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Abstract: Facial thermal imaging is a non-contact technology which can be useful for ubiquitous
deceptive anxiety recognition. To date, studies investigating this technology have produced equivocal
results in classification accuracy and finding the most correlated regions on the face. This study
was conducted using our dataset with 41 subjects using two different protocols and three modalities
(thermal, GSR and PPG). We selected and tracked five regions of interest (ROI) on each facial thermal
imprint including periorbital, forehead, cheek, perinasal and chin that were mostly used in previous
papers. By employing six statistical features, four feature reduction techniques and three classifiers,
we attempted to identify the ROIs which are mostly associated with activation of the sympathetic
nervous system to increase the final classification accuracy rate. The results of linear classification
models show significant improvement of classification accuracy by using ROC feature selection
method. We achieved 90.1% and 74.7% accuracy rate for thermal features in mock crime and best
friend scenarios, respectively. Our experimental results show that perinasal and cheek areas have
greater discriminatory power in comparison with other ROIs on the face.

Keywords: facial thermal imaging; region of interest; multimodal deception detection; control
question test; feature selection; mock crime

1. Introduction

Nowadays, deceptive behaviors are common in our global society. The most widely used
technology for detecting deception is polygraphy; this relies on detecting changes in physiological
signals, particularly heart rate and is most commonly used method for lie detection [1]. Despite claims
of 90% validity by polygraphy advocates, the US National Research Council has reported concerns
about its effectiveness [2,3]. There are some limitations that affect the effectiveness of polygraph in
general applications: dependency on professional experts for scoring the data, attachment of sensors
to the subjects that limit the length and nature of interview sessions—and which can cause high levels
of anxiety in subjects in themselves. All of these drawbacks of polygraphy provide incentives to
introduce substitute technologies. From the perspective of physiology, deceptive anxiety leads to
spontaneous physiological signs including perspiration, increased heart rate, blood flow changes and
so on. According to Cannon, this physiological reaction to acute stress is called the “fight or flight”
response [4]. The methods based on the measurement of these reactions are capable of discriminating
between deceptive and truthful behaviors.

To date, a number of studies have investigated the applications of infrared thermal imaging in the
fields of computational psychophysiology and recognizing affective states because of its ubiquitous
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and non-contact capability physiological parameters such as cardiac pulse [5], respiratory rate [6],
perspiration [7,8] and cutaneous and subcutaneous blood flow [9,10] have been demonstrated to
be estimated non-invasively through this novel technology. Furthermore, there has been a recent
interest in monitoring the affective states and emotion monitoring by facial thermal imaging. Some
studies compared GSR (Galvani Skin Response) and Thermal Imaging which have the same power
in psychophysiological pattern recognition [11]. Areas of interest in this field are human computer
interaction (HCI) with collaborative [12] and non-collaborative subjects [13].

Recently, a growing body of research literature has emerged that examines thermal imaging as
a functional non-contact technology for monitoring deception [14,15]. The theory behind the use of
thermal imaging for this purpose is the rapid redirection of blood flow in subcutaneous vasculature
due to “fight or flight” responses that lead to sub-cutaneous temperature changes. We can detect
these very slight temperature fluctuations with high resolution and high sensitivity thermal camera.
The study of facial thermal imaging in a lie detection framework was first carried out by [16] and
concluded that thermal imaging could be an effective substitute for traditional polygraphy in the future.
The primary challenge faced by many experiments in this field is the mixed classification accuracy
results from different studies. To the best of our knowledge, there is no influential framework for the
application of thermal imaging to detect deceptive behaviors. Furthermore, a search of the literature
reveals few studies that focus on the comparison of different ROIs on the face for this purpose [17,18].

