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Abstract: In the field of motion analysis, the gold standard devices are marker-based tracking systems.
Despite being very accurate, their cost, stringent working environments, and long preparation time
make them unsuitable for small clinics as well as for other scenarios such as industrial application.
Since human-centered approaches have been promoted even outside clinical environments, the need
for easy-to-use solutions to track human motion is topical. In this context, cost-effective devices,
such as RGB-Depth (RBG-D) cameras have been proposed, aiming at a user-centered evaluation
in rehabilitation or of workers in industry environment. In this paper, we aimed at comparing
marker-based systems and RGB-D cameras for tracking human motion. We used a Vicon system (Vicon
Motion Systems, Oxford, UK) as a gold standard for the analysis of accuracy and reliability of the Kinect
V2 (Microsoft, Redmond, WA, USA) in a variety of gestures in the upper limb workspace—targeting
rehabilitation and working applications. The comparison was performed on a group of 15 adult
healthy subjects. Each subject had to perform two types of upper-limb movements (point-to-point and
exploration) in three workspace sectors (central, right, and left) that might be explored in rehabilitation
and industrial working scenarios. The protocol was conceived to test a wide range of the field of view
of the RGB-D device. Our results, detailed in the paper, suggest that RGB-D sensors are adequate to
track the upper limb for biomechanical assessments, even though relevant limitations can be found
in the assessment and reliability of some specific degrees of freedom and gestures with respect to
marker-based systems.

Keywords: markerless acquisition systems; marker-based optical tracking systems; motor
rehabilitation; human motion tracking; Kinect V2; Vicon system; upper limb; biomechanics

1. Introduction

Human motion analysis (HMA) is a domain in the biomechanics field aiming at quantitatively
describing the human movement, which is traditionally acquired by means of motion tracking
technologies. Applications of HMA span many areas ranging from clinics and motor rehabilitation to
industrial and entertainment fields [1]. In the area of human motor rehabilitation, the data obtained
from motion tracking are used for medical treatment plans and evaluations [2]. The most accurate
standard systems for this field are marker-based optoelectronic tracking equipment. Placing the
markers on anatomical landmarks on the subject’s body, such systems allow a precise reconstruction of
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the kinematic parameters. Many studies describe a variety of usages of the optoelectronic tracking
equipment [3–9]. This high precision, however, is achieved with time-consuming marker-positioning
procedures, which places constraints on usage environments such as laboratories, as well as coming at
a high cost. These issues limit the use of such systems to scientific research laboratories and hospitals,
preventing their use in small clinics, home rehabilitation, and industrial applications due to less
controllable environments. Because of these limitations, a need for systems requiring faster setup
time, more flexible acquisition environments, and lower costs has arisen [1]. During these last two
decades, many new instruments have been developed that are able to provide refined kinematic
and/or dynamic data of human motion in three dimensions (3D), such as wearable sensors or optical
motion acquisition systems, some of which have been tested in clinical settings and rehabilitation
scenarios [10,11]. The development of inertial sensors and RGB-depth (RGB-D) sensors has allowed
the implementation of devices that meet these requirements. RGB-D sensors manage this through
a sensor fusion mechanism and allow the reconstruction of human movement through video frame
segmentation coupled with depth analysis [12]. A popular example of an RGB-D device is the
Microsoft’s Kinect V2. It features quick set-up time, acquires large ranges of motion, and provides
good motor tracking capabilities [13,14]. Some studies confirmed a good reliability of devices such as
Kinect and Kinect V2 in recording the kinematics of the upper limb when compared to marker-based
systems [15,16]. Applications to the field of rehabilitation and health of low-cost RGB-D systems such
as Kinect include a variety of studies, including biomechanical assessments [17–27], translation of
quantitative clinical scales [28–30], post-stroke patients’ assessments [31–34], validation for their usage
in home environments [35–37], and assisted living [38].

Only recently has human motion tracking acquired visibility in industrial contexts. Recent
roadmaps [39,40] suggested the need of human-centered approaches and solutions for improving
workers’ health and injury prevention in the workplaces, and motion tracking applicability to assess
users in working environments [41]. Thus, in recent years, a growing interest in motion tracking
technologies has arisen since they have become widely available and applicable outside of standard
clinical environments. A first field of application is injury prevention: it has been suggested that,
as most manual labor in industry requires elaborate movements in unmonitored environments, this
could lead to injuries and work-related disorders [42]. Secondly, motion tracking systems could
provide data of the stress and strain on the body, and in this way improve workstation safety [42],
help avoid unnecessary work risks, and ensure safe and successful human–robot interactions [43,44].
Moreover, tracking technologies have been used to properly provide designer with data that will help
them improving products and making them easier to use and more comfortable for people [45,46].
An offline use of tracking is found in a recent work [47] that presented a method by which changing the
manipulator’s behavior in volume areas where there is higher probability to find a human cooperator.
Occupied volumes were computed based on pre-recorded data of the human motion.

