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Abstract: Access to performance data during matches and training sessions is important for coaches
and players. Although there are many video tagging systems available which can provide such access,
these systems require manual effort. Data from Inertial Measurement Units (IMU) could be used
for automatically tagging video recordings in terms of players’ actions. However, the data gathered
during volleyball sessions are generally very imbalanced, since for an individual player most time
intervals can be classified as “non-actions” rather than “actions”. This makes automatic annotation
of video recordings of volleyball matches a challenging machine-learning problem. To address
this problem, we evaluated balanced and imbalanced learning methods with our newly proposed
‘super-bagging’ method for volleyball action modelling. All methods are evaluated using six classifiers
and four sensors (i.e., accelerometer, magnetometer, gyroscope and barometer). We demonstrate that
imbalanced learning provides better unweighted average recall, (UAR = 83.99%) for the non-dominant
hand using a naive Bayes classifier than balanced learning, while balanced learning provides better
performance (UAR = 84.18%) for the dominant hand using a tree bagger classifier than imbalanced
learning. Our super-bagging method provides the best UAR (84.19%). It is also noted that the
super-bagging method provides better averaged UAR than balanced and imbalanced methods in 8
out of 10 cases, hence demonstrating the potential of the super-bagging method for IMU’s sensor
data. One of the potential applications of these novel models is fatigue and stamina estimation e.g.,
by keeping track of how many actions a player is performing and when these are being performed.

Keywords: sensor fusion; behavior analysis; social signal processing; machine learning; bagging;
boosting; action recognition; wearable technologies; multimodal systems

1. Introduction

Top performance in sports depends on training programs designed by team staff, with a regime
of physical, technical, tactical and perceptual-cognitive exercises. Depending on how athletes perform,
exercises are adapted, or the program could be redesigned. State of the art data science methods have
led to groundbreaking changes. Data come from sources such as position and motion of athletes in
basketball [1], and baseball and football match statistics [2].

Furthermore, new hardware platforms have appeared, such as LED displays integrated into
a sports court [3] and custom tangible sports interfaces [4], which offer possibilities for hybrid training
with a mix of technological and non-technological elements [3]. This has led to novel kinds of
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exercises [4,5] including real-time feedback that can be well-fitted to the specifics of athletes in a highly
controlled way. Data science tools can then be used to put well-fitted modifications to the parameters
of such training. These developments are not limited to elite sports. Interaction technologies are also
used for youth sports (e.g., the widely used player development system (www.dotcomsport.nl—last
accessed May 2020)), and school sports and Physical Education [6].

Identifying actions automatically in sport activities is important and numerous studies have been
conducted for that purpose [7-10]. Wearable devices such as Inertial Measurement Units (IMUs) [11,12]
are becoming increasingly popular for sports related action analysis because of their reasonable price as
well as portability [10]. While researchers have proposed different configurations in terms of number
and placement of sensors [13], it is ideal to keep the number of sensors to a minimum due to cost, setup
effort and player’s comfort [13-16]. However, the data gathered during a volleyball session generally
suffer from the class imbalance or ‘curse of imbalanced data sets” problem, which is among the top 10
data mining problems today. The performance can degrade significantly for classifiers that assume
a well-balanced class distribution and equal cost for misclassification [17]. To tackle that problem,
different techniques are available such as oversampling [18-21], undersampling, decision trees [22] or
ensemble methods [23]. One disadvantage of oversampling is that it could lead to model over-fitting,
while the undersampling method will lose information when balancing the classes. Ensemble methods
are also proposed to tackle the class imbalanced problem [23,24]. There are different types of ensemble
methods including bagging [25] and boosting [26]. A bagging algorithm randomly select subsets of
a data set to train an ensemble of classifiers while a boosting algorithm selects a subset of features
to train an ensemble. The method proposed in this study (i.e., super-bagging method) is based on
balanced (undersampling) and imbalanced (full sampling) learning instead of randomly selecting
subsets of data sets for training.

