recall rate across all emotions) for multimodal emotion recognition
using the proposed method. Anger (86%) was most often misclassified as surprise (8.9%). Happiness
(86.3%) was most often misclassified as anger (6.8%). Surprise (85.2%) was most often misclassified
as happiness (9.3%). Disgust (82.4%) was most often misclassified as sadness (8.4%). Fear (87%) was
sometimes misclassified as sadness (3.2%). Sadness (90.9%) was most often misclassified as disgust
(4.5%). Thus, the recall rates for each emotion improved when the joint feature vector of 3D geometric,
kinematic, and behavioral pattern-based features was used. Misclassification was observed among
anger, surprise, and happiness. This can be explained by the fact that the actions and gestures for
anger, surprise, and happiness involve a higher degree of movement, jerks, and intensity. On the other
hand, the misclassifications among disgust, fear, sadness, and neutral were observed because these
emotions are displayed with low-intensity actions, subtle gestures and facial expressions, and less
movement of the body.
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Table 11. Confusion matrix using the proposed method.

0 1 2 3 4 5 6 Label Emotion

86 3.1 8.9 1.9 0.1 0 0 0 Anger
6.8 86.3 6.2 0.6 0 0 0.1 1 Happiness
4.6 9.3 85.2 0.4 0.1 0.4 0.1 2 Surprise
0.9 0.1 0.6 82.4 7.2 8.4 0.4 3 Disgust
0.6 0.3 2.7 5 87 3.2 1.3 4 Fear
0.4 0.1 0 2.8 4.5 90.9 1.3 5 Sadness
0.2 0 0.4 0.6 3.5 4 91.3 6 Neutral

Novel behavioral pattern-based features were extracted from daily facial expressions and gesture
patterns representing emotions. The annotators labeled high-level, commonly known emotional
behaviors with emotion classes that were converted to corresponding low-level descriptor-based
feature calculations. The behavioral pattern-based features were concatenated with 3D geometric
and kinematic features extracted from the face, hands, head, body, and voice. The proposed method
improved the multimodal emotion recognition results when compared to 2D geometric and kinematic
features used in the state-of-the-art emotion recognition studies. To test the generalizability, the
multimodal emotion recognition system was evaluated on spontaneous emotion recognition data and
external datasets such as MSRC-12, MSR Action, and UCF Kinect.

The results showed that the accuracy was not significantly reduced and thus indicated that the
proposed behavioral pattern-based features were robust.

7. Threats to Validity

Even though the number of participants was only 15, the research ensured that the participants
belonged to a diverse demographic in terms of gender, age group, and culture. Many existing studies,
according to the surveys [2,3,9,32], are limited to posed and enacted emotions, whereas this research
uses spontaneous emotional display. The participants chose topics they were passionate about and
engaged in a natural discussion, expressing their opinions and emotions through a range of actions,
expressions, gestures, and dialogue. The gestures, actions, and expressions were mapped to various
emotions for the development of behavioral pattern-based features. This mapping was done using an
expert panel of five human annotators and by using a list of actions from existing behavioral science
research [12,20,34,55]. The diverse group of participants enabled us to evaluate the emotional displays
and behavioral pattern-based features irrespective of the culture, gender, and age group. Finally, this
study mostly focuses on extracting features from behavioral patterns using visual channel data. In the
future, the audio-based emotional patterns should be further explored to see whether the vocal features
and rule-based method proposed in [14] can be combined during the feature-level fusion with the
features in this paper.

8. Conclusions

This research developed behavioral pattern-based features using (1) Static poses for commonly
identified emotional body forms; (2) kinematic data extracted from the facial expressions, hand gestures,
and body movement; and (3) 3D data from infrared sensor depth and skeleton frames. The research
used daily actions, facial expressions, and gestures from existing behavioral science studies. Existing
studies have shown that the common behavioral patterns can be associated with specific emotions.
The study used these lists of actions from the field of behavioral science and psychology and translated
the patterns into a binary feature vector. The spontaneous emotional display from 15 participants was
annotated by a panel of five experts. Each video segment contained natural actions, facial expressions,
and gestures with specific behavioral patterns that could be attributed to one of the six basic emotions.
The study encoded the participant responses into behavioral features using conditional rules that
evaluated measurements such as angle, frequency, speed, displacement, direction, and coordinates.
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The concatenation of behavioral pattern-based features, 3D geometric, and kinematic features was
used to recognize emotions using SVM. A multimodal system implementation that combined these
tightly coupled features was employed to detect emotions using the supervised classification technique.
The precision increased by 3.28% and the recall rate by 3.17% when the 3D geometric, kinematic, and
human behavioral pattern-based features were concatenated at the feature level. The results indicate
that the behavioral pattern-based features can be used in multimodal emotion recognition systems and
the joint feature vector improved the accuracy and generalizability across external datasets developed
from spontaneous and naturalistic emotions. While this study used novel features and spontaneous
emotions, future studies could examine the influence of context on the behavioral pattern-based
features. As a future direction, automatic multimodal emotion recognition using 3D geometric,
kinematic, and behavioral pattern-based features from multi-view data needs further exploration.
The effectiveness of the proposed behavioral pattern-based features in multimodal emotion recognition
using deep learning and convolution neural networks will be examined as a subsequent phase of
the study.

Conflicts of Interest: The author declare no conflict of interest.

