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Abstract: The ability of a robot to detect and join groups of people is of increasing importance in social
contexts, and for the collaboration between teams of humans and robots. In this paper, we propose a
framework, autonomous group interactions for robots (AGIR), that endows a robot with the ability
to detect such groups while following the principles of F-formations. Using on-board sensors, this
method accounts for a wide spectrum of different robot systems, ranging from autonomous service
robots to telepresence robots. The presented framework detects individuals, estimates their position
and orientation, detects groups, determines their F-formations, and is able to suggest a position for
the robot to enter the social group. For evaluation, two simulation scenes were developed based on
the standard real-world datasets. The 1st scene is built with 20 virtual agents (VAs) interacting in
7 different groups of varying sizes and 3 different formations. The 2nd scene is built with 36 VAs,
positioned in 13 different groups of varying sizes and 6 different formations. A model of a Pepper
robot is used in both simulated scenes in randomly generated different positions. The ability for the
robot to estimate orientation, detect groups, and estimate F-formations at various locations is used to
determine the validation of the approaches. The obtained results show a high accuracy within each
of the simulated scenarios and demonstrates that the framework is able to work from an egocentric
view with a robot in real time.

Keywords: human–robot interaction; social robotics; F-formations; group interactions; Kendon
formations

1. Introduction

Group interactions are common and occur naturally in human interactions. A mobile
robot with social interaction capabilities must be able to engage in dyadic interactions
(a robot and a human) or group interactions (a robot and multiple humans). To promote a
conducive interaction, robots should adhere to the norms and behaviours in group interac-
tions. To this end, mobile robots need to develop methods to follow socially appropriate
behaviour, such as joining the group interaction in a manner that is acceptable to humans.

In the literature, a lot of focus has been dedicated to dyadic interaction [1] and less
so on group interaction per se [2]. For example, there are works which aim to design
models for robots to appropriately approach a human to initiate a conversation [3,4] and to
maintain appropriate distance with a human during interaction [5]. With a recent shift of
focus towards group interaction, however, new application areas have emerged, such as
surveillance [6–8], playing games with groups of people [9,10], studying human behaviour
in a group interaction [2,11], and tracking groups [12–15]; while relevant for understanding
group dynamics, there still remains a gap in the research on how to ensure that robots are
able to join an ongoing group interaction. Most of the works mentioned here do not use a
robot in their experiments and some works which do use a robot consider the robot to be a
part of the group.
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For a robot to join an ongoing group interaction, both group detection and group
pattern identification are important aspects to be considered. Two theories dominate in
the literature, namely proxemics and F-formations. Proxemics was proposed by Hall and
considers the interpersonal distances between people in a face-to-face interaction [16].
Kendon proposed the theory of F-formations [17,18], which are said to arise "... whenever
two or more people sustain a spatial and orientational relationship in which the space between them
is one to which they have equal, direct and exclusive access." (p. 209, [17]). These are spatial
(group) patterns in which people configure themselves during social interactions. These
theories are discussed in-detail in Section 2.1.

In this context, most of the functional models which consider group detection rely on
cameras placed externally in the scene, that makes these systems impractical or unfeasible
to implement on a mobile robot [1].

Additionally, other methods rely on learning algorithms, which requires training
models on large datasets of diverse group interactions [13–15,19]. The number of people in
the groups and the number of groups in the scene are not constant and vary accordingly,
i.e., people could leave/join a group or a group could leave/join the scene. The exocentric
approaches also raise significant privacy concerns [20–25].

Regarding group patterns estimation, not many functional models are proposed. Some
of our works [26,27] are proposed to estimate F-formations, but study small groups sizes,
i.e., two or three people per group. Recently, few works are proposed in regards to mobile
robot using on-board sensors to interact with group. However, the number of groups in the
scene is limited, i.e., one group [28] and two groups [29] with only two or three people per
group, and limited patterns, i.e., four patterns, were studied. These research gaps suggest a
need for robot-centric approaches, which detect groups and estimate F-formations to join
the ongoing social group interactions in the scene.

To address these gaps, we propose a new framework called autonomous group in-
teractions for robots (AGIR), for a robot to join ongoing social group interactions from an
egocentric perspective. The framework comprises four main steps—processing egocentric
data, detecting groups, estimating F-formations, and estimating optimal position for the
robot in the group to join the interactions. While processing egocentric data, the robot
perceives the scene using on-board sensors and extracts hand-engineered features. These
features are used to detect groups in the scene in the second step. In the third step, the robot
recognizes the patterns of the groups by estimating F-formations. Finally, in the fourth step,
the robot finds the optimal spot and joins the ongoing social group interactions, as shown
in Figure 1. The steps in the red rectangle in the figure are addressed in this paper.
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Figure 1. In our framework, the robot joining an ongoing social group interaction involves four
steps. First, robot perceives the scene using on-board sensors and extracts hand-engineered features.
Second, the features are used to detect groups in the scene. Furthermore, the robot recognizes the
patterns of groups by estimating the F-formations, and, finally, the robot finds the optimal spot and
joins the ongoing social group interactions. The steps in the red rectangle—detecting groups and
estimating F-formations—are addressed in this paper.
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In this paper, we propose approaches to estimate the orientational information of
people, detect groups, and estimate F-formations from an egocentric view in regard to
mobile robots. The spatial and orientational information of people are estimated by pro-
cessing the egocentric data, which are used to detect the groups in the scene and estimate
the F-formations. Usually, robots use sensors such as lasers, depth cameras, sonar, and
more to extract the spatial information of people in a scene. However, the orientational
information is difficult to process as people are far away from the robot, in different poses,
and at times not facing the camera. An approach which deals with these from an egocentric
view is proposed. These features are used to develop an approach to detect groups and the
responses are used to develop approaches to estimate the F-formations in the scene. These
said approaches are integrated in the AGIR framework for the robot to join the ongoing
social group interactions in the scene.

The major contributions of our work in this paper are: (a) a novel approach for human
orientation estimation based on the visibility of facial keypoints; (b) a new approach to
detect and identify interaction groups using the concept of O-spaces from F-formation and
transactional segments; (c) a new approach for estimating F-formations using a polynomial
support vector machine (SVM) classifier; (d) a novel algorithm for estimating F-formations
by analysing the patterns of group interactions; (e) an AGIR framework to allow the theo-
retical approach to be incorporated into mobile robots with egocentric camera placement;
(f) evaluation of the approaches from an egocentric view, using two simulation scenes, one
based on the real-world dataset and second based on our previous work which consists of
multiple groups (13) positioned in different (6) formations.

The paper is organized as follows: Section 2 presents information on F-formations
theory and an overview of previous works. Section 3 presents our approaches in detail,
with individual components involved in every approach. Section 4 presents details of
the coffee dataset, and the simulation scenes built to evaluate our approaches. Section 5
describes about the evaluation process, ground truth annotation process, and the metrics
used to evaluate our approaches. The evaluation of our approaches and the concerned
results are presented in Section 6. Section 7 presents the limitations of our framework
and future research directions while addressing them. Finally, we conclude the paper in
Section 8.

2. Background and Related Works

In this section, proxemics and F-formations theories are detailed, along with related
works in the context of our work.

2.1. Background

In interactions, people tend to position themselves based on different factors, such as
culture, gender, status, age, familiarity, relationship, pose, etc., see [30]. Proxemics addresses
the interpersonal distances between people as shown in Table 1. Many works [31–33] have
used proxemics and performed experiments. Their investigations suggest that human and
robot interaction occurs in personal and social spaces. Particularly, social spaces are used
for social interactions, and also substantially reflect and influence the social relationships of
people to each other [34,35].

Table 1. Interpersonal distances of people.