This study extends our previous work [27-29] in which we used IMU data from both dominant
and non-dominant wrists for classification of action and non-actions events (i.e., a two class problem).
The previous study [29] provided us with interesting results regarding the role of the non-dominant
hand in volleyball action and non-action classification. The current study demonstrates both balanced
and imbalanced learning, and proposes a novel super-bagging method for classification of action and
non-action events (i.e., two class problem). A potential application of the proposed models is in fatigue
and stamina estimation [8]. This paper’s contributions to the field are:

1. Proposal of a novel ensemble method (i.e., the super-bagging method) and its demonstration for
volleyball action modelling,

2. Evaluation of the super-bagging method against undersampling (i.e, balanced learning) ,
full sampling (i.e., imbalanced learning) and ensemble (i.e., tree bagger) methods for volleyball
action modelling,

3. Demonstration of the role of dominant and non-dominant hand for volleyball action modelling
using super-bagging method,

4. Evaluation of all four IMU sensors separately and in combination for volleyball action
modelling using different learning methods (i.e., balanced learning, imbalanced learning and
super-bagging methods).

2. Related Work

Many approaches have been proposed for human activity recognition. They can be categorized
mainly into two main categories: wearable sensor-based and vision-based. Vision-based methods
employ cameras to detect and recognize activities using several computer vision techniques e.g.,
Zivkovic et al. propose a robust player segmentation algorithm. Novel features are extracted from
video frames, and finally, classification results for different classes of tennis strokes using Hidden
Markov Model are reported [30].

Wearable sensor-based methods collect input signals from wearable sensors mounted on human
bodies such as accelerometer and gyroscope. For example, Liu et al. [31] identified temporal patterns
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among actions and used those patterns to represent activities for the purpose of automatic recognition.
Kautz et al. [32] presented an automatic monitoring system for beach volleyball based on wearable
sensor devices which are placed at the wrist of the dominant hand of players. Beach volleyball
serve recognition from a wrist-worn gyroscope is proposed in Cuspinera et al. [33]. Jarit et al. [34]
showed that the grip strength of non-dominant and dominant hands is almost the same for college
baseball players.

Inertial Measurement Units (IMUs) [11,12] have been used to detect sport activities in different
sports e.g., soccer; Schuldhaus et al. use a custom-made system comprise of sensors and memory
to collect data regarding the lower extremities of soccer players to classify shot pass in soccer [35].
The usage of wearable devices is not limited to sports, e.g., Wang et al. [36] use wearable sensors to
form a wireless body area network to sense various physiological parameters of the human body,
while others [37,38] have crafted ways to make the process energy efficient and secure. In tennis,
Pei et al. use the JY-61 sensor to acquire motion information, such as accelerometer, that is used to
detect tennis stroke type such as forehand, backhand and serve by using acceleration data as well as
angular velocity [10]. Similarly, Kos et al. placed a miniature wearable IMU device on the player’s
forearm to classify the common type of tennis strokes [39].

Particularly for volleyball, Vales-Alons et al. developed a Smart Coaching Assistant for professional
volleyball players to analyze exercise quality control by analyzing repetitions of the same action using
dynamic programming [8]. Bagautdinov et al. use a neural network approach to detect individual
activity to infer joint team activities in the context of volleyball games [9]. In their work, Wang et al.
assessed the skill of volleyball spikers. The level of the players were classified into three levels of group
such as elite, sub-elite and amateur by a Support Vector Machine (SVM) classifier [13].

It can be concluded that there are multiple studies that take into account the use of IMUs sensors
and computer vision for sports related events. However, one of the limitations of a computer vision
approach is that it cannot work well in the volleyball setting when the player positions change and
when the sight of a player is occluded by some other player. Hence, the IMUs sensors is a good fit
for volleyball settings. It is also noted that while there are quite a few studies focused on volleyball
action modelling, most of the studies take into account the role of the dominant hand particularly
for volleyball action modelling and the role of the non-dominant hand is less explored in sports
related activities.

