
Multimodal Technologies 
and Interaction

Article

A Predictive Fingerstroke-Level Model for
Smartwatch Interaction

Shiroq Al-Megren ID

Information Technology Department, King Saud University, Riyadh 12371, Saudi Arabia; salmegren@ksu.edu.sa;
Tel.: +966-11-805-7839

Received: 24 May 2018; Accepted: 25 June 2018; Published: 2 July 2018
����������
�������

Abstract: The keystroke-level model (KLM) is commonly used to predict the time it will take an expert
user to accomplish a task without errors when using an interactive system. The KLM was initially
intended to predict interactions in conventional set-ups, i.e., mouse and keyboard interactions.
However, it has since been adapted to predict interactions with smartphones, in-vehicle information
systems, and natural user interfaces. The simplicity of the KLM and its extensions, along with their
resource- and time-saving capabilities, has driven their adoption. In recent years, the popularity of
smartwatches has grown, introducing new design challenges due to the small touch screens and
bimanual interactions involved, which make current extensions to the KLM unsuitable for modelling
smartwatches. Therefore, it is necessary to study these interfaces and interactions. This paper reports
on three studies performed to modify the original KLM and its extensions for smartwatch interaction.
First, an observational study was conducted to characterise smartwatch interactions. Second, the unit
times for the observed interactions were derived through another study, in which the times required
to perform the relevant physical actions were measured. Finally, a third study was carried out to
validate the model for interactions with the Apple Watch and Samsung Gear S3. The results show
that the new model can accurately predict the performance of smartwatch users with a percentage
error of 12.07%; a value that falls below the acceptable percentage dictated by the original KLM ~21%.

Keywords: keystroke-level model (KLM); fingerstroke-level model (FLM); smartwatch interaction;
predictive model

1. Introduction

Wearable technologies refer to small smart devices that are attached or incorporated into
body-worn accessories or pieces of clothing to provide convenient access to information [1]. Wearables
are often light-weight, accessible when in motion, and facilitates control over data exchange and
communication [2]. This recent trend is not merely perceived as a technological innovation, but it
also holds a fashion component that can influence how and when they are worn [3]. The benefits
of wearable technology can significantly impact societies and businesses due to their support of
applications that promote self-care, activity recognition, and self-quantifying [2,4]. For instance, using
wearables to track convulsive seizures could improve the quality of life of epileptic patients by altering
caregivers [5]. Wearables also promote self-care by monitoring user activity and encouraging healthier
behaviours and habits [6]. Another great benefit of wearable technology is its assistive capabilities
within healthcare establishments, thus improving the success rates of medical procedures and safety of
patients [7]. Within business, wearables can be used to train employees, improve customer satisfaction,
and promote real-time access to information about goods and materials [8].

Among wearable technologies, the smartwatch stands out as being well understood due its
familiarity to a traditional watch. In fact, the last few years have seen an increase in the popularity
of commercial smartwatches. Recent statistics show that the sales of smartwatches have increased
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from approximately 5 million units in 2014 to a staggering 75 million units in 2017 [9]. These numbers,
which are projected to double in 2018, signify a level of smartwatch adoption that heralds smartwatches
as the next dominant computing paradigm. As one of the latest developments in the evolution of
information technology, the smartwatch offers its user a remarkable level of convenience, as it swiftly
and discreetly delivers timely information with minimal interference or intrusion compared with
smartphones and other mobile devices [10–12].

Much like a traditional watch, a smartwatch usually has a touchscreen and side buttons, through
which user interaction is achieved. While these interaction modalities are similar to what is seen on
a smartphone, the smartwatch provides a smaller touchscreen interaction space and requires bimanual
interaction (i.e., the user’s dominant hand is used to asymmetrically interact with the watch strapped to
the non-dominant hand [13]). There has been a wealth of research addressing the potential capabilities
and constraints of smartwatches. Several works have been carried out to gain an understanding of
the use of smartwatches in daily activities (e.g., [12,14–16]), and even more work has investigated
the mechanics of touch interactions on small devices (e.g., [17–19]). The interface design space of
smartwatches has also received its share of research attention (e.g., [20–22]). The usability issues of
smartwatches have recently been examined (e.g., [23,24]), as well as investigations of smartwatch
acceptance (e.g., [25,26]). However, little effort has been made to assess smartwatch users’ performance
a priori to aid in the design of smartwatch applications.

Predictive models are commonly used in human–computer interaction (HCI) to analytically
measure human performance and thus evaluate the usability of low-fidelity prototypes. The Goals,
Operators, Methods, and Selection rules (GOMS) model encompasses a family of techniques that
are used to describe the procedural knowledge that a user must have in order to operate a system,
of which the keystroke-level model (KLM) is one of its simplest forms [27,28]. The KLM numerically
predicts execution times for typical task scenarios in a conventional environment. The KLM was
initially developed to model desktop systems with a mouse and keyboard as input devices, but it
has since been extended to model new user interaction paradigms [27]. Several enhancements to the
KLM have been applied to model touchscreen interactions with smartphones and tablets (e.g., [29,30]).
The KLM has also been extended to in-vehicle information systems (IVISs), in which interaction often
involves rotating knobs and pressing buttons (e.g., [31,32]). More recently, the KLM has been modified
to address the expressive interactions used to engage with natural user interfaces (NUIs) [33]. Such
modifications to the KLM have often proven valuable to the development process, as they reduce the
cost of usability testing and help to identify problems early on.

To support future smartwatch development, this paper presents a pragmatic solution for designing
and assessing smartwatch applications by building upon the well-established original KLM [27].
The main contributions of this paper are threefold. First, a revised KLM for smartwatch interaction,
tentatively named Watch KLM, is introduced based on observations of participants’ interactions
with two types of smartwatches. The new model comprises fourteen operators that are either newly
introduced, inherited, or retained from the original KLM [27]. Second, the unit time for each of
these operators is revised to reflect the particularities of smartwatch interactions due to the smaller
touchscreen and bimanual interaction mode. Third, the revised model’s predictions are realistically
validated by assessing its prediction performance in comparison with observed execution times.
The results validate the model’s ability to accurately assess the performance of smartwatch users with
a small average error.

The remainder of this paper is organised as follows. Section 2 presents the background on the KLM,
introducing the original model and its seminal related publications. Section 3 reviews modifications to
the original KLM across various application domains. Section 4 describes the first experimental study,
which was conducted to elicit revised operators for the modified KLM for smartwatch interaction.
In Section 5, the second study is described, based on which the unit times for the revised operators
are computed. The third study, conducted to validate the revised model for smartwatch interaction
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to assess its efficacy at predicting task execution times, is reported in Section 6. Finally, Section 7
summarises and concludes the paper and briefly discusses future work.