Another important aspect of both industrial and rehabilitative motion capture deals with possible
obtrusive settings, such as when interacting with a robot. In some human–robot interactions, the
machine is required to co-operate or mimic operators; motion tracking is essential in order to avoid
harmful or unwanted interactions [48]. Some works exploited this concept. For instance, methods of
motion tracking, integrated in the context of human–robot interaction were proposed [49].

Lastly, it is noteworthy that many recent laboratory studies used bio-inspired approaches based
on tracking systems to assess human–robot interaction, when testing devices for assisting manual
works [50]. These recent works aim to translate biomedical technologies in industrial environments.

Given the major application of human motion tracking in clinical settings and the growing interest
in human-centered approaches even outside of the biomedical field, some studies were performed in
order to assess the usability of RGB-D devices and assess their accuracy and reliability with respect to
gold standard systems [16,18,51–53]. Comparing a marker-based system with Kinect [16,18], the authors
showed good sensitivity of the RGB-D sensor, even though they concentrated on a small sample of
subjects and only reaching movements. In one study [51], the authors made clear that there is a high
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correlation between the gait parameters registered with a marker-based system and the Kinect device,
concluding that it can be used to track gait parameters, although for its use in a clinical environment
they suggest that further improvements in its sensitivity are needed. The accuracy of the Kinect V2 in
full body acquisitions, concentrated on walking and balance control was assessed [52], concluding that
Kinect V2 could achieve good level of precision for motion analysis. Another work [53] concentrated
only on some degrees of freedom of the upper-limb. They tested the accuracy of the sensor, and found
that the RGB-D sensor could approximate the results of the marker-based system, even though the
range of movements analyzed was quite limited. A comprehensive assessment [54] analyzed the
performance of Kinect in movements in respect to the Vicon system in detail. The authors concluded
that the system is suitable for motion tracking, but the analyzed degrees of freedom were associated
to specific gestures conceived to emphasize each specific motor primitive—a favorable condition for
tracking. In general, we found that there was a limited number of studies that concentrated on assessing
the validity of RGB-D sensors in assessing the upper limb movement in multiple workspace sectors
resembling the variety of the possible tasks during daily-life or working activities. Especially, we noted
how previous studies in this field concentrated mainly on paradigmatic rehabilitation tasks, gait,
or functional movements, rather than mapping the variety of upper-limb gestures typical of working
and real-life applications. Consequently, given that RGB-D sensors can promote a human-centered
perspective in the context of motor evaluation, in this pilot study we implemented a comparison
between the Kinect V2 (as a well-known RGB-D sensor widely used for motion tracking) and an
optoelectronic marker-based Vicon system (as golden standard). The aim was to evaluate the accuracy
and reliability of the upper-limb and trunk movement in an extended simulation of gestures typical
of working environment, addressing in particular novel applications related to the scaling-up of
rehabilitation assessments to the industrial field.

2. Materials and Methods

2.1. Participants

Fifteen young adults with a similar age range (19–35) were recruited (8 females, 7 males,
mean age 24 ± 3 years, mean height 1.72 ± 0.10 m, mean weight 63 ± 12 kg). Participants
had no musculoskeletal impairments affecting their performance. The studies involving human
participants were reviewed and approved by the CNR Ethical Committee (Rome, Italy, protocol number
0044338/2018). The patients/participants provided their written informed consent to participate in
this study. Written informed consent was obtained from the individual(s) for the publication of any
potentially identifiable images or data included in this article.

2.2. Equipment

The tests were performed in the motion acquisition laboratory of the Italian Council of National
Research (CNR) in Italy, Lecco. The laboratory was equipped with:

1. One Vicon Vero system, composed of 10 infrared cameras; a set of reflective markers for motion
tracking to be used with the Vicon system. In this experimental condition, 34 markers were used
(25 for the upper-limb model, 9 for the target);

2. One Kinect V2.0 device to track the human body in space. Kinect uses an RGB-D camera,
for frame acquisition at 30 Hz sampling frequency, and a time of flight infrared camera, for depth
sensing. For more in-depth on the Kinect systems, exhaustive details can be found in previous
works [55,56]. The Kinect was mounted on an easel and was at about 2.5 m from the recorded
scene for best tracking [52];

3. Two general purpose computers: the first one connected to the Vicon system and containing
the software for the acquisition and for the pre-processing of the tracking data, and the second
one containing a custom-made software in C#, which communicated directly with the Kinect V2
device. It could generate a file containing 25 points of interest composing the SDK Kinect skeleton;
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4. One 60 cm diameter circular target with 9 points of interest named N, NE, E, SE, S, SW, W, NW,
and O. This target was used as a reference for the subjects to execute point-to-point and workspace
exploration movements [57].

A schematic of the set-up is portrayed in Figure 1.
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Figure 1. Graphical schematic of the experimental set-up.