This study aims to contribute to this growing area of research by exploring different machine
learning techniques to increase the accuracy of thermal imaging, and identify the best ROIs for
discrimination of deception and truthfulness. We collected a dataset by measuring facial thermal
imaging, GSR and PPG (photo plethysomography) of 41 subjects in two different protocols (mock crime
and best friend) that we named it as THEPHY. Regarding the anatomy of superficial blood vessels on
the face, five ROIs including periorbital, forehead, cheeks, perinasal and chin were selected. Moreover,
the possible head movements in thermal videos were compensated by tracking the traceable corner
points on the face. Six statistical features were employed with four feature reduction techniques to
identify the best features (especially the best ROIs) on the face. Four different classifiers were employed,
including support vector machine (SVM) with Gaussian and polynomial kernels, linear discriminant
analysis (LDA), K- nearest neighborhood (KNN) and decision tree. Our final classification results in
the thermal spectrum outperform the other previous studies with the same protocol. Furthermore,
based on the feature selection procedure, the temperature changes in perinasal and chin areas are most
correlated to the psychophysiological state of deceptive anxiety and could be an effective indicator
of deception.

2. Literature Review

The feasibility of non-contact facial thermal imaging for human stress research and especially
deception detection was one of the main concerns of recent studies in this field [19–21]. In order
to validate the usability of this ubiquitous unobtrusive technology, Puri collected thermal videos of
the forehead area in addition to oxygen consumption rate (for measuring energy expenditure) of 12
subjects. He showed that there is a high correlation (Pearson correlation = 0.91) between maximum
temperature of the forehead area and oxygen consumption rate, which is an indicator of stress [22].
The perinasal response to stress stimuli was shown to be well correlated with the transient perspiratory
response on the fingers [23].

The effectiveness of this technology for detecting deceptive anxiety by facial temperature
measurement was first suggested by Pavlidis. He used a heat transfer model to convert the periorbital
temperature to blood flow and reported an 84% accuracy rate with 22 subjects in a mock crime
protocol [16]. Another study collected a larger and more realistic mock-crime interrogation experiment.
The periorbital region was targeted again and by using tandem tracking and binary classification,
they reported 87.2% success rate in detecting deception [24]. Polina et al. carried out a larger
scale experiment and investigated the feasibility of facial skin surface temperature in two concealed
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information tests [25]. They extracted statistical features from the bottom of the right and left eye for
0.3 s before and after the onset of response to each question. The experiments were 91.7% successful
in detecting deception with 39 participants. In another relevant study, Warmerlink evaluated the
effectiveness of facial thermal imaging on Fifty-one passengers in an international airport departure
and found out that the skin temperature of deceptive group elevated during the interview while the
innocent group remained constant. [26]

Although there is sufficient physiological and technical evidence to confirm the relationship
of temperature changes to anxiety level, the classification accuracy rates reported by previous
research findings are inconsistent and contradictory. As an example, Abouelenien et al. collected
a multimodal database for two different scenarios and reported weak results for the accuracy of
periorbital thermal features in comparison with physiological and linguistic features. However, they
also used cross-scenario learning that leads to better accuracy rate [19]. Rajoub in other work concluded
that deceptive behavior does not generalize well to the whole population on periorbital thermal
imaging features [27]. Using a set of 25 participants, their proposed system was associated with greater
success when they used the within-person approach in comparison with between person classifications.

Moreover, there is another inconsistency in finding the facial thermal ROI which is most correlated
with arousal level. Dcosta focused on the perinasal area as an indicator of arousal stimulation in
the body and reported 80% classification rate to distinguish between 40 subjects in a mock crime
scenario [28]. In order to evaluate the usefulness of the forehead area for lie detection, Zhu collected
thermal videos of 38 subjects under interrogation in a mock crime scenario. The results showed that
the recovered forehead signal enables 76.3% success rate in deceptive state classification [29]. A more
comprehensive study was performed by Pollina who argues that the cheek area shows a higher accuracy
rate in comparison to periorbital and carotid areas in a mock crime scenario with 21 subjects [17].
Abouelenien in 2016 published a study with their latest dataset and tried to investigate the best ROI
on the face for stress recognition purposes. They reported that fusing forehead thermal features and
linguistic features could be the best integration in detecting deception [20]. In a comprehensive study
by Panasiti et al. in 2016, they compared periorbital and perinasal area in a voluntary deception
framework in ecological condition. The results showed importance of perinasal area in compared with
periorbital region for this purpose [30]. In a recent study, Derakhshan et al. utilized granger causality
method to represent the effective connectivity between the five ROIs on the thermal face during a mock
crime scenario. They reported the overall redirection of blood flow and temperate from the lower facial
areas to the upper parts in deceptive subjects [31].