2. Keystroke-Level Model

The KLM is considered to be one of the simpler variants of the GOMS family of techniques [28].
Unlike the other models in this family, the KLM calculates only the time it is expected to take
an expert user to complete a task without errors in a conventional set-up. This calculation is based
on the underlying assumption that the user employs a series of small and independent unit tasks;
this assumption supports the segmentation of larger tasks into manageable units. In the KLM, the unit
tasks are expressed in terms of a set of physical, mental, and system response operations. Each operator
is identified by an alphabetical symbol and is assigned a unit value that is used in the calculation of an
executable task (see Table 1). The KLM comprises six operations:

• The action of pressing a key, i.e., a keystroke, or pressing a button.
• The action of pointing to a target on a display with the mouse.
• The action of moving the hand between the keyboard and mouse or performing any fine hand

adjustment on either device.
• The action of manually drawing a set of straight line segments within a constrained 0.56 cm grid

using the mouse.
• A mental action operation to reflect the time it takes a user to mentally prepare for an action.
• The system response time to a user’s action.

Table 1. KLM operators and unit times in seconds [27]. nD is the number of straight line segments
drawn with a total length of lD.

Type Operator Time (s)

Physical

Keystroke (K) 0.20
Point (P) 1.10
Home (H) 0.40
Draw (D) 0.90nD + 0.16lD

Mental Mental action (M) 1.35

Response System response (R(t)) t

The mental action operator is unobservable but comprises a substantial fraction of a predicted
execution time due to its representation of the time it takes a user to prepare to perform or think about
performing an action. The placement of the mental operator is therefore governed by a set of heuristic
rules that consider cognitive preparation. These rules are as follows:

1. Insert a mental operator in front of every keystroking operator. Also, place a mental operator in
front of every pointing operator used to select a command.

2. Remove any mental operator that appears between two operators anticipated to appear next to
each other.

3. Remove all mental operators except the first that belong to the same cognitive unit, where
a cognitive unit is a premeditated chunk of cognitive activity.

4. Remove all mental operators that precede consecutive terminators.
5. Remove all mental operators that precede terminators of commands.

Once a series of physical and system response operations has been identified for a unit task and
the placement of the mental operations has been determined, the KLM calculates the execution time of
said task by summing the operators’ unit times:

Texecute = TK + TP + TH + TD + TM + TR
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Toperator denotes the total time for a single operation; for example, TP = nPtP, where nP is the
number of pointing actions and tP is the duration of each pointing action.

To illustrate how the KLM’s equation and rules can be applied to predict user performance,
consider the following example of a user renaming a folder to ’test’ on a desktop. The user homes
the hand on the mouse, H; points the mouse cursor at the object, P; double-clicks on the folder icon
to allow for renaming, KK; homes hands on the keyboard, H; keys new name ’test’, KKKK, and
presses Enter, K. The KLM model without M and R (assuming an instantaneous response from the
system) is HPKKHKKKKK. Applying the heuristic rules for placing the M operators results in the
final model MHPKKHMKKKKK, where the first M is the time spent by the user searching for the
folder on the computer display, and the second M is the time the user requires to mentally prepare for
typing. Therefore:

Texecute = 2M + 2H + 1P + 7K = 2× 1.35 + 2× 0.40 + 1× 1.10 + 7× 0.20 = 6s

The performance of the KLM has been validated against observed values to determine its efficacy
in predicting execution times. For this validation, the KLM was used to model typical tasks in various
systems: executive subsystems and text and graphics editors. Expert users were asked to execute task
scenarios to capture observed performances that were logged for comparison. The model’s predictions
were assessed in comparison with the observed values, and the root mean square percentage error
(RMSPE) was calculated to be 21%. This level of accuracy is reported to be the best that can be expected
from the KLM and is comparable to the values of 20–30% obtained with more elaborate models [28].

3. Related Work

Usability is defined as “the extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of use” [34]. There
exist several methodologies that could be utilised to assess the usability of an interactive system
or product. Usability tests can categorically be defined as expert-based (e.g., heuristic evaluation,
cognitive walkthrough, and cognitive modelling) or user-based (e.g., lab-based testing with users)
methods, each of which introduces benefits and limitations to the usability evaluation of an interactive
system. Several advantages of wearable technology were previously recalled, and despite their
potential as the next generation of core products in the IT industry, their commercial adoption has been
slower than anticipated. To support the proliferation of wearables in the future, numerous studies
have been conducted to identify the usability issues that arise from utilising wearable technology [2].

There have been numerous efforts that aimed to address and alleviate the usability issues of
smartwatch usage (e.g., [23,24,35,36]). Usability evaluations were conducted to assess the usability
of smartwatches in an academic setting, where a cheating paradigm was used an example [36].
Quantitative and qualitative measures of effectiveness, efficiency, and usability were used to assess the
ability of student’s to cheat using a smartwatch. The results suggest the promotion of academic
dishonesty when smartwatches are appropriated in academic settings. A design approach for
wrist-worn wearables, which integrates micro-interaction and multi-dimensional graphical user
interfaces, was proposed to offer guidelines to overcomes the challenges of the interaction paradigmatic
shift [23]. The usability of smartwatch operations was qualitatively studied to identify issues that
impact information display, control, learnability, interoperability, and subjective preference [24].
The findings highlighted several limitations of wearable devices, such as its poor display of visually
rich content and its variable interoperability. These findings lend themselves as design suggestions for
user interface form factors that can improve the usability of smartwatches. Despite these efforts, none
attempt to estimate ideal base times that can be utilised for quantifying usability with low-fidelity
prototypes (e.g., KLM [27]).

The emergence of new technologies, such as wearables, introduces new challenges in the
design and development of computer systems. Consequently, a need arises for the revision or
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modification of conventional quality assessment models such as the KLM [27] for the purpose of
usability quantification. Revised predictive models can help to evaluate human performance a priori
and reduce the need for time- and resource-intensive human studies. The original KLM was developed
to predict the performance of desktop users, i.e., in conventional set-ups, but it has continually been
modified to model systems including various computing devices. The modifications made to the
original KLM include the introduction of new operators, the adaptation of original operators or
the adoption of operators from other KLM extensions, and the revision of heuristics or calculations.
The rest of this section briefly reviews the literature on modified KLMs across different computing
devices. Particular attentions is paid to KLM extensions for touch-based smartphones due to the
similarity of their interactions with those of smartwatches.

The earliest efforts made to extend the KLM focused on re-evaluating the original operators
for applicability to new application domains or confirming its validity over time (e.g., [37–44]).
The KLM was revised via a standardised four-dimensional methodology for the evaluation of text
editors by introducing new operators and adapting those of the original model [37]. For measuring
the performance of spreadsheet users, the KLM was first evaluated and later revised to consider
cognition and extend its parameters [38]. Further modifications to the KLM were introduced to model
skilled spreadsheet users’ performance on hierarchical menus; for this purpose, the placement of the
mental action operator was revised to account for skill [40]. For hypertext systems, the operators of
the original KLM were extensively adapted to consider information retrieval with varying levels of
expertise and system complexity [41]. For the assessment of user performance when using a history
tool, the original KLM was extensively updated with ten new operators to address motor, cognitive,
and perceptual operations that are relevant to the context of command specification in such tools [43].
More recently, almost 30 years after its conception, the original model was revised to explore the
naturalistic behaviours through which users interact with today’s computers [44]. Efforts have also
been made to revise the KLM for the purpose of assessing the performance of users who are disabled
(e.g., [39,42]). For instance, the KLM was extended for the performance assessment of users who are
disabled when using a traditional set-up to access web content [42]. The operators in the revised model
were expanded to include specific operations for shortcut access.