2.3. Movement Selection

Each subject was asked to execute two types of movements with the right arm. The selected tasks
were point-to-point and hand exploration movements [57], commonly adopted in the context of motor
rehabilitation. These are gestures extrapolated from daily life activities, and at the same time allow
exploring up to the limits of the upper limb available workspace.

The point-to-point movement (Figure 2, top row) is a paradigmatic movement used by clinicians
to test motor capabilities of patients. It was chosen for its wide use in the rehabilitation contexts [28].
The movement involves multi-joint coordination and is used often in daily life activities. The subject
started from a predefined resting position with the upper-arm leaning along the body, then reached
toward a specific point on the circular target and then returned to the starting position. The first
movement, performed by each subject, was reaching towards the ‘O’ point, then back to resting
position. Afterwards, the subject pointed to ‘NE’, back to resting position, and then continued the
motion pattern clockwise until reaching the ‘N’ point, and backwards.

The hand exploration task (Figure 2, lower row) is another gesture conceived to simulate movements
on a working surface and object displacement for distal limb coordination. Again, the circular target
was used as reference to drive the subject’s movement. The objective of each participant was to move
the hand radially across the target, starting from the resting position and going to different points on the
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circumference. The resting position for this movement was upright with the hand pointing towards the
‘O’ point. The first movement was towards ‘NE’, then ‘O’, and the motion pattern proceeded clockwise
until the subjects reached ‘N’, and finally back to ‘O’.
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(e) Right, and (f) Left Sector.

2.4. Experimental Set-Up

The equipment was placed in the acquisition volume of the Vicon system. The subject faced
frontally with respect to the Kinect. In order to test the field of view of the device, the circular target
was placed in three different positions: on the right of the subject; on the left; in front of the participant,
horizontally. Regardless of the position of the target, movements were always performed with the
right upper limb. For the right and left sectors, the target was placed on a tripod and adjusted so that
the ‘O’ target was at the subject’s shoulder height. While in the central sector, the target was placed
horizontally on a table. The workspace sectors are depicted in Figure 2.

Two general-purpose computers—operating Vicon and Kinect, respectively—were positioned
outside of the acquisition volume so as not to interfere with the acquisition. The only objects present in
the workspace were a table, the target, the two tripods, and the Kinect.

2.5. Acquisition

Before each recording session, the subject was equipped in accordance to the upper limb model
designed for the Vicon system. Five markers were placed on the trunk, one on each shoulder, three
on each upper arm, two on each elbow, and four on each forearm and wrist (Figure 3), for a total of
25 markers [53]. Meanwhile, the Kinect V2 started to warm-up for about 20 min.

The datasets were acquired in the previously described environment with both the Kinect and the
Vicon. Since the software for the two systems were on different computers, the acquisition of the data
was not synchronized during the recordings. We chose to always start the registration with the Vicon and
afterwards start the Kinect data stream. At the signal of the operator, the subject started the movement.

The two different acquisition systems provided specific data structures. The Kinect dataset consisted
in the Microsoft SDK 2.0 skeleton 3D data from 25 anatomical points (Figure 3). The custom-made
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software used to interact with the Kinect provided a file readable with MATLAB (Mathworks, Natick,
MA, USA). This file contained the 3D coordinates of the SDK skeleton’s points with respect to the
Kinect’s reference system.
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Figure 3. Kinect V2 tracked joints (a) and the location of the markers in the upper-limb Vicon system (b).

The dataset registered with the Vicon system needed preprocessing in the Nexus virtual
environment (Vicon software), including marker tracking and labelling. Afterwards, using the
upper limb model, the software could accurately reconstruct the position of the glenohumeral joint
center (shoulder center of rotation), humeroulnar joint center (elbow center of rotation) and radiocarpal
joint center (wrist joint center) for both left and right upper limbs, as well as estimating the position of
the trunk [58]. This tracking allowed the estimation of 11 degrees of freedom (details in Section 2.6).
After preprocessing, the data were saved in c3d file format and imported in MATLAB.

In order to allow test–retest comparison, each acquisition was repeated twice; the second trial was
performed about 2 min after the first, in a similar way in respect to a previous analogous study [27].

2.6. Data Analysis

All computed angular data (Vicon and Kinect) were filtered with a low-pass Butterworth filter at
5 Hz [59]. Then, since the two systems acquired data at different sampling frequencies (100 Hz Vicon;
30 Hz Kinect) and acquisition times (Vicon started about 1 s before Kinect and ended 1 s after Kinect),
the two datasets were aligned. The first step was the detection of movement phases: each acquisition
was subdivided into sub-movements (nine sub-movements for arm point-to-point forward phases,
eight forward phases and eight backward phases for workspace exploration). The segmentation
into movement phases was achieved as follows. The curvilinear abscissa and velocity profile of the
wrist marker (end effector) were computed. Then, synchronization of each phase onset and offset
was achieved by means of an algorithm based of thresholding and local minimum detection on
the velocity profile. Then, after onset alignment, the data from each phase (O->NE, NE->O . . . )
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was resampled so that each of them was 100 samples long to allow inter-variable, inter-sector, and
inter-subject comparisons.