To address the above-mentioned issues, our study aims to propose a framework to investigate the
effectiveness of facial thermal imaging in comparison with gold standard physiological measurement
(GSR and PPG), and also obtain the optimal ROI selection in two deception detection scenarios.

3. THEPHY Dataset

3.1. Participants

Data were collected from 41 graduate and undergraduate students between 20–35 years old, with
21 females and 20 males with a mean age of 24.4 years with standard deviation of 3.5. All participants
were Persian native speakers. They were all asked not to use makeup or cosmetics on the day of the
experiment. They were also asked to wash their hands and face before reading the instructions.

Furthermore, they were asked to fill in a questionnaire related to their current mental and
physiological status, whether they have taken any medication in the past 24 h and asked to report any
disease or disorders that may affect their current psychological status. They were also informed not
to consume any alcohol, caffeinated drinks or a heavy meal since the night before their appointment.
All the experiments were done in the morning to reduce any digestion effects. We also noted their
hemisphericity (preferred mode of cognitive processing that is linked to predominant activity of
either their left or right cerebral hemisphere) and height/weight information for further investigation.
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After finishing the interview, we asked them to fill in a self-assessment form in which they scored
their stress in each question of our mock crime scenario. The datasets used to support this study are
currently under embargo while the research findings are commercialized. Requests for data, from
12 months after initial publication, will be considered by the corresponding author.

3.2. Materials

The following equipment and facilities were used in our experiments:

1. Standard interview room: The interview room was designed and built specifically for research
purposes in this field, with controlled temperature and double walls and double door for sound
and heat insulation. The temperature of the room was set to 25 ◦C.

2. Thermal Imager: we used a FLIR T640 thermal imager which benefited from a 640 × 480 focal
plane array of uncooled and stabilized thermal infrared sensor. The frame rate was 10 frames per
second which could cover all temperature changes due to SNS (Sympathetic Nervous System)
activation that is around 300 ms. Moreover, the thermal sensitivity (NEDT, noise equivalent
differential temperature) of the device was 35 mK at 30 ◦C. The thermal camera was placed in
front of subjects at a distance of 1.5 m from their face.

3. Polygraphy data acquisition system (PsychoRec) with two sensors: GSR (Galvanic Skin Response)
and PPG (photoplethysmography) and the embedded software for design and delivery of the
questionnaire in CQT (control question test) format.

4. Kinect visual camera: The resolution of the camera is 640 × 480 and the frame rate is 30 Hz.
This data was part of our comprehensive data collection for deception detection purposes that we
did not use them in current research and will be investigated in our future contributions.

5. Crime room: Special room for “mock crime” scenario with two desks, a PC and some drawers.
The room had been equipped with a red flash LED to increase the arousal level of participants.

This database has names THEPHY that is a combination of ‘thermal’ and ‘physiological’ words.
Table 1 shows a brief summary of our database content.

Table 1. Overview of the THEPHY database.

Number of Participants 41

Age (Mean and Std) 24.4 (± 3.5)

Number of Scenarios 2

Duration (Both Scenarios) 30 min

Recorded Signals
Thermal Imaging

Polygraphy
Kinect

Frame Rate (Thermal) 15

Figure 1 illustrates all measuring devices which were used in our experiments. There is a white
curtain between the interviewer and subjects in order to reduce visual distraction or visual cues during
the interview. The total experiment time including the initial explanation following the deceptive or
truthful protocol and the interview room session for each participant was around 20 min.
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Figure 1. The interview room which benefited from heat and noise isolation. The thermal camera was
placed 1.5 m from the face.

3.3. Scenarios

“Mock Crime”: In this scenario, the participants were randomly allocated to one of our two groups
without their prior knowledge: innocent or deceptive. An instruction was given to each participant and
they were asked to read it carefully. After understanding the scenario, each innocent participant must
go to the crime room and wait for 5 min and then come back and wait for the interview. The deceptive
participants were asked to go to the crime room, try to find the keys, open the drawers and find and
take a gold necklace—and that all the steps should be done in 5 min. Then they should come back
and wait for the interview. In the interview room, for both groups, they sit on a specific chair and
were asked to look towards the thermal camera and not to move their head a lot. They answered
a CQT test which consisted of eight questions in three standard types [32]: Relevant, Control and
Neutral questions.