Spaces Distances between People Interactions between

Intimate 0–0.5 m Couples or partners
Personal 0.5–1.2 m Friends or family

Social 1.2–3.7 m Colleagues or unknown
Public above 3.7 m Speaker and people (public speeches)
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These works discuss the spaces between people mostly in dyadic interactions, where
people in group interactions tend to possess spatial and orientational relationship with each
other. The group members configure themselves into different patterns, regarding which,
four standard F-formations, independent of the physical constraints [17,18], were proposed.
They are: vis-a-vis, side-by-side, L-shape, and circular formations. The vis-a-vis formation is
when two people are facing each other while interacting. The side-by-side formation is when
two people stand close to each other and face in the same direction while conversing. The
L-shape formation is when two people face each other perpendicularly and where it appears
as if they are standing on the two edges of the letter “L”. The circular formation is when
three or more people are conversing in a circle. F-formations define three spaces. O-space
is the empty space between people involved in the interaction. P-space is the narrow strip
on which people stand while conversing. R-space is the space beyond the P-space, as seen
in Figure 2e. The standard F-formations are shown in Figure 2.

(a) Vis-a-Vis (b) Side-by-Side (c) L-shape

(d) Circular (e) Circular

Figure 2. (a–d) present the four F-formations. (d,e) represent the same circular formation, (d) presents
the ego-centric view, and (e) presents the top view. F-formations define three spaces. O-space is the
empty space between people involved in the interaction. P-space is the narrow strip on which people
stand while conversing. R-space is the space beyond the P-space, as seen in (e).

In addition, the authors from [36,37] proposed three formations that are formed in
a spatially constrained environment. The triangular formation occurs when two people
standing close to each other are facing one person standing at a farther distance from
them. The rectangular formation is formed in board meeting rooms or at dinner tables. The
semi-circular formation occurs when three or more people are focusing on the same task
while interacting, such as in an art gallery in front of an art piece, shown in Figure 3.

Most of the works consider only the four standard F-formations, whereas in our case
we consider six formations, which are: vis-a-vis, L-shape, side-by-side, circular, triangular, and
semi-circular formations. The rectangular formation is a peculiar design and mostly found in
a meeting room or around the dinner table, and we could not come up with an approach
for this formation because of its peculiar design.
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(a) Triangular (b) Triangular (c) Semi-circular

(d) Semi-circular (e) Rectangular

Figure 3. (a,c,e) present the constraint-based formations. (a,b) represent the triangular formation.
(a) presents the top view whereas (b) presents the ego-centric view. (c,d) present the semi-circular
formation, (c) the ego-centric view, and (d) the top view.

2.2. Related Works

Related works associated with the main contributions of this paper are presented
sequentially in the order of the stages in the framework, i.e., head orientation, group
detection, and estimating F-formations, as presented in Figure 1.

2.2.1. Head Orientation

Developing methods to automatically detect groups from an egocentric view requires
addressing sub-challenge—head pose detection, face orientation, or body orientation
detection. There are many approaches for estimating head pose [38]. These approaches are
used in different applications or scenarios, based on whether the approaches can be roughly
categorized into two classes: interaction-based methods [39–42] and non-interaction-based
methods [43–45]. In interaction-based methods, head orientation is primarily used to
determine head pose, in particular, yaw with intervals. For example, the head orientation
of a person from left to right is divided into −90◦, −45◦, 0◦, 45◦, 90◦. In non-interaction-
based methods, the approaches deal with head pose (yaw, roll, and pitch) of people from
close range, i.e., the exact degrees of orientation. For example, 35◦ yaw, 45◦ roll, 20◦ pitch.
When it comes to the detection of head pose in group interactions, in [39], it is argued that
many social interactions do not necessarily require a finer subdivision of the orientations.
Instead, few yaw angles or facing directions would suffice in the context of detecting social
interactions in groups. In this regard, in [40], orientation of head was estimated based
on the skin detection and discretized into eight different orientations. A weight image
is computed for five consecutive frames, but this work is in videos. A novel descriptor
was presented and named as a weighted array of covariances considering a multiclass
classification scenario using the head and body orientation [41]. Another method [39]
estimates head pose from an egocentric view in social interactions. The method uses a
Hough-based tracker [46] to track the non-rigid target and, finally, the target is segmented
using the GrabCut algorithm [47]. The work is in egocentric videos and the target image
is initialized when its frontal face is observed, which indicates the method would have
trouble when the person is not facing the camera. Head poses were used to detect groups
through a supervised clustering approach [48].

In sum, detecting groups from an egocentric view in regard to a mobile robot also
requires estimating the head/face pose and/or body orientation with little computation
cost, in real time, at times from farther distances (4–5 m). In addition, it is necessary to
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simultaneously detect poses for multiple people and—most importantly—estimate the
360◦ orientation, i.e., in all the directions, even when the person is not facing the camera.

2.2.2. Detecting Groups

In the literature, group detection was accomplished through different processes, such
as body-worn sensors [49,50], audio-based frameworks [51], clustering approaches [48,52],
deep learning [53], and more.

Our focus in regards to group detection is on robots joining a group interaction.
Regarding this, much of the previous works related to social positioning of robots in
groups use the sociology theory of F-formation, which discusses the social positioning of
people in groups. This theory models groups in the scene, based on sustained spatial and
orientational relationship among group members, which resulted in a good amount of
studies. Cristani et al. [6] proposed a Hough voting strategy, used to locate the O-space,
which in return provides the groups of conversing people. The O-space is an empty space
between a group of people involved in an interaction. Hung et al. [54] built a graph model
in which nodes represent the people and edges the pair-wise relation between people, using
which, an affinity is built to find the dominant set. Setti, in their work surrounding group
detection, proposed two different approaches. Another Hough voting strategy approach
was developed for detecting groups, which employs the weighted Boltzmann entropy for
scoring group hypothesis [55]. A new approach was developed to detect groups in still
images, presented based on a graph-cuts framework for clustering individuals. They are
able to systemise the F-formation theory through only the position and orientation of people,
and named the approach graph-cuts for F-formation (GCFF) [7]. Vascon et al. [8] developed
a game theoretic framework, embedding the socio-psychological concept of F-formations
and the biological constraints of social attention to detect groups by generating a frustum
of people to compute their affinity. Ricci et al. [56] proposes a joint learning framework
for the individuals’ heads, body orientations, and F-formations in videos. Zhang et al. [57]
proposed extracting features from individuals and classifying them as associates, singletons,
and members of F-formations using the frustum of attention of individuals in the scene.
A given person’s lower body is used for detecting the F-formations, which are obtained
by tracking the position and orientation of people in a scene [58]. Recently, deep learning
algorithms have also been proposed to detect groups. Long short-term memory, an artificial
recurrent neural network (RNN), is proposed and trained with the distance between the
camera and the person [59]. The person’s head orientation is used as an input feature
to detect the social interactions. Vazquez et al. [60] proposed deep affinity network for
clustering conversational interactants (DANTE), a novel deep affinity network to predict
the likelihood that two individuals in a scene belong to the same group, considering their
social context. A graph clustering framework is used with the predicted pair-wise affinities
to identify groups.

The presented works using the F-formation theory are designed for surveillance
applications and work with exocentric vision [6–8,54,55]. Most of these approaches assume
prior data, such as the spatial and orientational information of people in the scene. These
methods are unfeasible and could not be easily deployed on a physical mobile robot because
robots use on-board sensors and an egocentric camera view to perceive the scene [20].

2.2.3. Estimating F-Formations

In the literature, many works have studied F-formation patterns either to investigate
the different F-formation arrangements that emerged during an interaction between a
robot and human [61–63] or to investigate the quality of interaction between the robot and
humans [64–66]. However, only a handful of works have proposed approaches to recognise
the spatial patterns [28,29], which are further used to interact with groups of people.