There has been a wealth of research on the modification of the KLM for the assessment of
traditional and touchscreen IVIS designs prior to deployment (e.g., [31,32,45–50]). The value of the
KLM in this domain lies in its ability to determine, simply and at a reduced cost, the time required
to complete a task in order to assess the potential distraction it presents while driving. One of the
earliest revisions of the KLM for traditional IVISs (i.e., with interaction via knobs and dials) involved
adapting the model for the destination entry and retrieval tasks [49]. The original keystroke operation
was extensively decomposed into finer, key-specific operations to increase the specificity of the model.
To ensure that an IVIS is compliant with the 15 s rule for safe driving, a revised model was derived
from the KLM that also considers adjustments for age [46]. The performance of a slightly revised
KLM for IVIS designs was evaluated using an occlusion method that simulates driving behaviour
(i.e., glancing between the road and the IVIS) for the purpose of determining domain-specific metrics
and ensuring the observation of standards [31,47]. The performance of the modified model proved
adequate, with significant correlations and low error rates. To support the creation of automotive
interfaces, a predictive tangible prototyping tool (MI-AUI) was developed in which the unit times
of operations are modified from the original KLM and used to estimate task completion time [48].
More recently, a revised version of the KLM [46] was further adapted for touch-based IVIS design by
extending the considered set of operations to include gestures such as scrolling and dragging [50].

A large number of the studies concerned with extending the KLM to smartphone interactions
consider its adaptation to text entry methods and predictive text (e.g., [51–55]). One of the earliest
KLM extensions for text entry involved revising the original model for three text entry methods
on a smartphone’s 9-key keyboard [51]. The revised model was used to predict typing speeds
considering various methods of input. Another modification to the KLM utilised the adapted
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operations, Fitts’ law, and a Chinese language model to predict user performance with two types
of input on a smartphone [52]. The KLM was also extended to measure multi-finger touchscreen
keystrokes for the purpose of representing 1Line, a text entry method for Chinese text input [53].
Revisions to the KLM for text entry have not only been limited to key input; another new model
investigated the feasibility of a speech-based interface design for text messages [56]. The evaluations
conducted to determine the effectiveness of the design choices indicated the usefulness of speech input.
Modifications to the original KLM for smartphone interaction beyond the umbrella of text entry have
also been considered. One of the earliest models to comprehensively consider key-based smartphones
was the Mobile KLM, in which new operations were introduced to account for interactions with
key-based smartphones [29]. This model considered interactions on and with the smartphone, e.g., key
presses and gestures. The unit times were also analysed for each of the new and adapted operations.
This model was later refined to consider near-field communication (NFC) and dynamic interfaces [57].

Over the past decade, touch-based smartphones have almost entirely replaced traditional
smartphones, thus necessitating revised extensions to the KLM to properly assess this new paradigm
of human interaction. While smartphones are dissimilar in size to smartwatches, the touch-based
interactions with both types of devices are somewhat similar. One of the earliest proposed variants
of the KLM for touch-based smartphone interactions considers stylus input [58]. In the new model,
the generality of the mental action operations in the original KLM is reassessed, and the corresponding
operator is split into five new mental operators for task initialisation, decision making, information
retrieval, finding information and verifying input. The homing operator distinguishes between homing
a stylus to a certain location and homing a finger. Other physical operations include tapping,
picking up the stylus, opening a hidden keyboard, rotating the smartphone, pressing a side key,
and plugging/unplugging a device to/from the smartphone. The proposed model also introduces
the concept of an operator block (OB) to indicate a sequence of operations that are likely to be used
together with high repeatability.

The touch-level model (TLM) is a revised version of the original KLM that incorporates
interactions with modern touch-based devices, such as smartphones [59]. The new model retains
several operators from the original KLM, namely, keystroking, homing, mental action, and response
time, as they remain relevant for touch input. The rest of the KLM operators were either considered
inapplicable to the context or retained within other operations. Several operators were also inherited
or adapted from the Mobile KLM, including initial action and distraction [29]. Numerous new
operators were also proposed to allow the new model to account for touchscreen interactions and
gestures. These operators include gesturing, pinching, zooming, tapping, swiping, tilting, rotating,
and dragging. While the model has the potential to be used for benchmarking touchscreen interactions
on a smartphones, the new operators currently have no baseline unit values and are yet to be validated.
Three of the proposed operations in TLM (tap, swipe, and zoom) were also reflected in a new model
that modifies KLM for touch-based tablets and smartphones [60]. Fitts’ law, a descriptive model that
predicts that time it will take for a user to point to a target, was utilised in combination with this model
to determine the unit execution times for each of the proposed operations using custom prototypes.
Unit times were suggested for short swipes (0.07 s), zooming (0.2 s), and tapping on an icon from
a home position (0.08 s). More accurate estimates are possible with the proposed predictive equations.

The fingerstroke-level model (FLM) is a revised version of the KLM for the assessment of
mobile-based game applications on touch-based smartphones [61]. The proposed model adapts
several operators from the original model for application to touch-based interactions, including
tapping (adapted from keystroking), pointing, and dragging (adapted from drawing). The FLM uses the
original mental action and response time operators from the original KLM [27] and introduces a new
flicking operator. For each of the new and adapted operators, unit times were determined through
an experimental study to ensure accuracy with respect to touch interactions. Regression models were
also devised for four of the operators (tapping, pointing, dragging, and flicking). The validity of the
model for estimating execution times for mobile gaming was verified in an experimental scenario,
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in which its predictions were more accurate than those of the original KLM. An extension to the FLM,
the Blind FLM, was later proposed for actions performed by smartphone users who are blind [62].
This model was similarly validated, resulting in a low root mean square error of 2.36.

Of the four models adapted from the KLM for touch-based interaction, the FLM [61] and the work
of El Batran et al. [60] include unit times for each of the proposed operators. The FLM was the only
model validated in experimental studies, in which it was found to be effective for modelling mobile
gaming applications. Table 2 summarises the operators of the revised KLM models for touch-based
interaction in relation to the original KLM. The FLM, the TLM, and El Batran’s model share tapping,
mental action, and dragging with the original KLM. Swiping is similarly shared across these three adapted
models but not with the original KLM. Tapping appears in all four models and was arguably adapted
from the original keystroking operator. While the TLM comprehensively covers all possible touchscreen
interactions, it lacks unit times and remains to be validated. For this reason, the revised KLM for
smartwatch interaction will be discussed in relation to the FLM in the following sections.

Table 2. Revised versions of the KLM for touch-based smartphones. The models are presented in
relation to the original KLM [27]. It should be noted that Li et al. [58] revised model considers the use
of a stylus for interaction.