3. Our Approach

The presented paper extends upon the ideas presented in our previous work [27-29]. Figure 1 shows
the overall system architecture. The presented paper focuses on step 2 of the proposed system. However,
to give the reader the full idea, this section provides a summary of all the steps of the proposed approach.
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Figure 1. Block diagram of prototype system architecture adopted from [28].
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Data were collected for 9 female volleyball players who wore IMUs on both wrists and were
encouraged to play naturally during their routine training session i.e., step (0) in Figure 1. The hardware
used in this study are the Xsens MTw Awinda (https://www.xsens.com/products/mtw-awinda—Ilast
accessed May 2020) IMU sensors [11] and two video cameras. The video streams are synchronized with
the IMU’s sensor data streams for further processing.

3.1. Data Annotation

To obtain the ground truth for machine-learning model training, the video recording was annotated
using the Elan software (see Figure 2) [40]. Three annotators annotated the video. Since volleyball
actions performed by players are quite distinct there is no ambiguity in terms of inter-annotator
agreement. The quality of the annotation is evaluated by a majority vote i.e., if all annotators have
annotated the same action or if an annotator might have missed or mislabeled an action.
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Figure 2. Annotation example with Elan annotation tool [28].

As a result, for the action case and the non-action case there were 1453 and 24,412 s of data,
respectively. Table 1 shows the amount of data (in seconds) for each player. This data set is
made available to the research community upon request. The annotators annotated the type of
volleyball actions such as under hand serve, overhead pass, serve, forearm pass, one hand pass, smash,
underhand pass and any other activity such as walking is considered to be non-action. Table 1 also
details the number of volleyball actions performed by each player.

Table 1. Data Set Description: Time taken by each player (ID) to perform actions and non-actions,
number and type of actions performed by each player (ID) and Dominant Hand (DH; Right(R) or
Left(L) ) information.

ID DH Action(sec) Non-Action(sec) # Actions Forearm Pass Onehand Pass Overhead Pass Serve Smash Underhand Serve Block

51 R 198 3055.25 120 40 3 16 0 29 28 4
Sy L 193.75 3061 125 36 2 14 32 15 0 6
S3 R 191 3030 116 50 3 3 34 25 0 1
S5 R 176.75 3054.5 124 46 2 19 21 28 4 4
Se R 228.5 3009 150 30 1 70 0 12 30 7
Sy R 135.5 3080.25 106 39 4 13 0 14 34 2
Sg R 146.25 3077.5 105 34 4 16 34 17 0 0
So R 183.25 3044.5 144 42 1 58 33 4 1 5

total - 1453 24,412 990 317 20 209 154 144 97 49
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3.2. Auto-tagging System Prototype

The proposed system performs classification in two stages i.e., step (2) and step (3). In step (2)
binary classification (detection of start and end times of an action) is performed to identify if a players
is performing an action or not using supervised machine learning at frame level [29]. After detecting
the start and end times of an action, in step (3) (Figure 1), the type of volleyball action performed
by the players is classified using supervised machine-learning algorithms. Once the action type is
identified, its information along with the timestamp is stored in a repository for indexing purposes.
Information related to the video, players and actions performed by the players are indexed and stored
as documents in tables or cores in the Solr search platform [41]. An example of a ‘Smash’ indexed by
Solr is shown as below:

"id":"25_06_Player_1_action_2"
"player_id":["25_06_Player_1"],
"action_name":["Smash"],
"timestamp":["00:02:15"],
"_version_":1638860511128846336

An interactive system is developed to allow player and coaches, access to performance data
by automatically supplementing video recordings of training sessions and matches. The interactive
system is developed as a web application. The server-side is written using the asp.net MVC framework.
The front-end is developed using HTML5/Javascript. Figure 3 shows a screen shot of the front-end
of the developed system. The player list and actions list are dynamically populated by querying the
repository. The viewer can filter the actions by player and action-type (e.g., overhead pass by player 3).
Once a particular action item is clicked or taped, the video is automatically jumped to the time interval
where the action is being performed.