Deceptive individuals are expected to show more pronounced responses to the relevant questions,
whereas truthful individuals are expected to show the opposite pattern of responsivity. The experiments
were utilized “single blind” in which the label for each participant interviewer was masked from the
interviewer that would reduce the bias in asking the questions. Each answer time period was set 20 s
to provide enough time for response of autonomous nervous system activation. The overall interview
session for each participant was done in 2–3 min.

The English translation of questions set are as follows:

1. Do you live in Tehran?
2. Do you intend to answer all the questions honestly?
3. Have you ever checked your sister/brother’s phone without his/her consent?
4. Did you enter the office at the back of the building?
5. Do you have any plan after this interview?
6. Did you steal the necklace?
7. Would you be happy if our device does not work properly?
8. Is there any other question that could make you anxious?

“Best Friend”: This protocol was used based on a previous study in this field [19] and consists of
two parts: truthful and deceptive. All the subjects were asked to do both parts in 30 s each. During the
truthful part, they were asked to talk about their “Best Friend” in their life and his/her characteristics,
their friendship and also their common memories. As the second part (deceptive) they choose one
person in their mind that they hate and talk about him/her deceptively. Some of the participants
responded that they do not hate anyone. For this situation, they are asked to think about a celebrity or
political person that they do not like and praise him/her.
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In the Mock Crime scenario, after a preliminary evaluation of our collected data, one of our
participant’s thermal video was found to be corrupted and we had to leave it out from our database.
Finally, we had 40 participants in the Mock Crime and 41 subjects in the Best Friend scenarios.

4. Methods

Facial thermal imaging is the main non-invasive method that many researchers utilize for the
purpose of detecting emotional and stress reactions [16,24,31]. We used several machine learning
techniques to increase the accuracy rate of this technology and to find the ROIs on the face that could be
more effective indicators of deceptive anxiety. Figure 2 illustrates the overview of the study architecture
that was developed and is presented in this paper
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Figure 2. Overview of the methodology in this study.

First, we prepared our physiological and thermal raw data for extracting the features. Since the
nature of these two modalities are different, the pre-processing and noise removal phase of each
modality is described separately:

4.1. Physiological Signals

For all the physiological data, we used a bandpass filter degree 30 and cutoff frequency between
1–40 Hz. To reduce the between-participant differences, the data were normalized to [0, 1] by dividing
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the signal by that participant’s maximum value of his/her GSR or PPG signal from the entire recording
session [33].

4.2. Thermal Videos

For converting thermal video to thermal time series, we extracted the maximum and minimum
values in each frame of the video from the manually selected five ROIs on the face. According to
anatomic knowledge, these areas are more influenced by psychophysiological changes because of the
underlying vasculature network and skeletal muscle tissue. Furthermore, these thermal ROIs were
utilized based on previous publications in this field, which suggested that these regions are most
affected by psychophysiological states [18]. To summarize, we extracted five ROIs on the face and
maximum and minimum temperature value of each region would represent every thermal video by
ten signals. The illustration of these five regions on the face and the corresponding anatomic image are
shown in Figure 3.
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Figure 3. The five extracted regions of interest (ROI) from a face. These areas are most affected by
emotional states because of the vascular anatomy of the face. These ROIs were used in previous studies
in this field and the which of them has more information for psychophysiological monitoring is still
controversial [34].

4.3. ROI Tracking

Although we asked the subjects not to move their head and body during the interview, some few
natural movements are unavoidable which may impose negative effect on the classification results.
In order to compensate for any unwanted head movements during the interview, we employed a thermal
face tracker. The Viola–Jones object detection framework was applied on the facial thermal images for
segmentation of the face from the background [35]. Then, we adopted the Kanade–Lucas–Tomasi (KLT)
method for finding feature points on the face and tracked them continuously in a thermal video [36].
In this method, first, we found traceable corner points on the face by using Shi–Tomasi method [37]
and then the detected points were tracked using KLT points’ tracker. Figure 4 shows this procedure in
two steps: face detection and finding feature points.