In order to compare the two systems, the position of the centers of rotation of the right upper-limb
was used to compute a set of 11 variables, namely the rotational degrees of freedom (DoF), which
described the upper-limb motion. The following degrees of freedom were considered (Figure 4):
shoulder elevation, shoulder rotation along the vertical axis, shoulder internal–external rotation,
elbow flexion–extension, hand flexion–extension, hand pronation–supination, hand deviation, scapular
elevation, trunk torsion, trunk anterior–posterior flexion, and trunk medial–lateral flexion. The direction
of the arrows indicates ‘positive’ angles. In order to avoid problems of reference system registration,
all variables were computed relative to a subject specific reference system.
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Figure 4. Graphical representation of the degrees of freedom computed with Vicon and Kinect V2:
1. Shoulder elevation, 2. Shoulder rotation along the vertical axis, 3. Shoulder internal–external rotation,
4. Elbow flexion–extension, 5. Hand flexion–extension, 6. Hand pronation–supination, 7. Hand
deviation, 8. Scapular elevation, 9. Trunk torsion, 10. Trunk anterior–posterior flexion, 11. Trunk
medial–lateral flexion, a. Hand reference vectors, b. Subject reference system. The direction of the
arrows indicates ‘positive’ angles. The procedures for computation and the definition of projection
planes are presented in Appendix A.



Multimodal Technol. Interact. 2020, 4, 14 8 of 23

2.7. Outcome Measures and Statistical Analysis

For measuring Kinect accuracy, the chosen comparison metric was the angular distance (ad)
computed between the corresponding degrees of freedom, phase-by-phase, obtained with the Vicon
and the Kinect systems, respectively. The implicit assumption was that the Vicon was the gold standard.
First, directional pie-charts illustrating the ad for each of the degree of freedom (DoF) considered
were generated, accounting for directions and for each of the sectors. For point-to-point movements,
the directional pie-charts had 8 cardinal directions, referred to the forward phases of the movements;
for exploration movements, we considered also the backward phases and thus the resolution of the
pie-charts was doubled. A heatmap was designed to show the magnitude of the ad between Vicon
and Kinect.

Then, all the ad data were pooled into three matrices, one matrix per sector, each matrix containing
the ad for each DoF and computed phase. These three matrices were used as parameters for a two-way
ANOVA test, with ad compared between degrees of freedom (dimension: 11) and sectors (3: central,
right and left) as factors, in order to see how each DoF was tracked with the Kinect in respect to Vicon
and quantify the performance of the RGB-D sensor in each degree of freedom and sector. The p-value (p)
determined the probability of obtaining test results at least as extreme as the results actually observed
during the test, assuming that the null hypothesis is correct. The tests were repeated separately
for point-to-point and exploration movements. Post-hoc tests (MATLAB function multcompare)
were also implemented to determine which degrees of freedom and/or sectors differed from the
others. The post-hoc test was Tukey’s honest significant difference criterion or (HSD). This method
compares the variables of interest two at a time under the assumption of equal variance and statistical
independence. The results offer a pairwise confidence interval of similarity. Level of significance for all
statistical tests was 0.05.

For measuring Kinect repeatability, the chosen comparison metric was the angular distance (ad)
computed between the corresponding degrees of freedom, phase-by-phase, obtained with the Kinect
system in the test and re-test trials.

To show this, directional, heatmap pie-charts depicting the ad comparing Kinect performance in
test and retest conditions were plotted. For point-to-point movements, the directional pie-charts had
eight cardinal directions, referred to the forward phases of the movements; for exploration movements,
we considered also the backward phases and thus the resolution of the pie-charts was doubled.
A heatmap was designed to show the magnitude of the ad between test and retest.

In order to provide a metric for reliability of the statistical results, a test-retest analysis was also
performed, taking advantage of the fact that each acquisition was repeated twice. In order to quantify
the reliability through test-retest datasets, the interclass correlation coefficient (ICC) between the
datasets was chosen [54]. Post-hoc tests (MATLAB function ‘multcompare’) were also implemented to
determine which degrees of freedom and/or sectors differed from the others. The post-hoc test was
Tukey’s honest significant difference criterion or (HSD). This method compares the variables of interest
two at a time under the assumption of equal variance and statistical independence. The results offer
a pairwise confidence interval of similarity. The level of significance for all statistical tests was set
to 0.05.

3. Results

3.1. Marker-Based System vs. RGB-D Sensor

In this section, Kinect accuracy in respect to the marker-based system and the statistical results
obtained for all subjects are presented.