Currently the developed system lets a user filter types of action performed by each player,
the details of the interactive system is described in [27,28].

Player 1
Player 2
Player 3
Player 4
Player 5
Player 6
Block
Forearm Pass
One Hand Pass

Overhead Pass

Serve

Smash

Underhand Serve

FOREARM PASS,00.07:34 --UNDERHAND SERVE,00

Figure 3. Interactive front-end system [28].
4. Super-Bagging Method

This section describes the super-bagging method for training a classifier for imbalanced data.
We call the method super-bagging because, like bagging methods, an ensemble is trained on multiple
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subsets of the data, but in contrast to regular bagging methods, rather than taking random subsets of
the data, our method builds on top of balanced undersampling and unbalanced full sampling data sets.

—Acc—>| D1 0/1 i

—Mag>» D1 [0/1

—Gyr>»| D1 |—0/1—»
0/1
—Baro»| D1 0/1
M0t'1el 0/1—
Fusion
—Acc—>»| D2 0/1 |
i 0/1
—Mag>» D2 [0/1
—Gyr>»| D2 |—0/1—>»
—Baro» D2 0/1

Figure 4. Super-bagging method for fusion of all sensors (the grid search is only for sensor fusion,
in case of one sensor such as an accelerometer there is no grid search but late fusion), Mp, and Mp,
represent the machine-learning models trained on D; and D; respectively.

Given a standard training set D of size n (i.e., observations), super-bagging generates two new
training sets Dy with size n and D, with size n’. All observations are repeated in Dy, so D = Dj.
However, D, contains a subset of D1. Let n observations be distributed into two classes m; and m;,
with t; and t, observations respectively, so that n = t; + t; and t; > t;. Then, let n’ = t; + ), where
th, = t; (i.e, ' = 2t;). This results in two training sets, one of which is a full imbalanced training set
(D1) and the other is a balanced training set (D). Two machine learning models have been trained
using training sets D1 and D,. Each of the model results are fused using decision (late) fusion method
i.e., labelling an instance as a non-action event in case of unanimity only. In case of fusion of sensors,
the number of votes to label an instance as non-action is searched through a grid-search algorithm.
The architecture of the algorithm is shown in Figure 4.

5. Experimentation

This section describes the machine-learning models training using balanced, imbalanced and
super-bagging methods for action and non-action events recognition.

5.1. The Data Set

We evaluated the super-bagging method using the data set [28] which we collected with the
aim of developing volleyball action recognition components to be used in interactive digital-physical
volleyball exercise applications [42]. This data set was collected during a volleyball training session
as described in Section 3. The data set is highly imbalanced: around 94% of the data belong to the
non-action class. Hence, different machine-learning approaches need to be explored in this setting.
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5.2. Feature Extraction

We have extracted time domain features by applying basic six statistical-functionals such as
mean, standard deviation, median, mode, skewness and kurtosis which are extracted over a frame
length (i.e., time window) of 0.5 seconds 50% overlapping frames step (1) of Figure 1. The gyroscope,
magnetometer and accelerometer data are three-dimensional, which is why we get 6 x 3 features over
a frame for the sensors and barometer is single-dimensional data which results in 6 x 1 features for
each frame in total.

5.3. Classification Methods

The classification experiments were performed using six different methods, namely decision trees
(DT, with leaf size of 10, where the leaf size is optimized through a grid search within a range of 1 to 20),
nearest neighbor (KNN with K = 5, where K parameter is optimized through a grid search within
arange of 1 to 10), linear discriminant analysis (LDA), Tree Bagger (TB, with 50 trees and a leaf size
of 10 where leaf size is optimized through a grid search within a range of 1 to 20), Naive Bayes (NB,
with kernel distribution assumption optimized through a grid search for kernel smoothing density
estimate, Multinomial distribution, Multivariate multinomial distribution and Normal distribution)
and support vector machines (SVM, with a linear kernel (optimized by trying different kernel function
i.e., linear, Gaussian, RBF and polynomial) with box constraint of 0.5 (optimized by trying a grid
search between 0.1 to 1.0), and sequential minimal optimization solver (optimized by trying different
solvers i.e., iterative single data algorithm, L1 soft-margin minimization by quadratic programming
and sequential minimal optimization )).