Tseng et al. [29] proposed a complete system to interact with groups of people. This
system estimates F-formation patterns using the relative angle of group members for groups
of two and three people. The presented work performs better under two groups in the
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scene and only four patterns are studied. Recently, one more work has emerged, [28], there
a machine-learning-based method is proposed to interact with the group of people. The
approach considers poses of people in the group and uses the SVM classifier for predicting
the F-formation. The presented work performs only for a single group in the scene and
only four patterns are studied.

While these works have proposed approaches to estimate F-formations, they have
two limitations. The approaches study limited patterns and limited groups, i.e., four
patterns [28,29] and one group [28] or two groups [29] in the scene.

Recently, there are some deep learning based methods to join the ongoing social group
interactions [67,68]. These studies investigate how robots can learn to join the groups in
simulation and mainly deal with only one group in the scene. A wide variety of social
interaction datasets are required for deep learning approaches to be proposed.

3. Methodology

The proposed framework, AGIR, employs a human detection approach to process
egocentric RGB data captured by an on-board camera of the robot. The response from the
detection algorithm are the 2D poses of people in the scene, which imply the number of
people in the scene. These 2D poses encode the anatomical keypoints of humans. Using
these 2D poses, the orientation of people is calculated based on the visibility of 6 facial
keypoints. The spatial information of people is calculated using the on-board laser sensor.
The spatial and orientational information of people is used to localize people in the scene.
For this, dimensions of the scene are used, where image width represents the width of the
scene and laser is used for the depth of the scene.

After localizing people in the scene, the O-spaces are distributed equally in the scene.
With an assumption that each group has at least two members, the number of people in
the scene enumerates the maximum number of groups possible in the scene. This also
defines the number of O-spaces possible, which are then initialized (distributed) equally in
the scene. People are assigned to their nearest O-space based on the distance factor. Then
transactional segments are modelled for every individual in the scene and mapped onto
the concerned O-spaces within the groups. If the overlap region is above the threshold,
members are considered to belong to the same group. Otherwise, they are considered
as singletons and a new O-space is created for each of them. The O-spaces are updated
with new group members and mapped with the segments until unaltered groups are
obtained. This iterative process results in the number of O-spaces and the people assigned
to them, i.e., the number of groups and their members. Further proceeded with estimating
F-formations, a classification approach—a polynomial SVM classifier is trained for smaller
groups. For larger groups, the variance of the group, i.e., the variance of spatial and
orientational information of group members are used to estimate the F-formations. The
presented overview of our approach is shown in Figure 4.

 

Estimating F-formations 

Processing the Acquiring 

Scene 

 

 

 

   

 

 

 

 

 

 

 

 

  

 

 

 

 

Using robot 
sensors (RGB 
camera + Laser) 

Detecting Groups 
& their Members 

 

Variance of 
Group members 

 

Detecting Groups 

Spatial and 
Orientational 
information 
of people 

Initializing 
O-spaces 

 

Updating 
O-spaces 

 

Modeling Transactional 
Segments onto O-spaces 

 

A Polynomial 
SVM classifier 

 

Figure 4. Overview of our framework. The robot uses on-board sensors to process the scene and
extract the number of people, and the spatial and orientational information of people. These hand-
engineered features are used to detect the groups—using the O-spaces and the transactional segments
of people. Then, the patterns of the groups are recognized by estimating the F-formations using a
classifier and the variance of group members.



Multimodal Technol. Interact. 2022, 6, 18 8 of 29

3.1. Processing the Scene

The robot captures the scene from a built-in RGB camera and the image is processed
through a human detection algorithm [69]. The algorithm extracts the 2D poses of people
in the image and the poses encode the 18 anatomical keypoints of the humans, which
represent the skeleton structure of the humans. The number of poses imply the number of
people in the scene; furthermore, these poses are used to estimate the orientation of the
people in the scene. The spatial information of people is acquired through an on-board
laser sensor of the robot.

3.2. Estimating Orientation of the Individuals

Head pose is an important cue in understanding social interactions. At the same time,
estimating head pose is a complex task with multiple people in the scene, with few people
standing far away from the robot and not everyone is facing the robot. For these reasons,
social interaction analysis does not require a high accuracy of the orientations [48], but
rather uses facing directions, which is sufficient in the context of detecting social group
interactions.

In our framework, head orientation is modelled into four distinct classes, representing
the four facing directions, which are left, right, straight, and backward.

To estimate head pose, our approach considers visibility of six facial keypoints: torso,
nose, two ears, and two eyes. Our approach is named visibility of 6 facial keypoints (V6KP).
Based on the keypoint visibility in the source image, the head pose is classified into four
classes—i.e., facing centre, facing right, facing left, and facing about—as shown in Figure 5.
When a person is facing away from the camera, only the torso and ears keypoints are
visible in the image. That means the person is facing about, which is considered as 0◦ .
Then, proceeding in a clockwise direction, when the person is facing right, the person’s
right ear and eye, nose, and torso points are visible in the image, and the orientation is π/2.
Approximately all six facial keypoints are visible in the image when the person is facing
centre, which is considered as π. Finally, when the person is facing left, the person’s left ear
and eye, nose, and torso points are visible in the image, and the orientation is 3π/2, as
shown in Figure 5.

!
!

!!!!

!

Facing!About!-!0°!

Facing!Right!-!!!!

Facing!Center!-!!!

Facing!Left!-!!!! !

Head!Pose!

!

Figure 5. V6KP estimates the head orientation of people in the scene. The left part presents one image
of two groups interacting in the scene. One group comprises four members and the second group
comprises two members. The right part presents four images of the individual people being detected
and their head orientation is calculated for the first group. The cropped images of their head and
their facing direction along with orientation are presented in the right part.
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This form of estimation is very useful when the facial keypoints are translucent, lacking
clear visibility due to body occlusions, and the distance between people and camera is
larger. In practice, we found that this approximation is simpler and also produces good
results, which can be seen in Figure 5.

The dimensions of the scene—the width and depth of the scene—are acquired through
image and laser. The number of people in the scene, and the spatial and orientational
information of people are used to localize people in the scene. The next task for the robot
would be to detect groups in the scene.

3.3. Detecting Groups
3.3.1. Initializing O-Spaces

Social interaction occurs when two or more people form a group. The number of
people, n, in the scene is acquired through the human detection algorithm [69], and the
maximum number of groups, Mg, possible in the scene are equal to the number of people
by 2 (i.e., Mg = n/2). Each group has an O-space which indicates the number of groups is
equal to the number of O-spaces (On) in the scene. Then On = Mg, which are then equally
positioned (initialized) (Op) in the scene, as given in Equation (1).

Op =
d
2

lim
Mg→m

[
w

m + 1
∗ 1,

w
m + 1

∗ 2, ...
w

m + 1
∗m] (1)

where d and w are depth and width of the scene, Op is the position of O-spaces, and m is
the number of O-spaces in the scene.

The O-space is the empty space surrounded by the people involved in the social group
interaction [6]. We refer to an O-space in Kendon’s definition, e.g., as the space between a
group of people. This space could be represented as a circle [45], which is considered in
our case. The idea behind our approach is to assume the O-space as a circle with radius, r,
and initialize these spaces in the scene and optimize (rearrange) them in different steps,
while modelling the transactional segments and map them onto the spaces, which would
finally result in matching our initialized O-spaces to the original O-spaces of the groups in
the scene. This way, we control our initialized O-spaces and know the exact whereabouts
of our O-spaces and people assigned to them. Finally, we acquire the groups and their
members in the scene.