A series of visual representations of the circular target illustrate, through heatmaps, the performance
of the Kinect against the Vicon system for each specific DoF, in each sector, and with respect to the
directionality of the target. The mean accuracy of the Kinect device (across the two repetitions), averaged
across subjects, obtained using the protocol established in this study is reported. First, the averaged



Multimodal Technol. Interact. 2020, 4, 14 9 of 23

data error (all subjects) for point-to-point in the central sector was reported (Figure 5a). The same result
for the right (Figure 5b) and left (Figure 5c) sectors was reported. The same results were also reported
for exploration for the central sector (Figure 6a), right sector (Figure 6b), and left sector (Figure 6c).Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 10 of 24 
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depict the magnitude of the ad.
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The results presented in this section are related to the test dataset (comparison between test and
retest is presented in Section 3.2). The two-way Anova analysis showed that, on average, seven DoF
presented an average error lower than 10◦. Two DoF presented an average error in the range between
10◦–20◦ and one had ad > 20◦ for both the executed movements (point-to-point and exploration).
Furthermore, one DoF had error greater than 20◦ and different mean between point-to-point and
exploration movements.
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A more in-depth analysis of the arm point-to-point movement revealed that trunk torsion, trunk
antero-posterior flexion, trunk medio-lateral flexion, shoulder elevation, shoulder rotation along the
vertical axis, elbow extension, and scapular elevation were tracked with an error lower or equal to
5◦. The hand deviation angle and hand flexion–extension were tracked with an error range between
5◦ and 15◦. The shoulder internal–external rotation showed a mean error of about 20◦. Lastly,
the hand pronation–supination angle had a mean error greater than 20◦. Furthermore, from the
analysis of the point-to-point movement, statistical difference was not found between the mean of
shoulder elevation and the means of shoulder rotation along the vertical axis (p = 0.96), scapular
elevation (p = 0.99), trunk torsion (p = 0.78), trunk medio-lateral flexion (p = 1), elbow extension
(p = 0.59), and trunk antero-posterior flexion (p = 0.61). While shoulder internal–external rotation,
hand pronation–supination, hand flexion–extension, and hand deviation had statistically different
mean one with the other and in respect to the other angles (p < 0.001). Meanwhile, considering the
comparison between the sectors, we found that the average error in the right sector was smaller than
in the other two sectors, ranging between 8◦ and 9◦, and was statistically different from the left and
central sectors (respectively, p = 0.012 and p = 0.0053). Left and central sectors had similar means and
were not statically different (p = 0.96); the mean error varied between 9◦ and 10◦.

The same test performed for the exploration movement provided similar results regarding the
average variations between the DoF but with different statistical significance. We could identify some
groups: shoulder elevation, shoulder rotation along the vertical axis, and elbow extension were grouped
together; in fact, we could not find statistical difference in respect to shoulder elevation (respectively,
shoulder rotation along vertical axis, p = 1 and elbow extension p = 0.99). These DoF showed statistical
difference from the rest of the variables with p < 0.01 for all three. Hand pronation–supination and hand
flexion–extension were not statistically different (p = 0.87) and were statistically different from all the
others (p < 0.001); then, scapular elevation, trunk torsion and trunk medio-lateral were not statistically
different, respectively compared to trunk torsion (p = 0.94), meanwhile trunk antero-posterior flexion
had not a statistically different mean only in respect to trunk medio-later flexion (p = 0.99) but were
statistically different in respect to trunk torsion (p = 0.05) and scapular elevation (p ≤ 0.001). Lastly,
shoulder internal–external rotation and hand pronation–supination had statistically different means if
compared one with the other (p < 0.0001) and from the others (p < 0.001). In the case of exploration,
the inter-sector error was differently distributed: all the sectors had no statistical differences central
(11.13◦), right (11.39◦), and left (11.18◦). Comparing right and left sectors, they resulted not to have
statistical differences (p = 0.79). The same could be said for right and central (p = 0.68) and for central
and left (p = 0.98).

3.2. RGB-D Sensor Reliability

In this section, we describe the test-retest as a measure of reliability of the RGB-D sensor.
An overview of the results is available in Tables 1 and 2.

A series of visual representations of the circular target illustrate through heatmaps the repeatability
of the Kinect for each specific DoF in each sector with respect to the directionality of the target. First,
the mean angular distance for point-to-point in the central sector was reported (Figure 7a). Then,
the same result was reported for the right (Figure 7b) and left (Figure 7c) sectors. The same results
were also reported for exploration for the central sector (Figure 8a), right sector (Figure 8b), and left
sector (Figure 8c)

For a more general view of the reproducibility, the interclass correlation coefficient between
the datasets separately for each sector and for each movement was also computed. The interclass
correlation coefficient in point-to-point movement was 0.81 (p = 0) for the right sector, 0.82 (p = 0) for
the central sector and the 0.73 (p < 0.001) for the left sector. Meanwhile, for the exploration movement
the ICC was 0.84 (p = 0) for the right sector, 0.75 (p = 0) for the central sector and 0.62 (p < 0.001) for the
left sector.
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Figure 7. Pie-charts of the Kinect V2 angular distance across repetitions, in the point-to-point movements.
In order from top to bottom, the considered sectors were (a) central sector, (b) right sector, (c) left sector.
For point-to-point movements, the directional pie-charts had eight cardinal directions, referred to the
forward phases of the movements. The graphical representation adopted a heatmap to depict the
magnitude of the ad.