The classification methods are implemented in MATLAB (http://uk.mathworks.com/products/
matlab/ (December 2018)) using the statistics and machine-learning toolbox. The classifier hyper-parameters
maximum ranges (such as K = 10 ) are set using hit and trial method. A leave-one-subject-out (LOSO)
cross-validation setting was adopted, where the training data do not contain any information of the
validation subjects. To assess the classification results, we used the Unweighted Average Recall (UAR)
instead of overall accuracy as the data set is highly imbalanced. The unweighted average recall is the
arithmetic average of recall of both classes.

5.4. Experiments

The overall action frames for eight players were 5812 frames while the in non-action case there
were 97,648 frames. One can understand from the samples that the data set is imbalanced. To evaluate
the performance of the IMU sensor, we trained machine-learning models using balanced as well as
imbalanced data sets for the recognition of action and non-action frames. It is done using different
classifiers and we evaluated their effectiveness for handling balanced and imbalanced data sets
(i.e., IMU’s sensors) for volleyball action recognition as some classifier are less affected by the class
imbalance nature such as NB and KNN. We have conducted mainly three experiments as follow:

e  Experiment 1 (Mp,): training is performed on the imbalanced data sets (i.e., D;) in terms of
action and non-actions and validation is performed on the imbalanced data set (i.e., D;) in
leave-one-subject out settings. The prior-probabilities of classifiers are set according to the classes
distribution.

o  Experiment 2 (Mp,): training is performed on the balanced data sets (i.e., D;) in terms of actions
and non-actions, where same number of non-actions events (selected randomly) and action events
for each player are used. The validation is performed on the imbalanced data set (i.e., D;) in
leave-one-subject out settings. The prior-probabilities of classifiers are set to be equal for both
classes as in this setting the distribution of classes is same.

e  Experiment 3 (Mp, + Mp,): training is performed using the super-bagging method and
validation is performed on the imbalanced data set in leave-one-subject out settings.
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6. Results and Discussions

This section describes the results of machine-learning models for action and non-action events
and demonstrates the discriminative power of different IMU sensors placed on the dominant and
non-dominant hand.

6.1. Experiment 1 (Mp, ): Imbalanced Learning Method

The UAR of the dominant hand and non-dominant hand for all sensors are shown in Tables 2
and 3 respectively. These results indicate that the non-dominant hand (83.99%) provides better UAR
than the dominant hand (79.83%), with NB being the best classifier for action detection. The results
indicated that the accelerometer provides the best averaged UAR of 69.83% for the dominant hand and
73.24% for the non-dominant hand. The averaged UAR also indicates that the accelerometer (74.14%)
and magnetometer (73.52%) provide better UAR on the non-dominant hand than on the dominant
hand. The average UAR of fusion results indicate that the non-dominant hand provides better results
(74.42%) than the dominant hand (70.81%).

Table 2. Imbalanced Learning method results for the dominant hand: Unweighted Average Recall (UAR) in %
along with the standard deviation (Std) of UAR for each fold (i.e., subject) of classification. The bold figures indicate
the best results.

Sensor TB DT KNN NB SVM LDA Avg.

UAR Std UAR Std UAR Std UAR Std UAR Std UAR Std UAR

Acc. 70.17 0.02 7083 0.02 6883 0.02 79.83 003 59.77 0.02 6956 0.03 69.83
Mag. 60.67 0.03 6310 0.02 5712 0.02 7416 0.03 50.00 0 6771 0.03 6213
Gyr. 6155 0.03 64.07 0.03 6078 002 7458 003 5335 002 648 003 63.20
Baro. 5843 0.03 59.22 0.05 5653 0.04 5724 006 53.01 0.01 56.78 0.03 56.87
Fusion 7037 0.07 7075 0.10 6877 0.08 8030 0.02 6014 002 7453 0.03 70.81

Table 3. Imbalanced Learning method results for non-dominant hand: Unweighted Average Recall (UAR) in %
along with the standard deviation (Std) of UAR for each fold (i.e., subject) of classification. The bold figures indicate
the best results.