3.3.2. Optimizing O-Spaces

Once the O-spaces are initialized, we calculate the Euclidean distances between the
O-spaces and the people, as follows:

dij =
√
(OCix

− Hjx )
2 + (OCiy

− Hjy)
2 (2)

where dij is the distance of ith O-space to the jth person, (OCix
, OCiy

) is centre of the ith

O-space, and (Hjx , Hjy) is the spatial location of the jth person.

Based on the distance (dij), people are assigned to their nearest O-space. People
assigned to an O-space are considered as a group. Then, using group member’s spatial
locations, we calculate the mean of that particular group (G), as follows:

G =
1
n

n

∑
i=1

Hi(x,y)
(3)

where n represents the number of people in the group and H1(x,y)
, H2(x,y)

, ..., Hi(x,y)
are the

spatial locations of group members.
The O-spaces are then updated to the centre of the group using Equation (3). That is,

the O-spaces are moved in such a way that the centre of the O-space and the mean of the
group are equal. This positions the O-space in between the group members.
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3.3.3. Modelling Transactional Segment

Kendon [17,18] describes an individual having a space in front of them, which is di-
rectly accessible, as a transactional segment. Transactional segments denote the space used
to direct attention and carry out activities, such as watching television and manipulating
objects [18,36]. The size of this space varies based on the activity. During face-to-face con-
versation, this is a hypothetical circular sector (CS), extending outwards from the midriff of
a person’s body, covering ≈ 30◦ to the left and right [17,18,36,70]—mainly in the direction
of their head pose, as shown in Figure 6a. The transactional segment of each person is
described by a quintuple (xi, yi, θi, ri, φi)—the person’s pose (xi, yi, θi), the field of view
(ri, φi), with the radius (ri), and the opening angle (φi).
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Figure 6. (a) The person and their transactional segment. (b) The circle is the O-space and the black
shaded region indicates the overlap (mapping) of person’s transactional segment with the O-space.

3.3.4. Modelling Groups

Once the O-spaces are updated, the transactional segments of people in the scene
are projected onto the O-spaces, (as seen in Figure 6b), which results in an overlapping of
transactional segments with the O-spaces. In our scenario, a person belongs to the group if
their overlapping area, i.e., their transactional segment overlapping with the concerned
O-space, is greater than the given threshold. If the overlapping area of a person is less than
the threshold, then that person is treated as a singleton and provided with an individual
O-space with a centre, as given in Equation (4).

O− spacecenter(Oc) = rp ∗ (sin θ + x, cos θ + y) (4)

where rp is the radius of a person, (x, y) are co-ordinates of person, and θ is the orientation
of the person.

Once all the persons in the scene belong to at least one O-space. The Euclidean distance
between the O-spaces are calculated to merge the intersecting ones, i.e., if two O-spaces
intersect, then they are merged into one O-space to form one group. This optimization
(iteration) process continues until the groups are stable (unaltered). This process results
in the detection of groups (O-spaces) and their members. We name our approach detect
groups using O-space (DGO), which is presented in Algorithm 1.
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Algorithm 1: Detecting Groups
Data: Spatial locations (x, y) and orientations (θ) of people in the scene
Initialization of O-spaces in the scene
Assign people to their nearest O-space
while groups are unaltered do

Compute the mean of the group members;
Apply update: O-space← (O-space_centre = mean of group);
Modelling the transactional segments of people in the scene;
if group members transactional segment overlaps with O-space above threshold then

Same Group;
else

Different group;
Ignore people (singletons) whose transactional segment does not overlap
above threshold with concerned O-space;

Create new O-spaces for each of these singletons;
Merge two O-spaces if they intersect;

Result: Groups and their members

If the algorithm does not converge and cannot provide unaltered groups twice consec-
utively, then the current image frame is dropped and the process interrupts until the next
frame is captured.

3.4. Estimating F-Formations

Estimating F-formations is an important step for a robot to become part of an ongoing
social group interaction. F-formations denote different patterns in which people stand in
group conversations. Based on the pattern, the robot could analyse the empty spots in
the group and join the social group interaction, as presented in [27]; while F-formations
denote typical patterns, the exact formation can deviate from the pattern significantly,
thus causing uncertainty. To deal with uncertainties, we need one of the most robust
prediction model based on statistical learning that analyses the data and then classifies the
groups into different F-formations. The corresponding approach is denoted as estimating
F-formation classifier for the robot (EFCR). In this aspect, a classification approach that is
suitable with a relatively small amount of training data, which deals with multiple classes,
works efficiently with categorical input variables, and performs faster, i.e., in real time, is of
interest. An SVM classifier fulfils the requirements, which is considered as a classification
approach. The core idea of SVM is to find a maximum marginal hyperplane (MMH) that
best divides the dataset into classes. In case of linear data, SVM generates hyperplanes
which segregates the classes in the best possible way. In cases of non-linear data, SVM uses
a technique called the kernel trick to transform the low-dimensional input space into a
high-dimensional space. Then, it segregates the data easily using linear separation. This
technique helps in building a more accurate classifier in non-linear separation problem.
Kernel has various types of functions, one of them is polynomial, which is useful for a
non-linear hyperplane [71–73].

A polynomial kernel is defined as the product between two vectors of features, and
the sum of the multiplication of each pair of input values with a degree.

K(x, xi) = c + ∑∑∑(x ∗ xi)
d (5)

where x and xi are vectors of features in the input space, d is the degree of the polynomial,
and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order
terms in the polynomial. The degree needs to be specified manually in the learning
algorithm.
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An SVM classifier is a statistical model, which learns the function f, when provided
with input feature vector X, and maps to the output label y, i.e., f : X → y. This learnt
function, f, is used with the test data (new input), X, to predict the result, y.

In our scenario, the input feature vector X = [x1, y1, θ1, x2, y2, θ2, . . . , xn, yn, θn], the
spatial information (x1, y1, x2, y2, . . . , xn, yn), and orientational information (θ1, θ2, . . . , θn)
of people in the group. A unique label is assigned to different formations, which are
considered as output, y. These input feature vectors are mapped to output labels, which
are used to learn a function in the training phase. Then, in the testing phase, the new input
feature vector is given to the learnt function, which results in the estimation (prediction) of
the F-formation of the group.

EFCR is proposed to train with the group datasets, but most of the existing group
datasets include only the standard F-formations and do not include the constrained forma-
tions. In this aspect, for constrained and larger groups, another novel approach is proposed
in Algorithm 2 for estimating F-formations for larger groups (EFLG).

The approach is based on the notion that variance of group could be used to estimate
F-formations for larger groups, i.e., for groups more than three persons. In the semi-circular
formation, group members are facing the same direction and the variance of angle of the
group would be zero. Triangular and circular formations are in close relation in appearance.
In the triangular formation, one person is standing far from others and group members are
standing at opposite ends. In the circular formation, group members would be standing
approximately at equal distance from each other, the variance of spatial location could be
used as presented in Algorithm 2.

Algorithm 2: Estimating F-formations
Data: Spatial locations (x, y), orientations (θ) and groups in the scene
G = Number of people in the group, Vd = Variance of distance, Vθ = Variance of
orientation

while G ≥ 3 do
Compute Vd;
Compute Vθ ;
if (Vθ == 0) then

Semi-Circular Formation;
else if ((V_d(x) > 3*V_d(y)) or (3*V_d(x) < V_d(y))) and (V_θ 6= 0) then

if (one person is facing two or more people) then
Triangular formation;

else
Circular formation;

end
else if |(V_d(x)−V_d(y)) < 0.1)| then

Circular formation;
else

Unrecognized formation;
end

end
Result: F-formations

Studying these patterns further and finding an optimal empty spot in the group, as in
work [27], would result in the robot joining the ongoing social interactions.