Figures 9 and 10 portray visual representation of the statistical analysis of point-to-point movements
and exploration movements, respectively. Furthermore, statistical results between test and retest
datasets were provided. As seen in Figure 9 and as reported with the ICC, for the point-to point
movement consistency between the results both in mean differences and in significance was found.
Figure 10 shows that consistency between the degrees of freedom for the right and central sectors
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was preserved; meanwhile, the left sector had a slight difference, although not presenting statistical
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Figure 8. Pie-charts of the Kinect V2 angular distance across repetitions, in the exploration movements.
In order from top to bottom, the considered sectors were (a) central sector, (b) right sector, (c) left
sector. For exploration movements, we considered also the backward phases and thus the resolution of
the pie-charts included 16 directions. The graphical representation adopted a heatmap to depict the
magnitude of the ad.
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Table 1. Mean angular distance, order by degrees of freedom, and sectors (test and retest), and ICC:
point-to-point movements.

Degree of Freedom Test Mean (deg◦) Retest Mean (deg◦)

Shoulder elevation 3.96 3.82
Shoulder rotation along the vertical axis 4.73 4.88

Shoulder internal–external rotation 19.00 18.18
Elbow extension 5.20 5.36

Hand deviation angle 11.25 11.60
Hand flexion–extension angle 8.10 7.89

Hand pronation angle 36.40 38.59
Scapular elevation 3.64 3.70

Trunk torsion 3.02 3.01
Trunk anterior–posterior flexion 2.41 2.61

Trunk medial–lateral flexion 4.06 4.22

Sectors Test Mean (deg◦) Retest Mean (deg◦) ICC

Right 8.59 8.77 0.81
Central 9.55 9.73 0.82

Left 9.60 9.82 0.73
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Table 2. Mean angular distance, order by degrees of freedom and sectors (test and retest), and ICC:
exploration movements.

Degree of Freedom Test Mean (deg◦) Retest Mean (deg◦)

Shoulder elevation 7.09 6.92
Shoulder rotation along the vertical axis 7.44 8.67

Shoulder internal–external rotation 25.63 26.93
Elbow extension 7.56 7.43

Hand deviation angle 10.70 10.47
Hand flexion–extension angle 9.69 9.70

Hand pronation angle 43.28 44.06
Scapular elevation 4.60 4.67

Trunk torsion 3.70 4.16
Trunk anterior–posterior flexion 1.71 1.67

Trunk medial–lateral flexion 2.16 2.17

Sectors Test Mean (deg◦) Retest Mean (deg◦) ICC

Right 11.39 11.81 0.84
Central 11.13 11.45 0.75

Left 11.18 11.34 0.62Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 17 of 24 
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4. Discussion

4.1. Summary of the Results

The RGB-D device was in general able to track upper-limb and trunk motion for the majority of the
considered articular angles. However, the ad found in shoulder internal-external rotation and forearm
pronation-supination was not negligible. As seen, if one can accept this error, the Kinect V2 is useful
to track the glenohumeral joint center motion, the humeroulnar joint center motion, and the trunk
movements especially in the right and central sector while performing the arm point-to-point movement.
On the contrary, our results recommend more caution while registering exploration movements, since
the mean error per sector resulted slightly higher especially with respect to point-to-point movement.

4.1.1. Degrees of Freedom

Most degrees of freedom were tracked with an error below 10◦. This result is consistent with
previous studies [18], in which the variables describing shoulder elevation and elbow extension
were tracked with an error around 5◦, but in a more constrained scenario (mono-directional reaching
movements). The test of accuracy on healthy people, on indexes related to rehabilitation, revealed that
most clinical parameters presented an absolute agreement and no systematic bias between RGB-D
and marker-based systems [52]. Other similar investigations [53] found that most of the parameters
extrapolated were tracked with an RMSE below 10◦, which is comparable to the results obtained
through the methodologies illustrated in this work. Other studies reported even more precise results
for shoulder tracking but focused on a restricted range of postures [20]. The only degrees of freedom
presenting low accuracy were the ones related to the hand. This finding suggests that one should be
careful when registering data with RGB-D cameras in a context of high variability of motion or in not
favorable postures. In fact, in the current study, two angles presented a very high error: the shoulder
internal–external rotation and the hand pronation–supination. The first one is critical since it is based
on the projection of the forearm on the transversal plane of the upper arm. This projection highly
depends on the angle of elbow extension, which means that when the angle between the arm and
upper arm approaches 0◦, the shoulder internal–external rotation cannot be computed with high
reliability since the arm is approaching kinematic singularity. Moreover, in similar configurations,
small displacements in joint center reconstruction can produce unpredictable variations in the angle
extrapolation. In this study, this condition is stressed since the limb is often in a fully extended,
singularity posture (especially in exploration movements). This is most likely the reason for finding,
in general, worse results in respect to previous works [20,54]. It is likely that, in a wide exploration of
the workspace, the tracking is worse in respect to more constrained scenarios.