Sensor TB DT KNN NB SVM LDA Avg.

UAR Std UAR Std UAR Std UAR Std UAR Std UAR Std UAR

Acc. 68.59 0.05 7153 013 7298 0.12 8399 0.06 6647 008 7590 0.09 7324
Mag. 5841 0.02 76.61 011 6767 0.09 8083 011 6675 0.09 7574 0.10 71.00
Gyr. 60.37 0.03 6142 0.05 5885 0.03 7571 0.07 50.00 0 6470 0.04 6184
Baro. 5216 0.02 4086 021 3856 0.22 3153 021 50.00 0 50.53 0.00 43.94
Fusion 7164 006 7185 024 6693 025 7958 0.08 7359 0.10 8293 0.09 74.42

6.2. Experiment 2 (Mp,): Balanced Learning Method

The UAR of dominant hand and non-dominant hand for all sensors are shown in Tables 4
and 5 respectively. These results indicate that the dominant hand (84.18%) provides better UAR than
the non-dominant hand (82.16%), with TB being the best classifier for action detection. The results
indicated that the accelerometer provides the best averaged UAR of 82.29% for the dominant hand
and 78.26% for the non-dominant hand. The averaged UAR also indicates that all sensors provide
better UAR on the dominant hand than on the non-dominant hand. The average UAR of fusion results
indicate that the dominant hand provides better results (81.00%) than the non-dominant hand (78.26%).
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Table 4. Balanced Learning method results for the dominant hand: Unweighted Average Recall (UAR) in % along
with the standard deviation (Std) of UAR for each fold (i.e., subject) of classification. The bold figures indicate the

best results.

Sensor TB DT KNN NB SVM LDA Avg.
UAR Std UAR Std UAR Std UAR Std UAR Std UAR Std UAR

Acc. 8418 0.03 8199 0.02 8250 0.02 8219 0.03 8235 002 8052 0.02 8229
Mag. 8171 0.02 7747 0.02 7486 002 7925 0.04 7950 003 79.08 0.03 78.65
Gyr. 7791 0.05 7372 0.03 7548 0.04 7594 0.04 7417 004 7278 0.03 75.00
Baro. 5851 0.09 5719 006 5680 0.08 5930 008 6145 0.03 61.01 0.03 59.04
Fusion 83.10 0.03 7946 0.03 80.69 003 8083 0.04 8157 0.03 8032 0.02 81.00

Table 5. Balanced Learning method results for non-dominant hand: Unweighted Average Recall (UAR) in % along
with the standard deviation (Std) of UAR for each fold (i.e., subject) of classification. The bold figures indicate

the bestresults.

Sensor TB DT KNN NB SVM LDA Avg.
UAR Std UAR Std UAR Std UAR Std UAR Std UAR Std UAR

Acc. 8216 0.03 7890 0.03 8033 0.03 81.71 0.02 8128 0.03 79.84 0.04 80.70
Mag. 7759 0.04 7480 0.03 6959 0.04 7531 004 7669 0.04 7590 0.05 7498
Gyr. 76.79 003 7284 0.02 7342 0.03 7474 004 7535 0.03 7510 0.04 7471
Baro. 53.07 0.04 5157 0.03 5022 0.04 4946 0.06 55.88 0.02 56.07 0.02 5272
Fusion 7959 003 7670 0.03 76.18 0.03 7825 0.03 79.60 004 7924 0.04 78.26

6.3. Experiment 3 (Mp, + Mp,): Super-Bagging Method

The UAR of dominant hand and non-dominant hand for all sensors are shown in Tables 6
and 7 respectively. These results indicate that the dominant hand (84.19%) provides better UAR than
the non-dominant hand (82.93%), with TB being the best classifier for action detection. The results
indicated that the accelerometer provides the best averaged UAR of 82.43% for the dominant hand
and 80.91% for the non-dominant hand. The averaged UAR also indicates that the all sensor provide
better UAR on the dominant hand than on the non-dominant hand. The average UAR of fusion
results indicates that the dominant hand provides better results (81.91%) than the non-dominant

hand (80.08%).