4. Experimental Setup

For the evaluation process, an experimental paradigm was developed in order to create
a coffee break scenario, where people in the scene would be interacting in multiple group
formations with varying sizes, and the robot would be integrated with our framework
to evaluate the presented approaches. However, due to the COVID-19 pandemic, we
could not conduct such an experiment and had to perform the experiment in a simulation
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environment instead of a real-world human environment. In terms of datasets, there are
few existing group detection datasets, but these atr from an exocentric view, with either
one large group of single formation [55,74] or multiple groups of different formations [6,75].
The coffee break dataset [6] has a similar plot to our idea of experiment, but from an
exocentric view. So, to access this scene from an egocentric view, we replicated the dataset
in the simulation.

4.1. Coffee Break Dataset

The coffee break dataset provides a social scenario of coffee break. This was captured
in a summer school program during coffee breaks. The dataset consists of two sequences,
Sequence 1 (S1), with 13 people interacting, and Sequence 2 (S2), with 20 people interacting
in the scene. This dataset provides a scenario of social interaction among people outdoors
during a coffee break [6].

In our work, we chose S2 and replicated S2 scene in the simulation, as this scene (S2)
consists of more people and groups compared with S1. The S2 scene contains 20 people
interacting in 7 different groups in 3 different formations. Among the 7 groups, 2 groups are
interacting in vis-a-vis formations, 1 group in L-shape formation, and 4 groups are interacting
in circular formations. This scene consists of a smaller number of groups and also does not
cover the wide variety of formations mentioned by Kendon and Marshall. To cover this
wide variety of formations, we developed one more scene similar to the experiment scene
of our previous work [76]. This environment represents a conference lobby scenario where
multiple (13) groups of virtual agents (VAs) with varying group sizes (2–5 VAs per group)
are placed in different (6) spatial formations.

4.2. Simulation Environment

In the simulation environment, we created two scenes. The first scene is the replica
of an actual human coffee break dataset [6], which is hereafter referred to as Scene 1. The
second scene is a similar scene from our previous work [76], which consists of multiple for-
mations with varying group sizes placed in different spatial formations, which is hereafter
referred to as Scene 2.

Regarding Scene 1, an actual human coffee break dataset is replicated to make the
simulation scene as equivalent to the real-world human environment as possible. The scene
is created in 3D using the Unity game engine [77].

While creating the scene, to replicate S2, we used similar colours and patterns, such as
for the floor, the walls, the doors, the windows, and the side lamps. A side landscape is
also placed with shrubs, plants, and flowers. A table is placed with drinks, snacks, water
bottles, glasses, tea, and a coffee machine. A flyer and two chairs are placed on the side
of the wall. All these assets (materials) are available in the Unity asset store. The scene
is populated with VAs, made using the make human software [78]. The VAs are made
with similar features to the people in S2, such as hair, facial features, skin colour, ethnicity,
height, size, clothes, and footwear (seen in Figure 7).

To make the scene more equivalent to the human environment, the VAs in the scene
are integrated with some inbuilt human behaviours similar to the people in S2, such as
head nodding, body movements, gestures, and more, using Mixamo software [79]. Similar
to S2, the scene contains 20 VAs interacting in 7 different groups in 3 different formations:
2 groups in vis-a-vis formations, 1 group in L-shape formation and 4 groups in circular
formations. The VAs are placed in a similar position as people in S2. The people in S2
did not have much movement in the human environment, and are standing in the same
position and group throughout the dataset. The people only had a few head or body
movements, which were also simulated for the VAs in the scene.
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(a) Coffee Dataset Sequence 2 (b) Coffee Dataset Simulation
Figure 7. Image (b) is the virtual scene of image (a), which is an original image from the coffee
dataset. The similarities in image (b), with respect to image (a), could be seen as the floor, plants,
walls with windows, doors, lamps, same amount of VAs as people, and their appearance. The table
with machines for coffee and tea, glasses, snacks, and water bottles could also be seen image (b). The
VAs in the simulation scene are created in such a way that their appearance resembles—i.e., make
them appear as close as possible to—the people in the scene.

Regarding Scene 2, a simulated environment with a number of groups with various
formations is created similar to the experimental scene in our previous work [76] (seen in
Figure 8). The scene is created in a similar fashion to Scene 1, i.e., using the same software.
Scene 2 consists of 36 VAs positioned in 13 different groups in 6 different formations:
2 groups in vis-a-vis formations, 2 groups in side-by-side formations, 3 groups in L-shape
formations, 1 group in triangular formation, 1 group in semi-circular formation, and 4 groups
in circular formations as shown in Figure 8. This scene is built to capture the diverse
formations mentioned by Kendon and Marshall.

Figure 8. The global view of the virtual Scene 2, which resembles a conference break social interaction
scenario similar to the experiment scene of our previous work [76]. The scene consists a large hall
with a red carpet, walls, paintings on the wall, round pub-style tables, and the VAs positioned in a
number of groups with varying sizes in different formations.

A virtual Pepper robot endowed with our framework is deployed in both the scenes.
The robot is using a built-in RGB camera, present on its forehead for RGB data, and a laser
is placed in the left eye of the robot for the depth information. The robot present in Scene 1
and the egocentric view of Scene 1 from the robot’s head camera could be seen in Figure 9.
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(a) Robot in the scene (b) Egocentric View
Figure 9. Images from Scene 1, (a) virtual Pepper robot is facing the scene where VAs are interacting
with each other. (b) The egocentric view of the scene from the robot’s camera.

5. Evaluation Process

To evaluate our approaches in both the scenes using the robot, we randomly generated
positions for the robot throughout the scenes (1st and 2nd). From these positions, the robot
could perceive the VAs and groups from different points of view. These different positions
result in variation of the position and orientation of VAs in the scene. For example, one
virtual agent (VA) could be facing centre from one position of the robot, but the same VA
could be facing a different direction, i.e., facing left, facing right, or facing about, from another
position of the robot. These positions further result in F-formation variations, i.e., a circular
formation could be perceived as a L-shape or vis-a-vis formation when one of the group
member is not seen by the robot. These variations, along with an egocentric view, present a
challenge with which to evaluate our approaches.

The random positions generated for the robot to evaluate our approaches in the both
the scenes is presented in Table 2.

Table 2. Random positions for the robot in both the scenes.

Scenes Random Retained One VA Positions

Scene 1 100 31 3 28
Scene 2 500 276 29 247

Random: randomly generated positions. Retained: positions from where the robot could see the VAs. One VA:
positions from where only one VA could be seen. Position: positions left to evaluate our approaches.

For Scene 1, we generated 100 random positions (see Figure 10 and Table 2) which
covered the scene. Within these 100 positions, the positions from where the robot could
not see the VAs are removed and the remaining positions are retained. In this fashion, we
ended with 31 positions which could be seen in Figure 11. From these 31 positions, only
one VA could be seen in 3 positions, which are removed, as it takes at least 2 people for an
interaction to be called a group interaction. Finally, we are left with 28 positions (view from
two such positions are seen in Figure 12), which are used to evaluate our approaches, i.e.,
V6KP, DGO, and EFCR, using the robot.
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Figure 10. The global view of Scene 1 along with 100 randomly generated positions for the robot,
which are represented by purple-coloured cylindrical spaces. The arrows represent the facing
direction of the robot for respective position (best viewed in colour).

Figure 11. The global view of Scene 1, along with 31 positions for the robot and the robot could be
seen in one of the purple cylindrical spaces (best viewed in colour).

(a) (b)
Figure 12. Images (a) and (b) are sample images of Scene 1 through robot’s camera from two positions
(best viewed in colour).