Since the morphology of the reconstructed skeletons is different when using Vicon and Kinect
V2 [54], pronation–supination angle is critical too. Using the Kinect SDK skeleton, this variable was
computed using the angular variation of a unitary vector starting from wrist and pointing towards
the thumb. The angular variation of this vector around the axis of the forearm could be assumed
to be the hand pronation–supination. A critical observation that made difficult the extrapolation of
this angle was the poor quality of the tracking of the thumb with Kinect. Our results are in partial
accordance with the findings of a comprehensive previous study [54], revealing that fine movements
related to the hand could benefit from ad-hoc hand-models, which were not implemented in this study.
Moreover, in the assessment of body extremities (hands and feet), even previous works found lower
signal-to-noise ratio [52] leading to poor tracking. Furthermore, the movements we analyzed were
very demanding for reliable hand pronation and supination computation.

In a more general discussion, a relevant finding was that the tracking performance appears to be
better for movements with wide range of motions (such as point-to-point movements, which have
been better tracked than hand exploration movements). Arguably, Microsoft’s built-in algorithms have
made it possible to better reconstruct wider movements that have a higher articular range. These results
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should be taken into account when tracking people in environments with high tracking precision
requirements, or where high accuracy is requested in fine movements.

4.1.2. Sectors

So far, RGB-D sensors such as Kinect V2 were tested mainly considering the performance of
the sensor for tracking gestures conceived to emphasize specific degrees of freedom [54], or during
rehabilitative-oriented tasks [18,33,36,51]. In this study, our novel contribution was to strongly
characterize the performance of the RGB-D sensor in upper-limb movements in a context of continuous
variability which is naturally found in daily-life tasks and working activities [57].

The accuracy in tracking workspace sectors was different between the two analyzed movements. For
the point-to-point movement, there was a statistically significant difference for the left and central sectors,
in which tracking performance of the Kinect was poor with respect to the right sector. This deterioration
in tracking performance was probably due to the fact that, even if the target was positioned to the left
or in front of the subject, the movement was performed with the right arm. Consequently, during the
execution of the tasks in these conditions, part of the subject’s body was partially hidden by the arm
for significant periods of time, causing the Kinect device to estimate the position of the covered points,
probably introducing a further error. This experimental condition is common to RGB-D devices and should
be considered as one of the main limitations to the adoption of such sensors in respect to marker-based
systems. Depending on the context, the use of ad-hoc algorithms might be considered to solve this issue.

For the exploration movement, we found that the performances on the left and central sectors
were comparable, while for the right sectors they were slightly worse. Although, the ICC for the
right and central sectors proved to be higher and thus these two sectors provided more consistent
and reliable data. This suggests that the central sector might be the most appropriate one in which
to register exploration movements, in order to have the highest reliability and lowest error. These
results remark that, in presence of obstruction, the use of RGB-D devices can be more critical. However,
we still have to underline that the overall difference is limited to less than 3◦, even when performances
were not statistically repeatable.

Our results might be of interest of the scientific community also in estimating more reliable
configurations for accurate gesture recognition for several field of applications [60], and in particular
for the use of the upper-limb in the contexts of assisted living, clinics, and working environments [38].

4.1.3. RGB-D Sensor: Reliability

The test-retest allowed to characterize the reliability of the RGB-D sensor. We found that repeatability
was quite high in both point-to-point and exploration movements, except for hand pronation and
supination degree of freedom. Our results are in general in line with the previous findings. In fact,
preliminary studies on healthy people declared that RGB-D sensors offer the same repeatability of
marker-based systems [16]. Similar results were found in a comprehensive rehabilitation-oriented study
analyzing whole body movement and especially walking. The authors concluded that repeatability
analysis yielded rather similar results for both Kinect V2 and Vicon [52]. The results of the current
study agree with previous ones that show acceptable reliability and sensitivity across the sessions
for many parameters measured by Kinect for both healthy subjects and also for stroke patients [61].
All these studies considered gestures strongly coupled with degrees of freedom: the slightly more
cautious results achieved in this study are probably related to the choice of a more demanding protocol
(choice of gestures, variability, and configurations) that stressed the tracking capability of the sensor on
generic movements. No remarkable differences were found in repeatability across sectors, even though,
as expected, the left sector showed little worse repeatability, probably due to obstruction.