Table 6. Super-bagging results for the dominant hand: Unweighted Average Recall (UAR) in % along with the
standard deviation (Std) of UAR for each fold (i.e., subject) of classification. The bold figures indicate the best results.

Sensor TB DT KNN NB SVM LDA Avg.
UAR Std UAR Std UAR Std UAR Std UAR Std UAR Std UAR

Acc. 84.19 0.03 8270 0.02 8250 0.02 8219 0.03 8235 0.02 80.67 0.02 8243
Mag. 8167 0.02 7797 0.02 7486 0.02 7918 0.04 7950 0.03 79.08 0.05 7871
Gyr. 7791 0.05 7434 003 7548 0.04 7595 004 7417 004 7280 0.03 7511
Baro. 5851 0.09 5725 0.06 56.80 008 5932 008 6145 0.03 61.04 0.03 59.06
Fusion 8287 0.03 8022 0.03 8059 003 8124 003 8158 003 8066 002 8119

Table 7. Super-bagging results for non-dominant hand: Unweighted Average Recall (UAR) in % along with the
standard deviation (Std) of UAR for each fold (i.e., subject) of classification. The bold figures indicate the best results.

Sensor TB DT KNN NB SVM LDA Avg.
UAR Std UAR Std UAR Std UAR Std UAR Std UAR Std UAR

Acc. 8240 0.03 7938 0.06 8030 0.05 8293 0.04 8050 0.04 7993 0.05 80.91
Mag. 7759 004 7895 004 7136 006 7789 006 7721 0.04 7782 0.05 76.80
Gyr. 7679 0.03 7205 0.03 7315 0.03 7237 0.04 7535 0.03 7463 0.04 74.06
Baro. 53.07 0.04 4735 010 4566 010 3980 011 55.88 0.02 56.07 0.02 49.64
Fusion 80.11 0.03 80.12 0.08 7765 0.08 8087 006 80.13 004 8158 0.05 80.08
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6.4. Discussion

The results reported above indicate that Exp 3 (i.e., super-bagging) improved the UAR and
provided the best average UAR of 81.19% and 80.08% for dominant and non-dominant hand,
respectively. We have also noted that the best UAR was obtained using the TB classifier. TB with
super-bagging improve the UAR of fusion for non-dominant hand from 79.59% to 80.11% but results
in slight decrease in UAR for the dominant hand from 83.10% to 82.87%.

It is demonstrated that the imbalanced learning provides better UAR (83.99%) for the
non-dominant hand using a Naive Bayes classifier than balanced learning, as Naive Bayes does
not work with an assumption of balanced distribution. The balanced learning provides better UAR
of 84.18% for the dominant hand using the tree bagger classifier than imbalanced learning. It could
be due to the reason that the dominant hand requires less information (i.e., the movements of the
non-dominant hand do not vary a lot while performing a volleyball action) for action modelling than
the non-dominant hand. The super-bagging method provides the best UAR of 84.19%. To get further
insight of the results we reported the confusion matrix of the best results as shown in Figure 5.
To compare the result of super-bagging (84.19%) and balanced learning (84.18%), we set a null
hypothesis that both methods provide the same results for a mid-p value McNemar test. The test
rejects the null hypothesis with p = 2.0432 x 1073,

. Super-bagging ., Balanced .cal Imbalanced
§nonAction 17375 (82.2% 17211 | 82.4% 2198 |97.7%
§ action| 804 | 5008 [86.2% | 815 | 4997 | 86.0% | 3337 | 2475 42.6%
precision 99.0% 22.4% 99.0% 22.5% 96.6% 53.0%
nonAction action nonAction action nonAction action
Predicted Class Predicted Class Predicted Class
UAR=84.19 % UAR=84.18 % UAR=70.17 %

Figure 5. Dominant Hand: Confusion Matrices for tree bagger classifier for all learning methods i.e.,
balanced, imbalanced and super-bagging methods.