In Scene 2, we generated 500 random positions (seen in Figure 13 and Table 2) to cover
the whole scene. More positions are generated as the area of this scene is bigger than Scene
1. Similar to the process in Scene 1, the positions from where the robot could not see the VAs
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(224) and the positions from where only 1 VA could be seen (29), are removed. Finally, we
are left with 247 positions (seen in Figure 14) to evaluate our approaches using the robot.

Figure 13. The global view of Scene 2, along with 500 randomly generated positions for the robot,
which are represented by purple-coloured cylindrical spaces. The arrows represent the facing
direction of the robot for respective position (best viewed in colour).

Figure 14. The global view of Scene 1, along with 247 positions for the robot (best viewed in colour).

5.1. Ground Truth Annotation

For the ground truth, the robot is placed in all the robot positions for both the scenes,
i.e., 28 positions in Scene 1 and 247 positions in Scene 2. Then, we hand annotated the scene,
as perceived using the robot’s camera, for the ground truth data of the head orientations
of VAs, groups interacting, and their F-formations. This process was achieved for each
position of the robot for both the scenes.

In Scene 1, VAs were placed with similar poses (body orientation) and positions (same
groups) as the people in the coffee dataset. The same was carried out for Scene 2, with
respect to [76].

For head orientation, the VAs who were detected using [69], or whose face could be
seen and not occluded by other VAs, were considered. Based on their facing direction, the
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VAs were classified into 4 classes: facing about, facing right, facing centre, and facing left, as
presented in Table 3. For group detection, the coffee dataset provides the ground truth for
the groups in the scene which was considered for Scene 1 and [76] provides ground truth,
which was considered for Scene 2. The ground truth of the coffee dataset was taken into
account during the hand-annotation process for Scene 1, i.e., two VAs perceived from an
egocentric view, said to be in a group if the respective people in the coffee dataset, were
in the same group. A similar process was applied for Scene 2 with respect to [76]. For
F-formations, the groups perceived using the robot’s camera were classified into one of the
7 F-formations presented in Section 2.1, for all the robot positions for both the scenes, as
presented in Table 4.

Table 3. Head orientation: ground truth information for both the scenes.

Scenes Facing about Facing Right Facing Center Facing Left Total

Scene 1 49 44 30 45 168
Scene 2 542 303 274 250 1369

Table 4. F-formations: ground truth information for both the scenes.

Scenes Vis-a-Vis Side-by-Side L-Shape Circular Semi-Circular Triangular Total Groups

Scene 1 11 0 17 20 0 0 48
Scene 2 56 87 136 63 28 20 390

5.2. Metrics

Different metrics were used to evaluate the different approaches. For head orientation
and F-formations, the confusion matrix and accuracy were calculated. For group detection,
the measure of accuracy from [6–8] was used. A group was correctly detected if at least
d(T . |G|)e of their members were found by the approach, where |G| is the cardinality of
group G and T ∈ [0,1] is an arbitrary threshold, called the tolerance threshold. We focused
on values T: 2/3 and 1 similar to [7]. Using these metrics, precision, recall, and F-measure
were calculated for the group detection process.

6. Results

In this section, we evaluate our approaches and present the results sequentially in the
order of the head orientation, group detection, and estimating F-formations. An overview of
the process involved in the evaluation of our approaches is presented (as seen in Figure 15)
as follows: a simulated robot was endowed with our approaches and placed in all the
robot positions in both the scenes to estimate the head orientation, detect the groups, and
estimate the F-formations. The estimated orientations were compared against the ground
truth of head orientation, which presents the head orientation results in both the scenes.
Next, the resulting orientation along with the spatial information was used to detect groups
using our DGO. These detected groups were compared against the ground truth of groups,
which presents the group detection results in both the scenes. Finally, the information of
VAs along with the ground truth of groups and ground truth of F-formations were used
to train the classifier with 80% of the data of Scene 2. Then, the trained model was tested
with 20% of the data of Scene 2 and the outcome was compared against the ground truth
of the F-formation, which presents the F-formation results for Scene 2. Then, for robust
evaluation, the trained model was tested with the 100% data of Scene 1 and the outcome
was compared against the ground truth of F-formation, which presents the F-formation
results for Scene 1.
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Figure 15. We organise the presentation of the results according to three main headings: head
orientation, group detection, and estimating F-formation. In head orientation and group detection,
we present the results first from Scene 1 and then from Scene 2. In estimating F-formation, however,
we first present the results from Scene 2, as the classifier was trained on Scene 2. For robust evaluation,
the trained classifier was then used on Scene 1 data. A summary that illustrates the presentation of
the experimental results is shown.

6.1. Estimating Head Orientation

For Scene 1, VAs are placed with similar body orientation as people in the coffee
dataset. The robot is endowed with our V6KP and placed in the robot positions to estimate
the head orientation of VAs in the scene, similar to Figure 16, which is an egocentric view
of the scene from the robot. The skeleton structure in the figure is acquired from [69], and
V6KP is built on this to estimate the head orientation, i.e., facing the direction of VAs, which
is shown in the figure.

Figure 16. Our approach—V6KP, estimating head orientation of people in Scene 1 from an egocentric
view. The letter A stands for facing about, R stands for facing right, C stands for facing centre, and L
stands for facing left.

The robot starts estimating the head orientation of the VAs in the scene for each
position and compares against the concerned ground truth. This process was carried out
for all the 28 positions of the robot. The results are detailed in Table 5, which presents the
confusion matrix and accuracy for head orientation of VAs for all the 28 positions. In the
table, total represents the number of occurrences of the facing direction in all the positions
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combined, unrecognized represents the VAs in the scene being detected using [69], but
their orientation was not estimated by our approach; the accuracy is the number of correct
detections by total occurrences.

Table 5. Scene 1 estimating the head orientation: confusion matrix and accuracy.

Facing Direction About Right Center Left Unrecognized Total Accuracy (%)

About 25 5 6 4 9 49 51
Right 4 31 4 0 5 44 70

Center 1 2 24 1 2 30 80
Left 2 0 3 38 2 45 84

From Table 5, the first row represents the facing about direction. In total, of 49 occur-
rences of facing about, our V6KP was able to correctly detect 25 occurrences as facing about,
and wrongly detected as other facing directions in 15 occurrences. In 9 instances, VAs could
not be categorized into one of the facing direction, which is represented as unrecognized.
Similar to facing about, facing right, facing centre, and facing left are also presented. The facing
about direction has low accuracy, with approximately 51%, and the facing left direction has
high accuracy, with approximately 85%. The average accuracy of the approach is 71%. The
reasons for low accuracy are unclear. It could be occlusion of VAs with each other, the long
distance between the robot and the VAs, or insufficient contrast between the VAs attire or
skin colour and the background texture.

The confusion matrix presents the true positives, true negatives, false positives and
false negatives information. In here, the correctly detected occurrences are true positives,
and diagonally the other correctly detected occurrences are true negatives. The row presents
the false negatives, and the column presents the false positives for the selected predicted
class. For example, in Table 5, if we consider the facing right, the correctly detected 31 occur-
rences are the true positives. The other correctly detected occurrences, i.e., 25 facing about,
24 facing center and 28 facing left are true negatives. The row presents the false negatives, i.e.,
4 occurrences of facing about, 4 occurrences of facing centre, 0 occurrences of facing left, and
5 occurrences of unrecognised are false negatives. The column presents the false positives,
i.e., 5 occurrences of facing about, 2 occurrences of facing centre, and 0 occurrences of facing
left are false positives.