4.1.4. Applications in Real Scenarios

As highlighted from the literature, the RGB-D devices can register upper-limb gestures and have
already been used in rehabilitative applications for physical assessment or training, like bi-dimensional
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movements in the sagittal plane [28], in a tele-rehabilitation scenarios [62], or even the three-dimensional
range of motion of the upper limb [63]. Its use in this domain is a great advantage for both clinicians
and patients alike. For example, ranges of motion provide accurate enough approximations of the joint
positions, providing clinicians with an objective indicator on the well-being of the patients. From the
patient’s point of view, it might make more popular home-based rehabilitative treatments.

On the other hand, industrial applications are oriented towards monitoring of workplace physical
occupation, safety, and injury prevention. Thus, movements on a workbench include many simple
movements such as reaching for objects or more complex ones such as manipulating items on the table,
or interacting with machines using simple and controlled movements such as hand-over gestures [48–50].
In more general industrial contexts, it has been already used to study workers’ safeness in working
environments. In this context, we mention that in the framework of the recently started European
H2020 research project “Mindbot” [64], RGB-D technologies will be used to provide monitoring of
workers during interaction with collaborative robots. Moreover, the newly released Kinect Azure [65]
enhances the tracking capability of Kinect V2 and provides a more evolved tool to foster the concepts
proposed in this paper related to people and workers in living and working environments.

4.2. Limitations

The first limitation of this work is the limited number of workspace sectors. Real application
scenarios might require the use of other sectors, such as shown in other upper-limb studies [57]
simulating assembly scenarios, that were excluded in this study due to limitations of the Kinect system
tracking algorithms. Also, the number of movements could be expanded to mimic real scenarios,
including other upper-limb gestures useful in industry [47,66,67] and including the tracking of other
body segments such as legs [52,63]. Including a total body model would allow to inspect a wider
number of degrees of freedom and compare the performances on full 3D movement. Moreover, other
RGB-D solutions can be considered, both in the adopted sensors and employed algorithms. For this
study, we decided to refer to a well-documented, commercial solution with wide diffusion, even though
further developments of the proposed concepts should involve the use of other sensors, or algorithms
for skeleton segmentation.

In fact, only conditions in which the subjects partially obstruct the tracking were considered;
in real scenarios, the environment might include further limitations and occlusions which were not
considered in this study. Lastly, in order to propose a more solid statistical analysis, a more extended
group of subjects might be enrolled.

5. Conclusions

In this paper, we investigated the comparison of an RGB commercial sensor with a golden
standard optoelectronic marker-based system. We found that the RGB-D sensor with embedded
human tracking algorithm could properly approximate the DoF computed with the marker-based
system. However, we found that the performance of the RGB-D sensor is not well usable for the
detection of some DoF and that ‘wider’ movements, such as point-to-point, are tracked with greater
accuracy than those of exploration. Even though with some limitations, we can conclude that RGB-D
sensor is a potential candidate for motion analysis in rehabilitative and industrial environments when
marker-based systems cannot be employed.
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Appendix A

Shoulder elevation = acos(â× (−t̂)), (A1)

Shoulder rotation = acos
[
âp×

(
− f̂

)]
− 90, (A2)

Shoulder internal/external rotation = acos(â f _p× n̂2) − 90, (A3)

Elbow extension = acos(â× â f ), (A4)

Hand deviation = acos( ̂u_hand_Φ × ŵ2) − 90, (A5)

Hand f lexion and extension = acos( ̂u_hand_Π × ŵ1) − 90, (A6)

Hand pronation/supination = acos( ̂u_hand2_Ω × ŵ1) − 90, (A7)

Scapular elevation = acos
(
ŝ′ × (ŝ)

)
, (A8)

Trunk torsion = acos
[
ŝ×

(
− f̂

)]
− 90, (A9)

Trunk antero/posterior f lexion = acos
(
t̂_sag× f̂

)
, (A10)

Trunk medio/lateral f lexion = acos
[
̂t_ f ront× (−ŝ)

]
− 90, (A11)

Note: In Equation (A2), the vector âp is the arm vector projected on a plane orthogonal to the
vector t̂; in Equation (A3), the vector â f _p is the forearm vector projected on a plane orthogonal to the
vector â; in (A5), the vector ̂u_hand_Φ is the projection of ĥ1 on the plane orthogonal to the vector ŵ1;
in (A6), the vector ̂u_hand_Π is the projection of ĥ1 on a plane orthogonal to the vector ŵ2; in (A7),
the vector ̂u_hand2_Ω is the projection of ĥ2 on the plane orthogonal to the vector â f ; in (A8), ŝ is the
shoulder vector in the initial position and ŝ′ is the vector connecting the trunk to the right glenohumeral
joint center projected on the plane orthogonal to the vector f̂ ; in (A9), the vector −̂ f represents the
direction orthogonal to the back of the subject in the first frame; in (A10), t̂_sag is the projection of
vector t̂ on the sagittal plane, orthogonal to the vector ŝ in the first frame; in (A11), ̂t_ f ront is the
projection of vector t̂ on the frontal plane, orthogonal to the vector f̂ in the first frame.
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