KLM Li et al. † [58] TLM [59] El Batran et al. [60] FLM [61]

Keystroke
Tap Tap Tap Tap
Press a key on the side Keystroke
Press and hold

Point × × × Point

Home Home stylus Home × ×
Home finger

Draw × Drag Swipelong Drag

Mental action

Mentally initiate a task Mental action × Mental action
Mentally decide or choose
Mentally retrieve
Mentally find
Mentally verify

System response × × × System response

New Operations

Flip or slip keyboard × × ×
Pick up stylus × × ×
Rotate phone Tilt × ×
Plug/unplug × × ×
× Swipe Swipeshort Flick
× Rotate × ×
× Initial action × ×
× Gesture × ×
× Distraction × ×
× Pinch × ×
× Zoom Zoom ×

4. Study 1: Operator Extraction for Smartwatch Interaction

An observational study was conducted for the purpose of identifying the range of interactions
or gestures that people perform when interacting with a smartwatch. Therefore, the main objective of
this first study was to determine the physical operators that can potentially compose the execution of
a task on a smartwatch. Prior to the study, a web-based questionnaire was distributed to identify the
smartwatches and first- or third-party applications commonly used in the community. The questionnaire
received 73 respondents, of whom 48 were female and 25 were male. The respondents had an average
age of 28.4 years, with a standard deviation of 6.2 years. The majority of the participants (64%) were
frequent users of smartwatches, with an average of 9.2 h of daily utilisation. The participants declared
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over 22.7 h of average weekly use. The Apple Watch (watchOS) and Samsung Gear (Tizen OS) were the
two most regularly used smartwatches among 78% of the participants. Other smartwatches mentioned
by the other participants included Pebble, Fitbit, and LG Watch. Approximately 8% of the respondents
reported that they were familiar with more than one smartwatch. First-party applications, with a 79%
utilisation rate, were more commonly utilised than third-party applications. Message notification
applications were the most commonly utilised first-party application type, with utilisation rate of 86%,
followed by built-in activity and health applications and, less frequently, by virtual assistants (e.g., Siri
or S Voice). Notable classes of third-party applications included social media (e.g., WhatsApp and
Twitter), health and exercise (e.g., Nike Plus, Runtastic, and Endomondo), and news (e.g., Flipboard
and BBC). The analysed data were used to guide the selection of smartwatches and applications to be
considered throughout this paper.

4.1. Methodology

4.1.1. Participants

Twenty-two participants (16 female and 6 male) were recruited for the observation of smartwatch
interactions. The participants were recruited via social media, advertisements on university campuses,
and local activity websites. The average age of the participants was 24.2 years, with a standard
deviation of 3.4 years. All participants used their smartwatches regularly in their daily lives. Twenty
of the participants were right-handed, two were left-handed, and all wore their smartwatches on their
non-dominant hand. All participants owned smartwatches; 17 participants had an Apple Watch, 4 had
a Samsung Gear, and 1 participant owned both and ended up being observed using the Samsung Gear
smartwatch. Table 3 further specifies the distribution of the participants in terms of the watch type and
screen dimensions of the smartwatch used. This variety of smartwatches was welcomed to encompass
all possible interactions with the predominantly used smartwatches in the community. All participants
used their smartwatches on a daily basis, with an average daily use of 8.4 h. All participation was
voluntary, and each participant was compensated with a gift voucher for their time.

Table 3. Participant distribution across smartwatches in terms or smartwatch type and screen dimensions.

Smartwatch Participants Screen Dimensions

Apple Watch Series 1 11 38.6 × 33.3 mm
Apple Watch Series 2 3 38.6 × 33.3 mm
Apple Watch Series 2 3 42.5 × 36.4 mm

Samsung Gear S2 2 42.3 × 49.8 mm
Samsung Gear S3 3 42.9 × 44.6 mm

4.1.2. Materials

Two main types of smartwatches were used by the participants in this study: Apple Watch and
Samsung Gear. These two smartwatch types were reported to be the most commonly used in the
community based on the on-line questionnaire. There were three variants of the Apple Watch and
two of the Samsung Gear in terms of the style and screen dimensions (see Table 3). The Apple Watch
has a rectangular watch face with two buttons on the side: crown and side button. The Samsung
Gear has a circular watch face and similarly has two side buttons and a rotating bezel. Two cameras
were used to record the participants’ interactions with their smartwatches. One camera (SJ4000 Sports
Action DV 12MP) was strapped to each participant’s shoulder to provide a rough approximation of
the participant’s view of the smartwatch [15]. The second camera (Canon PowerShot SX60 16.1MP)
was portable to allow the observer to monitor the behaviour of the participants as they moved
about the study room. Since the goal of this first study was to analyse the participants’ smartwatch
interactions while preserving a degree of ecological validity, the procedure and tasks in this first study
were uncontrolled.
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4.1.3. Procedure

The observation sessions were held in a quiet room and lasted approximately 19 min. Each session
was held with one participant at a time. Each session began with welcoming the participant to the
study. The participant was then introduced to the general research objective. An information sheet
was presented to the participant, which provided further details regarding the purpose of the study
and the information to be collected. The participant was then prompted for any questions regarding
the study. A consent form was later presented to be signed. The shoulder camera was strapped to
the participant’s shoulder on the same side as the non-dominant hand. The placement of the camera
was adjusted to ensure a clear view of the smartwatch by asking the participant to perform a series of
interactions. The participant was then asked to use the watch as normal, whether standing, sitting,
or walking around the study room. All sessions were video recorded. The session was finally closed
by thanking the participant and providing compensation for participating.

4.1.4. Data Analysis

The analysis of the video data began with reviewing the videos and extracting clips that involved
any form of smartwatch interaction from the two captured views (shoulder camera and portable
camera). The video recordings were then coded using the Behavioral Observation Research Interactive
Software (BORIS) [63]. After this, the physical interactions were sorted into three main categories:

• Touchscreen interactions: these are all interactions performed on the touch-sensitive watch face.
• Device interactions: this category includes all interactions performed on the side buttons of the

smartwatch or bezel. Both observed smartwatch types had two buttons on the side, and the
Samsung Gear had a rotating bezel.

• Gestures: this category includes all interactions performed by the participants that do not directly
involve touch or button actions with the smartwatch. The category also involves actions around
the smartwatch.

4.2. Findings

The average session time was 18.27 min, with a standard deviation of 2.64 min. On average,
each video contained 63.59 actions, with a standard deviations of 7.2 actions. The total number of
actions analysed from all participants was 1399. Of those actions, 67% were touchscreen interactions,
29% were device interactions, and 4% were gestures (see Figure 1). The majority of the actions were
observed from the participants for both smartwatches, the Apple Watch and the Samsung Gear. Table 4
summarises the actions observed in relation to the original operators of the KLM [27] and the FLM [61].
The revised KLM for smartwatch interaction is kept as general as possible to ensure that the operators
can provide accurate estimates when used to model most other types of smartwatches. The rest of
this section describes the differences and similarities between the revised KLM for smartwatches,
the original KLM [27] (see Section 2), and the FLM (see Table 2) [61].

4.2.1. Adapted Operators

Tap This action was the most commonly observed action in the study. Tapping on the watch
face is used to initiate an action or make a selection from a set of options. This action is performed
using one or two fingers and most commonly using either the index finger of the dominant hand
or the index and middle fingers, in the case of two-finger tapping. Several participants were
observed to use their thumbs for tapping operations. For instance, to open an app on either the
Apple Watch or the Samsung Gear, a participant would tap on the application’s icon to open it.
The hand postures when tapping on the screen varied among the participants. In previous work,
these postures have been classified as no-support (NS), thumb-support (TS), index-finger-support (IS),
and thumb-and-middle-finger-support (TMS) postures [15,64]. NS and TS postures were the most
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commonly observed in this study. In relation to the original KLM [27] and the FLM [61], tapping
corresponds well to the keystroking and tapping operators, respectively.