Appendix A

Rule Descriptor 0 1 2 3 4 5 6

Units: Angle measurements are in degrees. Distances are in normalized pixels. Frequency of moving head, joints, facial parts is the number of times the
tracked joint or feature point moves along reference x, y, z axis or crosses the axis per video segment.

Angle of left elbow = T 43 172 31 16 32 124 187
Angle of right elbow = T 45 178 33 11 36 121 185
Angle between left shoulder and arm = T 37 93 122 6 212 254 276
Angle between right shoulder and arm = T 39 87 126 7 214 257 271
Angle of spine = T (x, y, z axis) 92, 2, 89 113, 2, 94 101,1,96 105, 2, 93 108, 2, 97 85, 3, 96 92, 1, 91
Angle of head = T (x, y, z axis) 90, 2, 85 92, 3, 114 91, 2, 106 89, 4, 107 91, 2, 102 93, 1, 86 89, 1, 90
Y (wrist)–Y (elbow) 0.12 0.13 0.09 0.12 0.15 0.13 0.16
Y (elbow)–Y(shoulder) 0.07 0.09 0.08 0.10 0.06 0.08 0.07
X (wrist)–X (elbow) 0.6 0.7 0.6 0.5 0.3 0.2 0.2
X (elbow)–X (shoulder) 0.12 0.14 0.16 0.6 0.8 0.6 0.4
Z (wrist)–Z (elbow) 0.15 0.16 0.11 0.7 0. 5 0.7 0. 5
Z co-ordinate (elbow)–Z (shoulder) 0.14 0.17 0.13 0.6 0.6 0.8 0. 7
X co-ordinate (wrist)–X (shoulder) 0.19 0.18 0.16 0.8 0.9 0.6 0.6
Frequency of waving hand 5 3 2 2 2 2 0
Frequency of head nod (pitch) 6 4 2 1 2 1 0
Frequency of shaking head sideways (yaw) 4 3 2 1 2 1 0
Frequency of head bob (roll) 3 3 2 2 2 1 0
Frequency of body forward movement 4 3 2 1 3 1 0
Frequency of body backward movement 4 3 2 1 2 1 0
Frequency of sideways movement 3 3 2 1 2 2 1
Frequency of wrist movement (x, y, z axis) 6,3,3 4,2,3 3,3,2 1,1,1 2,1,1 1,1,2 0,0,1
Frequency of elbow movement (x, y, z axis) 5,2,2 3,3,2 2,3,1 2,1,2 2,1,1 1,1,1 0,0,1
Frequency of hip movement (x, y, z axis) 3,2,1 3,1,1 1,2,1 1,1,2 2,1,2 1,0,1 0,1,1
Frequency of forehead movement (x, y, z axis) 3,2,3 3,3,3 2,3,2 1,1,2 2,2,1 1,1,1 0,0,0
Frequency of spine tilting (x, y, z axis) 3,1,1 3,1,1 2,2,1 1,2,1 3,1,1 1,1,1 0,0,1
Frequency of X (shoulder) movement 3 3 2 1 2 1 0
Distance between left wrist and head top 0.13 0.15 0.08 0.23 0.08 0.36 0.42
Distance between right wrist and head top 0.14 0.18 0.09 0.24 0.07 0.38 0.44
X (elbow)–X (spine) 0.25 0.12 0.14 0.18 0.15 0.07 0.51
Y (elbow)–Y (spine) 0.18 0.19 0.22 0.24 0.21 0.23 0.22
Distance between eyebrow and eyes 0.003 0.002 0.004 0.001 0.005 0.001 0.004
Distance between upper and lower lip 0.005 0.006 0.005 0.003 0.005 0.002 0.002
Distance between nose tip and upper lip 0.001 0.003 0.003 0.002 0.002 0.003 0.001
Distance between corners of lip 0.02 0.04 0.02 0.02 0.03 0.03 0.03
Distance between upper and lower eyelid 0.012 0.015 0.14 0.14 0.13 0.12 0.15
Distance between right cheek and lip corner 0.07 0.08 0.04 0.05 0.04 0.04 0.04
Distance between left cheek and lip corner 0.04 0.06 0.04 0.04 0.04 0.04 0.04
Distance between upper lip and forehead 0.03 0.06 0.05 0.05 0.03 0.05 0.15
Distance between left and right eyebrow 0.02 0.02 0.02 0.03 0.03 0.03 0.03
Distance between nose tip and forehead 0.03 0.05 0.05 0.05 0.03 0.05 0.15
Frequency of movement of lip corners (x, y, z axis) 3, 3, 2 2, 2, 2 2, 3, 1 1, 2, 1 2, 2, 1 1, 2, 1 0, 0, 0
Frequency of cheek movement (x, y, z axis) 3, 2, 2 2, 3, 1 2, 2, 1 2, 2, 1 2, 1, 1 2, 2, 1 0, 0, 0
Frequency of eyebrow movement (x, y, z axis) 2, 3, 2 2, 3, 3 2, 3, 2 1, 2, 2 3, 2, 1 1, 2, 1 0, 0, 0
Frequency of upper lip movement (x, y, z axis) 2, 3, 2 3, 3, 2 2, 2, 2 1, 3, 1 2, 3, 1 1, 2, 1 0, 0, 0
Frequency of lower lip movement (x, y, z axis) 2, 3, 2 2, 3, 2 2, 3, 3 1, 3, 1 2, 2, 1 1, 2, 1 0, 0, 0
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