To analyse the runtime performance of V6KP, the average time taken for the robot to
compute the head orientation of VAs in the scene for 28 positions was computed, which
was 2.9762 s. In this, the time taken to compute the 2D pose of VAs was 2.9722 s and to
estimate orientation was 0.0037 s. The approach was run on a laptop with an NVIDIA
GeForceGTX-1080 GPU. The 2D pose algorithm was a part of Openpose and achieved the
speed of 8.8 fps for a video with 19 people in the original implementation [69] which is in
C++ language. We are using an implementation of pose algorithm [69] with chainer [80],
which is a framework for neural networks written purely in python language using python
libraries. This is the main reason for greater time consumption. However, with recent
development in deep learning, many approaches are presented to detect people in the scene
in real time. These could be used with our V6KP to increase the frame rate per second with
the robot. In total, the approach results in good overall accuracy and also demonstrates
efficiently our head orientation (V6KP) approach with a mobile robot using a built-in RGB
camera from an egocentric view.

For the 2nd simulation scene, VAs were placed with a similar body orientation, as
the VAs in [76]. Similar to Scene 1, the robot was endowed with V6KP and the estimating
process was performed for all the 247 positions of the robot—the results are detailed in
Table 6.
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Table 6. Scene 2 estimating the head orientation: confusion matrix and accuracy.

Facing Direction About Right Centre Left Unrecognized Total Accuracy (%)

About 319 41 99 40 44 542 58
Right 23 229 32 1 18 303 75

Center 5 15 230 18 6 274 83
Left 10 4 23 204 9 250 81

Similar to Scene 1, here too, the confusion matrix presented the true positives, true
negatives, false positives, and false negatives information for Scene 2 in Table 6. From
Table 6, VAs were facing about in 542 instances, in which 319 were recognized correctly
by our algorithm. This had low accuracy, similar to Scene 1. The average accuracy of the
approach was 74%, while comparing the individual accuracies and average accuracy of
Scene 1 to Scene 2. All the individual percentages and the average accuracy increased,
except facing left in Scene 2. In this scene, the VAs were detected by [69], but in a few
instances, the VAs could not be categorized into one of the four facing directions. Of the
total 1369 instances, in 75 instances, VAs’ facing directions could not be categorized into one
of the four facing directions, which is 5% of the total instances. The unrecognized instances
and percentage are negligible when the total instances are taken into account. The average
runtime performance of V6KP was similar to Scene 1.

To summarize, the average accuracy of the approach was around 70%. Except for
facing about, the other three facing directions performed better with an average accuracy of
around 80%. With an average accuracy of 54%, facing about performed the worst. In total,
the approach results in good overall accuracy and also efficiently demonstrates our head
orientation (V6KP) approach, with a mobile robot using a built-in RGB camera from an
egocentric view.

6.2. Detecting Groups

In Scene 1, VAs were placed in the same groups as the people in the coffee dataset
(as seen in Figure 17a). The robot was endowed with our DGO and placed in the robot
positions to detect groups in the scene. The robot started detecting the groups in the scene
for each position and compared them against the concerned ground truth. This process was
performed for all the 28 positions of the robot. DGO detects the groups and their members
in the scene, as shown in Figure 17.

(a) The output image from the robot

 

Group Information 

Spatial 
info 

Orientation 
info 

Tracking Id 

Group Members 

(b) The terminal with results
Figure 17. Image (a) presents the output image from the robot. The numbers on the VAs in the image
represent their tracking ID. Image (b) presents the terminal with results, which present the different
groups’ information, i.e., the number of groups, the VAs in the group, their spatial and orientational
information, and their tracking ID.

In the detection process, DGO considers some parameters: the radius of a person,
the radius of the O-space, and the threshold for the overlapping region (Figure 6). Here,
the radius of the O-space and the person were considered to be 0.6 m. The reason being,
according to Hall [16] and the information provided in Table 1, the interpersonal distance in
social interaction is from 1.2 to 3.7 m; if 1.2 m is taken into consideration, then each person
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is standing at 0.6 m from the centre of the O-space. Using this analysis, the radius of a
person is fixed and the same goes for O-space; however, while experimenting, the person’s
radius and O-space radius were slightly varied to observe how this affects the results.
The threshold for the overlapping region varied from 0 to 100% of a given transactional
segment of a VA to observe the affect on the results. The detected groups were evaluated
using the annotated ground truth information gained through perceiving the scene from
an egocentric view using the robot’s camera for all the 28 positions of the robot.

The results, i.e., precision, recall, and F-measure per position, were calculated and
averaged for all the positions, whose results are presented in Table 7.

The radii of the O-space and person were varied, i.e., increased (>0.6 m) and decreased
(<0.6 m), to observe the fluctuations of the scores, and we found better precision and recall
values with 0.7 m radius in both the scenes; while detecting the groups, the unrecognized
VAs from V6KP were considered. These VAs, when forming groups with other VAs, were
not detected by DGO, which affected the results. The precision decreased by approximately
2–3%, and the recall and F-measure decreased by approximately 5–10%. These affected
results are presented in Table 7.

Table 7. Scene 1: precision, recall, and F-measure values for groups detected by robot.

T 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

2/3
Precision 0.65 0.94 0.94 0.89 0.89 0.85 0.85 0.82 0.82 0.82 0.78

Recall 0.64 0.85 0.85 0.80 0.80 0.76 0.76 0.72 0.70 0.70 0.67
F-measure 0.65 0.89 0.89 0.84 0.84 0.81 0.81 0.76 0.76 0.76 0.72

1
Precision 0.44 0.72 0.72 0.69 0.69 0.67 0.63 0.60 0.60 0.58 0.58

Recall 0.41 0.64 0.64 0.61 0.61 0.60 0.56 0.52 0.50 0.49 0.49
F-measure 0.42 0.68 0.68 0.64 0.64 0.63 0.60 0.55 0.55 0.53 0.53

’T’ stands for the tolerance threshold from Section 5.2.

From Table 7, the performance of DGO was better, with overlapping region percentage
in between 10 and 20% for both the tolerance thresholds, i.e., T = 2/3 and 1. As the
overlapping region increased from 10% to 100%, the precision, recall, and F-measure values
decreased. Here, the precision reflects the ability of DGO to identify only the relevant
groups; between 10 and 20%, DGO is correct 94% of the time. Precision decreasing from
30% means that our model was returning false positives incrementally. Here, the recall
reflects the ability of DGO to find all the relevant groups within Scene 1. The recall is also
high between 10 and 20%—DGO is correct 85% of the time. The decreasing recall means
that our model was returning false negatives incrementally. Here, the F-measure provides
DGO’s accuracy in Scene 1, which was 89% between 10 and 20%. The presented values for
tolerance threshold were T = 2/3 (presented in Section 5.2). For T = 1, the precision was 72%,
recall was 64%, and F-measure was 68% between 10 and 20%. The groups formed with 0%
overlapping region represent the VAs clustered into groups based on spatial information.
After the O-spaces were initialized in the scene, VAs were assigned to their nearest O-space,
resulting in groups. These groups were formed without considering the transactional
segment of VAs. The groups which formed with 100% overlapping region represent the
exact matching of our initialized O-spaces with the original O-spaces of the groups. The
latter percentage was higher than the prior one.

Regarding the runtime performance of DGO, the average time taken for the robot
to detect groups in the scene for 28 positions was 3.25 s. The time taken to compute the
2D pose was 2.97 s, removing this would result in 0.28 s—the time taken by DGO from
extraction of the features to the detection of groups in the scene.

In Scene 2, VAs were positioned in same groups as the VAs in [76]. The robot was
placed in the scene for each position and compared the detected groups against the con-
cerned ground truth. This process was performed for all the 247 positions of the robot. The
results, i.e., precision, recall, and F-measure per position, were calculated and averaged
for all the positions, whose results are presented in Table 8. Similar to Scene 1, the unrecog-
nized VAs were considered in this scene too, and the results—i.e., the precision decreased
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by approximately 1–2%, and recall and F-measure decreased by approximately 5%—are
presented in Table 8.