(a) (b)

Figure 1. Some of the physical operations performed on the Apple Watch and Samsung Gear.
(a) Touchscreen interactions [left to right, top to bottom]: tap, drag, swipe, and tap-and-hold; (b) Button
and bezel interactions [top to bottom]: turn button, press button, and turn bezel.

Table 4. Observed operators for the smartwatch-extended KLM in relation to the original KLM [27]
and the FLM [61].

Operator Description KLM Comparison FLM Comparison

Touchscreen Interactions

Tap A tap on some area of the touchscreen with one or
two fingers to initiate an action or make a selection. Keystroke Tap

Double tap A double tap on some area of the touchscreen with
one or two fingers to initiate an action. Keystroke×2 Tap×2

Tap-and-hold A long, firm press on the touchscreen to activate
an action or command or to change modes. Not applicable Not applicable

Drag A gesture that involves pressing on an on-screen target
and then moving from one target or view to another. Draw Drag

Swipe A gesture that is faster than a drag and typically has no
on-screen target. Not applicable Flick

Device Interactions

Press A press of a button on the side of the smartwatch. Keystroke Not applicable

Double press A double press on a side button. Keystroke×2 Not applicable

Press-and-hold A press of a side button followed by a hold. Not applicable Not applicable

Turn
A turn or rotation of a dial on the side of
the smartwatch. Not applicable Not applicable

A turn or rotation of a dial around the smartwatch face. Not applicable Not applicable

Gestures

Initial action
A gesture to initiate an action with the smartwatch.
It requires the user’s arm to move such that the watch
face is facing upwards.

Not applicable Not applicable

Home

The homing of the hand from the initial action to the
smartwatch. Home Not applicable

The homing of the hand and fingers from the
smartwatch face to a button or vice versa. Home Not applicable

Gesture Any other gesture supported by the smartwatch device. Not applicable Not applicable

Mental and System Operations

Mental action The mental time required to prepare for an action. Mental action Mental action

System response The time required for the smartwatch to react to an action. System response System response
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Double Tap Several smartwatch interactions require the user to double tap on the touchscreen
using the index finger, or, less frequently, the thumb, to initiate an action. This action is supported
by both the Apple Watch and Samsung Gear smartwatches. On the Samsung Gear, double tapping
with a single finger was used by one of the participants to zoom in on a map. In the case of the Apple
Watch, zooming was achieved via two-finger double tap. Similar to tapping, this action is analogous to
performing two consecutive keystroke actions in the original KLM [27] or two consecutive taps in the
FLM [61] using one or two fingers.

Drag This action is performed by dragging an on-screen target from one point to another. The act
of dragging was observed to be either bounded or unbounded. A bounded action, e.g., turning on
the reserve battery on the Apple Watch, requires the vertical or horizontal movement of a target
within a control element. By contrast, an unbounded drag has two defined end points, namely,
the starting position and the target, but the movement is not constrained by any control element.
For instance, on the Samsung Gear, the icon for an application can be moved from one position to
another without any constraints. In relation to the original KLM, this action is somewhat similar to the
drawing operation [27]. The dragging action is one of the operations considered in the FLM, where it is
defined as the act of moving an object on the touch screen [61]. The hand posture typically associated
with this action was the TS posture.

Swipe The second most commonly observed touchscreen interaction was a swiping action, which
is a faster gesture than a drag and is typically not associated with an on-screen target. The participants
were typically observed to use this gesture to navigate options or panels on the Apple Watch and
Samsung Gear. Unlike the drag action, the swiping action was most often observed to be associated
with the NS or TS hand posture. In relation to the FLM, this action is similar to the flicking operation,
which is defined as dragging as quickly and over as short a distance as possible [61]. Swipe operations
are not analogous to any of the original operators of the KLM [27].

Press The action of clicking on a side button on a smartwatch is referred to here as a press. Of the
29% of the observed smartwatch interactions that were physical device interactions, pressing a side
button was the most common. The participants were commonly observed to perform this action with
the index finger of the dominant hand while using the thumb to support the free hand (akin to what
was observed for tapping interactions [15,64]). For example, a participant with a Samsung Gear S3
watch regularly used this action to backtrack to a previous state. In relation to the original KLM,
this action corresponds very well to the keystroke operator [27]. Since the FLM considers only touch
interaction, none of its operators is analogous to the press action [61].

Double Press Several of the observed smartwatch interactions required the user to double press
on a side button to perform an action. This action was not as common as the press operation and was
only observed from some of the participants. This is expected, since the operations associated with
this action are limited. On the Apple Watch, one participant was observed to double press to view
Apple Pay. Similar to the press operation, a double press is analogous to performing two consecutive
keystroke actions in the original KLM [27].

Home A homing gesture is one of two types of actions that constitute the act of homing. The first
often followed the initial action gesture, in which a participant would bring the non-dominant arm
with the smartwatch closer to perform an action, and was performed to home the dominant hand
to the smartwatch. The second class of homing actions encompasses the micro-actions performed
to home the hand and fingers from the watch face to the buttons or vice versa. Actions of the latter
type were observed more regularly as the participants interacted with their smartwatches. Actions
of the former type were observed not only following initial action gestures but also when bringing
the arms closer together for interaction. For instance, one of the participants was sitting down with
both arms on the desk and would regularly bring the dominant hand close to the watch when taking
breaks from navigating the smartwatch. Both gestures are analogous to the homing operator in the
original KLM [27]. The homing operator was considered to be of less use in the FLM within the context
of mobile gaming [61].
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4.2.2. New Operators

Tap and Hold The tap-and-hold action is often referred to as a force touch on the Apple Watch
and a press on the Samsung Gear. This operation is initiated by a tap that is followed by a variable hold
time that depends on the action being activated. Tap-and-hold actions were observed to be performed
a few times using the index finger or thumb by the majority of the participants. For instance, on both
the Samsung Gear and the Apple Watch, the participants tapped and held on the application view
display to rearrange applications. Similar to what has been reported above for the tap and double tap
operations, NS and TS postures were observed for most participants. The tap-and-hold action is not
applicable in either the original KLM [27] or the FLM [61].

Press and Hold This action constitutes two discrete operations: a press operation (as previously
described) followed by a variable hold time. The hold time depends on the action being initiated.
The measured frequency of this action was relatively low, with only nine observed instances.
An example of the press-and-hold action was observed when one of the participants performed
this operation to use Siri on the Apple Watch. Similar to the main posture identified for the press
action, the support of the thumb was often observed when performing the press-and-hold action. This
operation has no relation to the operators of the original KLM [27] or the FLM [61].

Turn On both the Apple Watch and the Samsung Gear, the turning operation entails the rotation
of a dial mechanism either clockwise or counter-clockwise to navigate options. In the case of the Apple
Watch, a turning operation is performed by rotating one of the side buttons (the digital crown button).
By contrast, the Samsung Gear supports the rotation of the bezel surrounding the watch face. Both
types of turning operations were observed in this study. However, the frequency of bezel rotations
was much higher than that of crown rotations. The most commonly observed hand posture for a bezel
turn involved the placement of the index finger and thumb on opposite sides. Only two participants
were witnessed to rotate the bezel with only the index finger. Crown rotation was similarly observed
using one or two fingers. The turning operation was not previously considered in either the original
KLM [27] or the FLM [61]. However, a turning operator has previously been utilised to represent
operations on physical dials in IVISs (e.g., [32,48]).