Then, a smoothing filter was employed to suppress the high frequency components of the thermal
signals arising from malfunctions of the tracking algorithm. We applied the rlowess (robust locally
weighted scatterplot smoothing) filter, a modified version of the lowess (Locally Weighted Scatterplot
Smoothing) method which tries to locate a smooth curve among the data points without requiring any
advance specification of the functional relationship between the variables [38]. In such cases where the
data contains outliers, the smoothed values (lowess method) can become distorted and do not reflect
the behavior of the bulk of the neighboring data points. To overcome this problem, the loess curve is
fitted with a robust estimation procedure that decreases the influence of such outliers. Figure 5 depicts
the performance of rlowess filtering on a thermal signal. As shown, the high frequency peaks and
distortion of the thermal signals were removed properly.
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4.4. Physiological and Thermal Feature Extraction

Six temporal features, including mean, minimum, maximum, standard deviation, means of the
absolute values of the first and second derivatives of the pre-processed signals, were extracted from
each question-related GSR, PPG and thermal signal. These features can be computed easily and cover
the typical range, gradient and variation of the signals and were effectively utilized in previous studies
on similar topics [39].

4.5. Optimal ROI Selection

One of the main concerns about utilizing facial thermal imaging in emotion research is the
selection of appropriate ROIs that are most correlated with the specific emotion. We employed feature
reduction methods to identify the optimal ROIs which associate to the psychophysiological state of
stress, more effectively. We expect to obtain more benefits by applying feature selection methods to our
thermal and physiological feature set, such as reducing the training time, reducing the complexity
of the model, improving the final accuracy and reducing the possible overfitting. We compared four
common univariate filtering methods for feature reduction, as introduced below:

• t-test: Based on the ratio of statistical difference and variability between two classes [40].
• Relative entropy (Kullback–Leibler divergence): Calculate the subtraction of estimated probability

distributions (based on the divergence of the probability distribution of the first from the second)
by the true probability distribution [41].

• ROC (receiver operating characteristic): A non-parametric test that ranks all features by measuring
the area under the ROC curve [42].

• MWW (Mann–Whitney–Wilcoxon): A non-parametric unpaired statistical test and investigate if
two independent sample of an observation exhibits on the same distribution [43].

The results show the successful outcome of employing the above feature reduction techniques
specially ROC method in our overall classification accuracy rate. The result of feature selection on our
overall accuracy rate for thermal feature set was considerably better than for physiological features.
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4.6. Between Person Classification

In order to compare the results before and after the feature selection procedure, first each of
the features derived from the thermal and physiological feature set was provided as input to SVM,
KNN, LDA and decision tree classifiers to discriminate between deceptive and truthful subjects. For
each decision tree, the number of splits is set to 5 and the minimum leaf size set to 7 to minimize the
cross-validation loss. We used Gaussian and polynomial kernels for the SVM model and the number
of neighbors for the KNN model was set to 5. The recognition rates were obtained by “Leave One Out”
cross validation method across the participants. In this case, we put aside one subject and the training
process had been done by the classifier with the other subjects. We used the omitted data to test the
prediction error. The number of iterations in this strategy is the number of subjects (independent data
samples). The overall accuracy was achieved by calculating the average of all recognition rates over
all trials.

5. Experimental Results

Table 1 reports the classification results with the above four classifiers on all the different features.
The accuracy of each scenario was noted in this table, separately. The best results for “Mock Crime”
scenario was 83.8%, 67.7% and 64.5% for thermal, GSR and PPG, respectively. Regarding the
“Best Friend” scenario, the best recognition rates were obtained as 62.9% in the thermal spectrum and
66.6% and 79.6% for the physiological signals. In terms of classifiers evaluation overall, decision tree
produced better performance in comparison with the other models. Moreover, in terms of comparing
different modalities, before feature selection procedure, physiological signals appear to have more
discriminatory power than thermal signals.

To identify the most correlated ROIs and best temporal features, respectively, we carried out a
feature selection approach and examined the recognition rates by the same classifiers as in Table 2.
We selected 20, 10, 4 and 1 best features from the thermal feature set based on four feature ranking
techniques including t-test, relative entropy, ROC and MWW. The results are depicted in Figure 6
which illustrates the significant improvement of classification accuracy rates by reducing the number
of features. The accuracy of thermal modality in Mock crime protocol using LDA classifier increased
from 41.9% to 90.3% by utilizing the ROC feature selection method.
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Figure 6. Visualizing the performance of ROC feature selection in our thermal “mock crime” dataset
by three classification models. The vertical axis is the accuracy percentage result and the horizontal
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Table 2. Leave One Out cross validation results by three classifiers for all of thermal and physiological
features in both protocols. The best results for all modalities were bolded.