However it is also noted that imbalanced learning (83.99% with NB) is more accurate in
capturing the non-dominant hand information than balanced learning (82.1% with tree bagger) and
super-bagging method (82.93% with NB). To get further insights of the of the results, we reported
the average UAR in Table 8. From Table §, it is noted that the super-bagging method provides better
averaged UAR in 8 out of 10 cases than balanced and imbalanced methods.

Table 8. Results summary: The bold figures indicate the best averaged UAR (%) of each sensor for
Dominant Hand (DH) and Non-dominant Hand (NDH).

Imbalanced Balanced Super-Bagging
DH NDH DH NDH DH NDH

Acc. 69.83 7324 8229 80.70 82.43 80.91
Mag. 62.13 71.00 7865 7498 78.71 76.80
Gyr. 6320 6184 75.00 7471 7511 74.06
Baro. 56.87 4394 59.04 52.72 59.06 49.64
Fusion 70.81 7442 81.00 7826 81.19 80.08

Sensor

The previous study [43] provided us with interesting results regarding the role of the non-dominant
hand in volleyball action and non-action classification. However, in that study, we used an imbalanced
learning method which suggests that the non-dominant hand provides more accurate results than
the dominant hand. The current study uses both balanced and imbalanced learning and our newly
proposed super-bagging method, and suggests that the dominant hand provides more accurate results
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than the non-dominant hand for balanced learning and super-bagging method. It is also demonstrated
that the balanced learning provides higher average UAR (81.00%) than imbalanced learning (70.81%),
which are even more marked with ‘super-bagging method” with a UAR of 81.19% for the dominant
hand. It is indicating that super-bagging can capture more information than balanced and imbalanced
learning methods. However, these results need further research to investigate/analyze different data
sets for multiple applied machine-learning problems such as emotion recognition and type of volleyball
action recognition.

The previous work detailed in Section 2 is focusing on a small number of sensors instead of the
evaluation of four sensors which are used in this study. It is also noted that while there are quite a few
studies focused on volleyball action modelling, most of the studies take into account the role of the
dominant hand particularly for volleyball action modelling and the role of the non-dominant hand
is less explored in sports related activities. This study demonstrates the role of both dominant and
non-dominant hand movements. The proposed novel method (i.e., super-bagging method) is a fusion
of imbalanced and balanced learning method which results in using the full data set (no missing
information) for training and avoids the ‘curse of imbalanced data set’ using only two classifiers in
an ensemble. The potential application of the proposed models can be interesting for fatigue and
stamina estimation [8], where players/trainers are only interested in determining the amount of actions
performed regardless of their type.

7. Conclusions

This article demonstrated the relevance of a balanced (undersampling method), imbalanced
(full sampling) and super-bagging method for volleyball action modelling. Machine-learning models
operating on IMU'’s sensors provided UAR of up to 84.19%, which is well above the chance level of
50%. The undersampling method provided more accurate results than the full sampling method which
is more marked with our super-bagging method. It is also noted that the undersampling method
provided better results for the dominant hand than full sampling method. However, the full sampling
method provided better results for the non-dominant hand compared to the undersampling method.
It is also noted that the super-bagging method provides a better averaged UAR in 8 out of 10 cases for
sensors than balanced and imbalanced methods. Hence, demonstrating the potential of a super-bagging
method for IMU’s sensor data. The difference is small but it is the first testing of a super-bagging
method which encourages further exploration of this method on different machine-learning problems
and by also adjusting the weights of both classifiers in super-bagging ensemble and exploring score
fusion methods. In the future, we aim to extend this research by incorporating different frequency
domain features such as spectrogram, and to employ the super-bagging method to evaluate its
generalizability particularly for multi-class problems.
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