Initial action In the original KLM, it is assumed that the user is positioned in front of the desktop
with both hands on the keyboard and mouse [27]. The same assumption is carried over to the FLM,
where it is assumed that the user is holding the smartphone horizontally with one hand and has
positioned the other hand next to the phone [61]. The smartwatch scenario introduces a different
setting in which the observed participants must perform an initiating action prior to performing a task.
This initial action was similar for both the Samsung Gear and the Apple Watch: the participant was
required to rotate his/her arm and bring it closer at chest level to essentially wake up the device from
sleep mode before proceeding with an action. This initial action was similar to the of the revised
Mobile KLM for mobile phone interaction [29].

Gesture A silencing gesture is supported by both the Samsung Gear and the Apple Watch. In such
a gesture, the smartwatch user covers the watch face to silence the device or put it to sleep. This action
was only observed to be performed by two of the participants when a phone call was received and
the dominant hand was used to cover the watch face. Although no other gestures were witnessed or
supported for interaction with the smartwatch devices included in this study, potential extensions to
these devices based on their already built-in capabilities (e.g., accelerometer and gyroscope) necessitate
their inclusion in the model. While gestures are not considered in either the original KLM [27] or
the FLM [61], this gesture operator is similar to that of the revised Mobile KLM for mobile phone
interaction [29].

4.2.3. Retained Operators

Mental action The mental act operation refers to the fact that experienced users will often pause
for approximately one second while performing routine actions in order to remember, find, or process
something prior to executing a physical action [65]. This operator is retained in its original form from
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the original KLM [27]. However, since new operators have been observed and introduced into the
revised model, the original KLM mental heuristics are modified as follows:

1. Insert a mental operator in front of every tap, press, drag, swipe, turn, or gesture operator. Also,
place a mental operator in front of of every compound operator, including double tap, tap-and-hold,
press-and-hold, and double press.

2. Remove all mental operators that appear between two operators anticipated to appear next to
each other.

3. Remove all mental operators except the first that belong to the same cognitive unit, where
a cognitive unit is a premeditated chunk of cognitive activity.

4. Remove all mental operators that precede redundant terminators.
5. Emphasise the number of mental operators more than the placement of those operators [29].

System response This operator is adapted from the original KLM to represent the time it takes for
the system to respond to a user’s action [27]. This time is system dependent and is arguably irrelevant
given the relevant technological advancements. According to the observations made in this study,
a smartwatch’s response to a user action is typically instantaneous, and thus, the unit time value of
this operator is arguably negligible. Nevertheless, this operator is maintained in the revised KLM for
smartwatch interaction to account for different devices and software.

5. Study 2: Operators’ Unit Times

For the revised KLM for smartwatch interaction to be used in practice to predict the time it will
take a user to complete a task, the unit time for each of the identified operators must be determined.
Therefore, the main objective of this study was to determine the time estimate for each physical
operator identified in the previous section for smartwatch interaction.

5.1. Methodology

5.1.1. Participants

To determine the operators’ unit times for the modified smartwatch KLM, thirty participants
(16 female and 14 male) were recruited for this experiment. The study was advertised via social
media, board announcements around campus, and local activity websites (e.g., local WhatsApp
groups). The participants had an average age of 25.9 years, with a standard deviation of 6.05 years.
All participants owned an Apple Watch, which they regularly used in their daily lives, with an average
daily use of 6.1 h and 1.9 years of overall experience. The recruited participants were all right-handed
and wore their smartwatches on the left hand (i.e., the non-dominant hand). Of the thirty participants,
only two had taken part in the previous study. Participation was voluntary, and each participant was
compensated with a gift voucher for participating in the experiment.

5.1.2. Materials

As seen from the questionnaire issued prior to the first study (see Section 4), the respondents
attested to the dominance of the Apple Watch as the most common smartwatch. Of the 73 respondents,
69% owned an Apple Watch and used it on a regular basis. For this reason, the Apple Watch was
chosen for use in this study over the other reported smartwatches (e.g., Samsung Gear, Pebble, Fitbit,
and LG Watch). While each participant owned his/her own Apple Watch, each participant used
the same smartwatch in this experiment to ensure that the initial states were uniform across all
participants. The smartwatch used in this study was an Apple Watch Series 1 with screen dimensions
of 38.6 × 33.33 mm. The participants’ interactions were captured using video cameras and a custom
application developed for the Apple Watch. Similar to study 1, two cameras (an SJ4000 Sports Action
DV 12MP and a Canon PowerShot SX60 16.1MP) were used to record the interactions; the SJ400
was strapped to the participant’s shoulder, and the Canon PowerShot was positioned with a direct
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view of the participant and smartwatch. A custom application was also used to isolate interactions
and eliminate ambiguity. Of the 14 operators identified for smartwatch interactions (see Table 4),
the first 12 were measured in this study (see Table 4); the mental action and system response operations
are unchanged from the original KLM [27]. In total, there were 22 input tasks that spanned the
12 operations to be measured. The basic inputs for each of the 12 operators were organised into
8 groups of interactions as follows:

• Tap group: This group include the tap, double tap, and tap-and-hold operations. In the custom
application, a circular target size of 75 px was set, following the Apple Watch human interface
guidelines [66]. Tap-and-hold actions were captured without a target, as is typically the case when
this action is executed in a natural setting.

• Drag: The drag operation was captured in five directions: left, right, up, down, and diagonal.
In the custom application, these actions were captured with a bounded control for each of the
four directions.

• Swipe: Similarly to drag, this operation was logged in five directions: left, right, up, down, and
diagonal. However, swipe actions are unbounded, and in the custom application, they were
captured for each of the four directions by asking the participants to navigate options vertically
and horizontally.

• Button press group: This group of operations includes the press, double press, and press-and-hold
operations that are performed using the side buttons of the Apple Watch.

• Button turn: Similarly to the swipe action, this operation was captured in the custom application
by asking the participants to navigate options vertically by rotating the digital crown upwards
and downwards in approximately 18-degree increments.

• Initial action: This action was captured on the video feed when the study moderator asked the
participant to relax and then bring up the non-dominant arm for smartwatch interaction.

• Home group: This group includes micro-homing actions between the side buttons and the touch
screen as well as the act of homing the dominant hand after the initial action of bringing the
non-dominant arm closer.

• Silencing gesture: To induce the silencing gesture, the moderator initiated a phone call with the
study’s Apple Watch. The time it took to perform this action was captured via the video feed.