Scenario Modality DT KNN-5 LDA SVM-G SVM-P

Mock Crime
Thermal 83.8 32.2 41.9 51.6 35.4

GSR 58.0 38.7 67.7 64.5 67.7
PPG 64.5 51.6 35.4 51.6 51.6

Best Friend
Thermal 55.5 51.5 37.5 62.9 48.4

GSR 66.6 64.8 50.0 59.2 53.7
PPG 70.3 74.0 75.9 79.6 66.6

Note: KNN-5: 5 is the number of neighbors. SVM-G: Refers to Gaussian kernel. SVM-P: Refers to polynomial
kernel. DT: decision tree.

Analyzing the results for thermal signals in Table 3, we may notice that non-parametric criteria
(ROC and MWW) achieved better results and could find the features that are linearly separable for the
deception detection purpose. Furthermore, we can identify this improvement in other methods, as
the accuracy jumped to 80.6% by t-test. Further, we used the same procedure for the “Best Friend”
scenario. In this case, the small difference is observed particularly when employing MWW method
that could increase the accuracy from 62.9% to 71.8%. The results show that the mock crime scenario,
in comparison to the best friend scenario, was more successful in creating a realistic framework of
deceptive behavior.

Table 3. Improvement of classification accuracy by employing four feature ranking methods in mock
crime and best friend scenarios, respectively. The results reported by highest ranked features of
thermal signals.

Scenario Method DT KNN-5 LDA SVM-G SVM-P

Mock Crime

t-Test 74.1 77.4 80.6 77.4 70.9
Entropy 90.3 54.8 67.7 35.4 32.2

ROC 77.4 83.8 90.3 70.9 83.8
MWW 83.8 74.1 74.1 77.4 67.7

Best Friend

t-Test 44.4 56.2 67.1 71.8 71.8
Entropy 55.5 65.6 56.2 64 53.1

ROC 74.7 60.9 60.9 65.6 56.2
MWW 62.9 59.3 71.8 59.3 59.3

Note: KNN-5: 5 is the number of neighbors. SVM-G: refers to Gaussian kernel. SVM-P: refers to polynomial kernel.
DT: decision tree.

An interesting result is identifying the optimal features (including ROIs, features and questions)
which are most strongly associated with psychophysiological fluctuations in deceptive anxiety.
Considering the 10 most valuable features selected by using the ROC method and which achieved
more than 90% recognition accuracy rate, we noticed that perinasal and chin ROIs were mostly
involved. Furthermore, questions 6 and 7 produced more relevant stress due to the mock crime
protocol. The results are reported in Table 4.

The same feature selection techniques were applied to the physiological signals. As shown in
Table 5, the relative entropy method on GSR signals showed a significant increase in recognition rate
from 66.6% to 80.6% by decision tree classifier.
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Table 4. ROI, feature and question ranking based on ROC feature selection method in the mock crime
scenario. The importance of perinasal and chin areas can be observed, by the number of occurrences of
these ROI in the top 10.

Ranking ROI Feature Question

1 chin std 7
2 perinasal mean 7
3 perinasal mean 8
4 cheek min 6
5 perinasal min 2
6 perinasal max 6
7 chin std 2
8 chin mean 6
9 perinasal std 3
10 chin max 8

Table 5. Improvement of classification accuracy by employing four feature ranking methods in the
mock crime scenario. The results reported by the 10 highest ranked features of thermal signals.

Modality Method DT KNN-5 LDA SVM-G SVM-P

PPG

t-Test 64.5 41.9 41.9 45.1 61.2
Entropy 67.7 54.8 70.9 54.8 67.7

ROC 45.1 54.8 51.6 35.4 48.3
MWW 48.3 61.2 58 61.2 64.5

GSR

t-Test 74.1 54.8 70.9 32.2 54.8
Entropy 80.6 61.2 70.9 61.2 64.5

ROC 48.3 58 58 51.6 54.8
MWW 54.8 67.7 51.6 61.2 54.8

Note: KNN-5: 5 is the number of neighbors; SVM-G: Refers to Gaussian kernel; SVM-P: Refers to polynomial kernel;
DT: decision tree.