5.1.3. Procedure

The procedure took approximately 22.27 min and was held in a quiet room. Each session began
with welcoming the participant to the study, followed by an introduction to the overall objective of the
study. An information sheet was presented to the participants informing them of the particularities
of the study and prompting any questions. The consent form was then signed by all participants.
The study’s smartwatch was placed on the participant’s non-dominant hand, and the participant
was asked to adjust its placement on the wrist to ensure user comfort. The shoulder camera was
strapped to the participant’s shoulder on the non-dominant side, which, in this case, was the left
shoulder for all participants. Adjustments were made to the placement to ensure comfort and a clear
view of the smartwatch. The other camera was adjusted to have a view of the participant standing
or sitting and his/her interactions with the smartwatch. A brief training session preceded the input
tasks, in which the participant was asked to perform all 12 operations using the custom application.
A within-subject design approach was adopted for this experiment, with all operations performed by
each participant. The input tasks were randomly ordered for each participant. Each participant was
asked to complete the 22 input tasks covering the 12 operations, with three trials for each of the input
tasks. The participants were not asked to use any specific hand posture to ensure that their behaviour
was as natural as possible. Each session was finally closed by thanking the participant and providing
compensation for participating.
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5.1.4. Data Analysis

The majority of the unit times were captured automatically using the custom application.
These included the times for the following operators: tap, double tap, tap-and-hold, drag, swipe, press,
press-and-hold, double press, and button turn. In the custom application, the unit time for each operation
was computed from the moment of initiation (i.e., the placement of the finger on the touchscreen or
button) to the completion of the input task. The unit times for the remaining interactions, categorised
as gestures in the previous study, were solely extracted from the video feed. The video data were
analysed by reviewing the feed and separating the extracted clips into the expected 12 operations
performed by the participants with the Apple Watch. These actions were the initial action, homing, and
the silencing gesture. Manual coding of the start and end times of each gesture action was completed
using BORIS [63].

5.2. Findings

The findings from this study are the average time taken by a smartwatch user to complete each of
the identified smartwatch operations (see Figure 1 and Table 4) in the series of input tasks. All 1980
trials (22 × 3 × 30) were successfully completed. This excludes the 22 trials that were performed for
training purposes. Table 5 summarises the time estimates for the 12 physical operations for smartwatch
interaction. The differences among the swipe and drag operations in different directions were minimal,
and thus, a single value for each operation is presented in the table. The unit times for double tap
and double press confirm a carry-over effect from the first tap or press, respectively. The unit time for
the mental action operator is adopted from the original KLM, with a fixed value of 1.35 s [27]. Most
previous studies have similarly used the original mental action value (e.g., [29,31,42,61]), although
smaller values have also been reported for specialised applications (e.g., [54,67,68]).

Table 5. Proposed average times and standard deviations for all operators identified in study 1,
as reported in Section 4. The mental action and system response times are retained from the original
KLM [27].

Operator Average Time (s) Standard Deviation (s)

Tap 0.28 0.16
Double tap 0.43 0.10
Tap and hold 0.78 0.09
Drag 0.55 0.21
Swipe 0.18 0.04
Press 0.47 0.05
Press and hold 0.95 0.15
Double press 0.90 0.19
Turn 0.47 0.16
Initial action 0.82 0.11
Home 0.57 0.09
Homemicro 0.34 0.11
Gesture 0.75 0.17

Retained Operator Values

Mental action 1.35
System response variable

6. Study 3: Model Validation

The first two studies extracted physical operators and determined a unit time estimate for each
of those operators, respectively. The third study’s objective was to validate the realistic predictions
obtained with these operators by computing the accuracy of the new model by comparing the observed
execution times with the predicted times.
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6.1. Methodology

6.1.1. Participants

For this study, forty individuals (23 female and 17 male) were recruited to assess the predicted
execution times against the observed times. The participants were divided into two groups based on
the smartwatch they owned: Apple Watch group and Samsung Gear group, with twenty participant in
each group. The Apple Watch group had an average age of 23.5 years, with a a standard deviation of
3.6 years. The Samsung Gear participants had an average age of 26.3 years, with a standard deviation
of 3.9 years. On average, the participants had an average of 1.8 and 2 years of experience using
a smartwatch in the Apple Watch and Samsung Gear groups, respectively. All participants reported
that they had been using their smartwatches daily, with an average daily use of 6.5 h. All recruited
individuals were right-handed and wore their smartwatches on their non-dominant hands. As in the
two previous studies, recruitment was carried out via social media, advertisements around campus,
and local activity websites (e.g., WhatsApp groups). None of the participants in this study had taken
part in any of the earlier studies. Participation was voluntary, and the participants were compensated
with a gift voucher for their time.

6.1.2. Materials

While the recruited participants owned their own smartwatches, for this study, a test Apple Watch
Series 3 (38.6 × 33.3 mm) and a test Samsung Gear S3 (42.9 × 44.6 mm) were used. This ensured
the uniformity of the task steps and initial states. An SJ4000 Sports Action DV 12MP camera was
used to log the observed execution times. The camera was strapped to the participant’s shoulder to
ensure a clear view of the participant’s interactions with the smartwatch. Five experimental tasks were
examined to validate the accuracy of the revised KLM for smartwatch interactions. The tasks were
different for the two smartwatches, either in nature or in the series of actions. This was not a concern
since the purpose of the study was to assess the accuracy of prediction for a given task. The majority of
the tasks for both smartwatches involved first-party applications because of their popularity among the
respondents to the initial questionnaire (see Section 4). The tasks were also designed to incorporate all
operators that were identified for the revised KLM for smartwatch interaction. The five experimental
tasks and their associated actions were as follows for the Apple Watch:

1. Change watch face—In this task, the participants were asked to change the watch face to the third
option on the right. This task involved the initial action, home, mental action, tap-and-hold, swipe,
and tap operations.

2. Set alarm—The participants were asked to set an alarm for 4 h from the current time. This task
involved the initial action, home, mental action, press, drag, tap, and turn operations.

3. Open map and zoom × 2—In this task, the participants were asked to open the local map
application and zoom × 2 on the current location. The operations involved in this task included
the initial action, home, mental action, tap, and double tap operations.

4. Turn on Siri, then put to sleep—In this task, the participants were asked to initiate interaction
with Siri and then put the smartwatch to sleep. This included the following operations: initial
action, home, mental act, press-and-hold, and gesture.

5. Initiate a workout—For this task, the participants were asked to initiate a workout by selecting
the 3rd exercise option. The following operations were utilised in this task: initial action, home,
mental action, double press, swipe, and tap.

Several tasks were shared between the Apple Watch and the Samsung Gear S3. Nevertheless,
the set of utilised actions for a given task often differed. The five experimental tasks for the Samsung
Gear S3 were as follows:
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1. Change watch face—For this task, the participants were asked to change the watch face to the
third option from the right. The operations that were involved in this task were the initial action,
home, mental action, tap-and-hold, swipe, and tap operations.

2. Set alarm—The participants were asked to set an alarm for 4 h from the current time. This task
involved the initial action, home, mental action, press, drag, tap, turn, and swipe operations.

3. Open map and zoom × 2—In this task, the participants were asked to open a third-party map
application and zoom × 2 on the current location. The operations involved in this task included
the initial action, home, mental action, tap, and double tap operations.

4. Turn on S Voice, then put to sleep—For this task, the participants were asked to initiate interaction
with S Voice and then put the smartwatch to sleep. The operations involved in this task were the
initial action, home, mental action, double press, and gesture operations.

5. Adjust Gear options—In this task, the participants were asked to access the Gear options and turn
off the smartwatch. The following operations were utilised in this task: initial action, home, mental
action, press-and-hold, and tap.

6.1.3. Procedure

The sessions were held in a quiet room and lasted 23.63 min on average. As in the previous
studies, the participant was welcomed to the session and introduced to the study objective. This
was followed by the presentation of an information sheet to answer anticipated questions and clarify
the study procedure. Once consent was collected, the smartwatch was placed on the participant’s
non-dominant hand, where the participant was asked to feel free to adjust its position for comfort.
The SJ4000 was then strapped to the participant’s non-dominant shoulder and adjusted to guarantee
a clear view of the smartwatch. This experiment used a mixed design approach, where each participant
performed all tasks (within-subject) with only one group, either Apple Watch or Samsung Gear group
(between-subject). The initial state for each participant was with the dominant and non-dominant
arms to the sides when standing or on the lap when sitting down. This means that in the initial
state, the smartwatch was in sleep mode. The order of the tasks was randomised for each participant.
Each participant performed each given task until no errors were made. This is because the KLM and it
variants were developed to model expert behaviour without any errors. Although the participants
were instructed on how to perform the tasks, the hand posture when interacting with the smartwatch
was not controlled. Each session was concluded with gratitude and compensation.

6.1.4. Data Analysis

All tasks were modelled with the proposed smartwatch model to predict their execution times.
Each task was divided into its unit operators (see Table 6 for a sample model). The total time was then
calculated, with the results shown in the same table. Model construction for each task began with the
determination of the physical operators, without the mental action operators. These operators were
later incorporated after the initial construction by following the modified heuristic rules for mental
action operator insertion (see Section 4). The observed execution times were logged using BORIS [63]
for each task. Each task began with the user in the initial state for the study, i.e., with the hands to the
sides when standing or on the lap when sitting down. The end of the task was logged as soon as the
final action or operation was completed. The average RMSPE between the observed and predicted
execution times for each task was calculated to determine the prediction accuracy as follows:

PEi =
pi − ai

ai

RMSPE =
√

meani=1,n(100 · |PEi|)2

(1)
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Here, a is the actual observed execution time, p is the predicted execution time, and n is the
number of observations. This measure is often used in the literature to assess the validity of a revised
KLM (e.g., [48,61,69]), following the analysis of the original KLM [27].

Table 6. Modelled sequence of operations for Apple Watch task 1 using the revised KLM for
smartwatch interaction.

Operation Operator Unit Time (s)

Bring smartwatch, i.e., non-dominant hand, close for interaction Initial act 0.82
Home dominant hand on smartwatch Home 0.57
Mental preparation Mental act 1.35
Force press on touchscreen to change watch face Tap and hold 0.78
Swipe to second watch face option Swipe 0.18
Swipe to third watch face options Swipe 0.18
Mental preparation Mental act 1.35
Tap on third option to change watch face Tap 0.28

Execution time (s) 5.51

6.2. Findings

Table 7 and Figure 2 show the average observed times and the predicted execution times for
each of the five tasks for the two smartwatches (Apple Watch Series 3 and Samsung Gear S3). Table 7
also shows the calculated RMSPE values for these tasks. The results show that the RMSPE values for
all five tasks’ execution times for each smartwatch are below the KLM’s suggested RMSPE of 21%.
However, it is also clear from Table 7 and Figure 2 that the revised model underestimates the predicted
times for both the Apple Watch and Samsung Gear task groups. This underestimation can be explained
by the artificial setting in which the task was completed. In most cases, participants were asked to
repeat the task until confident they can be performed error free. This lead the participants to become
cautious while completing the test tasks, and thus taking longer to complete. Moreover, these values
are likely to represent upper-limit values for these tasks. This underestimation phenomenon was
previously observed in other studies modelling mobile phones [57,61] and IVISs [47,50]. As detailed in
the second study (see Section 5), the unit time for each operator was derived from users’ interactions
with an Apple Watch. Despite this, the revised model was able to accurately predict interaction times
with a different type of smartwatch (Samsung Gear S3). This finding supports the generality of the
model and its ability to model interactions with different types of smartwatches. The overall RMSPE
was calculated to be 12.07%, thus validating the proposed model’s adequacy in predicting execution
times for smartwatch tasks.
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Figure 2. The average observed times and the predicted execution times for each of the five tasks for
the two smartwatches (Apple Watch Series 3 and Samsung Gear S3).

Table 7. Average observed time, predicted execution time, and calculated RMSPE for each of the
ten experimental task.

Smartwatch Task# Observed Time (s) Predicted Time (s) RMSPE (%)

Apple Watch

1 6.09 5.51 10.53
2 12.14 10.87 10.22
3 8.76 7.39 15.08
4 4.51 4.44 11.80
5 7.05 6.15 12.39

Apple Watch tasks’ average RMSPE (%) 12.00

Samsung Gear S3

1 5.63 5.51 11.56
2 12.28 10.87 11.01
3 8.83 7.39 15.85
4 4.79 4.39 10.93
5 5.98 5.33 11.30

Samsung Gear tasks’ average RMSPE (%) 12.13

Overall average RMSPE (%) 12.07

7. Conclusions and Future Work

In this paper, a revised KLM for smartwatch interaction (tentatively named Watch KLM) was
developed to offer a pragmatic solution for designing and developing applications for smartwatches.
Smartwatch interactions include touchscreen operations, button or key actions, and gestures. Model
formulation and validation were achieved through three separate studies. The first study identified
the range of actions that people perform when interacting with a smartwatch as a basis for revising
the KLM relative to the original KLM [27] and the FLM [61]. The proposed model comprises fourteen
operators that either were newly introduced or were adapted or retained from the original KLM [27]
and FLM [61]. The model was kept as general as possible to ensure its ability to model most other
types of smartwatches. To enable the practical use of the model, the unit time for each operator
was computed in the second study (see Table 5). These two studies made it possible to construct
models to predict execution times for smartwatch tasks. The final study was conducted to assess the
revised model’s predictive capabilities for realistically assessing smartwatch performance. The findings
validate the model’s accuracy with an average RMPSE of 12.07% across tasks; a value that falls within
the acceptable range dictated by the original KLM.

Several limitations of these studies suggest possibilities for future work. Hand posture was
observed in these studies, but its impact proved minimal and outside of this paper’s scope. Further
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work on hand placement on and around a smartwatch will be needed to refine the operators to
more precisely consider individual behaviour. The operator unit times were derived in the second
study from observations of participants interacting with an Apple Watch (see Section 5). To ensure
precise predictions, plans are in place to expand this study with more participants and a wider variety
of smartwatches. Typing actions were not considered in this paper and thus were excluded from
computations. This, of course, leaves room for future research on various text input methods and
their effects on the tap and double tap operations. The revised KLM for smartwatch interaction was
validated in a controlled setting; thus, further studies will be needed to assess the model’s performance
in a natural setting. A final future direction of research is to assess the model’s performance in real-life
design cases by comparing the efficacy of different design choices to inform design decisions.
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The following abbreviations are used in this manuscript:

HCI Human–computer interaction
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KLM Keystroke-level model
RMSPE Root mean square percent error
FLM Fingerstroke-level model
IVIS In-vehicle information system
NFC Near-field communication
TLM Touch-level model
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