6. Discussion

Although thermal imaging benefits from advantages in comparison with physiological vital signs
(especially as a non-contact method for monitoring psychophysiological states), the effectiveness of
this technology for this purpose is still contradictory. One of the main contributions of this study was
to determine the effectiveness of thermal imaging as a non-contact tool for detecting guilty behaviors
in comparison with the gold standard methods. We have used several machine learning techniques to
improve the accuracy of facial thermal imaging for this purpose. The results for GSR and PPG showed
70.9% successful classification rate as compared to 90.3% accuracy rate of facial thermal imaging
in the Mock Crime scenario. These results are close to 87.2% that was reported by [24] and 91.7%
reported by [25], who used mock crime for their investigation. Furthermore, we achieved 74.7% for
discrimination of deception and truthfulness in the Best Friend scenario and outperforms the 60%
accuracy rate that was reported by [19].

Analyzing the results for thermal signals in Table 3 which represent the effectiveness of utilization
of feature selection methods suggest that non-parametric criteria, especially the ROC method, achieved
better results and could find the features that are linearly separable for the deception detection purpose.
Furthermore, we can identify this improvement in other methods, as the accuracy jumped to 80.6%
by t-test. Further, we used the same procedure for the “Best Friend” scenario. In this case, the small
difference is observed particularly when employing ROC method to increase the accuracy from 62.9%
to 74.7%. Our results show that the mock crime in comparison to the best friend scenario was successful
in creating a more realistic framework of deceptive behavior.

Another contribution of this study was to identify which ROIs on the face are most correlated to
deceptive anxiety. We utilized five ROIs and four feature ranking methods for this purpose. The results
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of the ROC feature selection model confirm that perinasal and chin areas were most strongly involved in
this process. The thermal signature and modulation of respiration as a psychophysiological parameter
that is affected by activation of Sympathetic Nervous System can lead to better discriminatory power
of the perinasal area. These results contradict some previous studies that showed that the periorbital
area contains the most information on thermal faces in deception detection frameworks [16,24,27] and
complement those which focused more on perinasal and lower part of the face [17,28]. This is the first
study that examines these ROIs on the face to identify the most affected regions through deceptive
anxiety emotional states.

If we consider the third column of Table 4 which show the correct performance of mock crime
protocol and the interview session we can see that those questions that achieved more discriminatory
power (as shown by our employing the feature ranking techniques) are the question that are related to the
crime. Question numbers 6, 7 and 8 show up more than other questions in the first 10 ranked questions.

7. Conclusions

Facial thermal imaging is a reliable non-contact method for unobtrusive ubiquitous monitoring of
the psychophysiological response to environmental stress stimuli [44]. The effectiveness of this method
can be assessed by comparing with gold standard physiological monitoring methods. In deception
detection studies, GSR and PPG are the most accepted measurements that can discriminate between
deceptive and truthful behavior, effectively. However, the sensors need to be attached to the body of
the subjects and could produce false positive outcomes. We collected THEPHY dataset to examine
the performance of facial thermal imaging for this purpose and compares the discrimination result
with polygraphy physiological data as the gold standard measurement framework. Utilizing the same
machine learning techniques, the final classification accuracy rate for thermal data outperformed the
GSR/PPG results.

Further work needs to be done to establish a more unobtrusive, realistic scenario and to increase
the number of participants. That would need collaboration between psychology and computer science
researchers in a common project. We can suggest the Facial Action Coding System (FACS) should be
considered, so as to be able to draw some correlations for specific thermal Action Units (AUs) with
deception, and to understand why at a specific ROI, there is greater discriminatory power compared
to other ROIs. Considerably more work will need to be done to improve the face and ROI trackers
in thermal spectra. We collected Kinect data for this purpose that will be investigated in our future
research. These improvements can lead to a reliable unobtrusive ubiquitous framework for non-contact
deception detection in the future.
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