Table 8. Scene 2: Precision, recall, and F-measure values for groups detected by robot.

T 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

2/3
Precision 0.69 0.80 0.80 0.79 0.78 0.78 0.77 0.76 0.76 0.76 0.72

Recall 0.70 0.69 0.69 0.67 0.67 0.66 0.65 0.63 0.63 0.60 0.58
F-measure 0.70 0.75 0.74 0.73 0.72 0.71 0.71 0.69 0.69 0.68 0.64

1
Precision 0.33 0.66 0.66 0.65 0.65 0.63 0.63 0.61 0.61 0.60 0.57

Recall 0.34 0.57 0.56 0.55 0.55 0.53 0.52 0.50 0.50 0.48 0.45
F-measure 0.33 0.61 0.60 0.59 0.59 0.58 0.57 0.55 0.55 0.53 0.50

’T’ stands for tolerance threshold from Section 5.2.

From Table 8, the performance of DGO was better with overlapping region percentage
between 10 and 20% for both T = 2/3 and 1. As the overlapping region increased from
10% to 100%, the precision, recall, and F-measure values decreased. Similar to Scene 1,
the precision, recall, and F-measure reflect the ability of the DGO, and the values were
higher between 10 and 20% for Scene 2. The precision was 80%, the recall was 69%, and
the F-measure accuracy in Scene 2 was 75% for the tolerance threshold T = 2/3 (presented
in Section 5.2). For T = 1, the precision was 66%, the recall was 57%, and the F-measure
was 61% for 10% overlapping region.Similar to Scene 1, the groups formed with a 100%
overlapping region had a higher percentage than the groups formed with a 0% overlapping
region. The average runtime performance of DGO was similar to Scene 1.

To summarize, the precision, recall, and F-measure values were higher for our DGO
between 10 and 20% for both the tolerance threshold values of T = 1 and 2/3. With precision
around 90%, recall around 80%, and F-measure around 80 for T = 2/3 and for T = 1, these
values decreased around 20%, respectively. Our approach also works efficiently in real
time, with a mobile robot using a built-in RGB camera from an egocentric view.

These detected groups are further used in our framework to recognise the patterns of
the groups by estimating F-formations.

6.3. Estimating F-Formations

Regarding estimating F-formations, firstly, Scene 1 does not contain a high enough
number of groups or variety of F-formations. For this reason, Scene 2 was built with a
number and variety of formations for the evaluation process. Secondly, while using a
classifier in a dataset of 100%, 80% data is used for training and the remaining 20% of
data is used for testing. In this aspect, from Scene 1, if the 28 positions (which consists
of 48 groups) are considered as a dataset, then the 80% data accounts for 22 positions
(39 groups) for training and 6 positions (9 groups) for testing, which are very short training
and testing data. For both reasons, we skipped training and testing of the classifier, using
Scene 1.

Next, Scene 2 consists of a good number of groups and variety of F-formations (seen
in Figure 18). From Scene 2, the 247 robot positions resulted in a number of groups and a
variety of formations, i.e., 56 vis-a-vis, 87 side-by-side, 136 L-shape, 63 circular, 28 semi-circular,
and 20 triangular formations, which were used with the classifier. While training the
classifier; instead of 80% of the number of positions, we considered 80% of each formation
and combined them to train a classifier. For example, out of 56 vis-a-vis formations, 80%
data, which is 44 formations, were used for training and 20% data, which is 12 formations,
were used for testing. In this way, the training data of the first four formations (vis-a-vis,
side-by-side, L-shape, and circular) were used to train the classifier and were tested on the
remaining data of these formations. As the last two formations, i.e., semi-circular and
triangular formations, were very short data. For this reason, both these formations were
not included in the training or the testing part. These formations are very rarely observed
in group interactions, which is the reason an algorithm 2 is presented to estimate these
formations.
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Figure 18. Scene 2 consists of a number and variety of F-formations. The 13 formations are numbered
and listed as follows: 1 and 8 are vis-a-vis formations; 2 and 13 are side-by-side formations; 3, 6, and
9 are L-shape formations; 4, 5, 10, and 11 are circular formations; 12 is semi-circular formation; 7 is
triangular formation.

To evaluate our EFCR approach, 80% of data was used to train and 20% was used to test.
The choice of training and testing data is very important in obtaining better performance.
Due to this, we did not want to choose the data or put our choice as an option to avoid
the risk of overfitting. So, we decided to use 0–80% of data as 80% training and 80–100%
of data as 20% testing data. The unrecognized VAs had incomplete data and are negligible
(i.e., 5%), which is the reason that we excluded this data while training and testing the
classifier. For training the classifier, the spatial information (x, y) of the VAs, along with the
ground truth information of head orientation, the groups, and the F-formations, was used
for training—i.e., if two VAs were in the same group in the ground truth information of
groups, then their information (x1, y1, θ1, x2, y2, θ2) was used as an input feature vector, X,
and their F-formation was used as output label, y..

Regarding the classifier, the selected training data was then subjected to a polynomial
SVM classifier with a degree of 2 and then evaluated using test data. This provided very
good results, which are presented as confusion matrix in Table 9.

Table 9. Estimating F-formations in Scene 2: confusion matrix and accuracy.

F-Formations Vis-a-Vis Side-by-Side L-Shape Circular Accuracy Total

Vis-a-Vis 12 0 0 0 100% 12
Side-by-Side 0 17 1 0 94% 18

L-shape 0 1 27 0 96% 28
Circular 0 0 0 13 100% 13

From Table 9, the overall accuracy of the approach was 97%, which shows that our
approach worked very well and resulted in high accuracy. The vis-a-vis and circular forma-
tions had very high accuracy, i.e., 100%. The other formations also performed very well.
The time taken to estimate the F-formations for the test data was 0.02 s, which suggests
that our approach works in real time.

For robust evaluation, the trained classifier was tested with Scene 1 for all the 28 robot
positions. The results are detailed as a confusion matrix in Table 10.
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Table 10. Estimating F-formations in Scene 1: confusion matrix and accuracy.

F-Formations Vis-a-Vis Side-by-Side L-Shape Circular Accuracy Total

Vis-a-Vis 9 1 1 0 81% 11
Side-by-Side 0 0 0 0 -% -

L-shape 6 0 11 0 64% 17
Circular 0 0 0 20 100% 20

From Table 10, the results are very encouraging. The vis-a-vis formation performed
well with 81% accuracy. There were no side-by-side formations in Scene 1. The L-shape
had moderate accuracy for reasons which are currently unclear. The circular formation
performed exceptionally well, with 100% accuracy. The overall accuracy of the approach
was 83%, which shows that our approach worked with high accuracy in a simulation
scene that was a replica of an actual human social scenario of a coffee break from an
egocentric view.

To this end, the robot predicts the F-formations, which could be used with [27] to find
the optimal empty spot in the group to join the ongoing social interactions.

For evaluating our EFLG approach, the semi-circular and triangular formations from
Scene 2 were considered. These formations were fed to EFLG, which produced the results
that are presented as a confusion matrix and accuracy in Table 11.

Table 11. Estimating constrained F-formations: confusion matrix and accuracy.

F-Formations Triangular Semi-Circular Circular Unrecognized Accuracy Total

Triangle 9 0 9 2 45% 20
Semi-Circular 0 28 0 0 100% 28

From Table 11, the semi-circular formations were correctly estimated with 100% accu-
racy, but the triangular formations did not perform well. The triangular formations were
wrongly estimated as circular formations. One reason for this is that, when observed from
different perspectives, these formations appear as if the three VAs are standing in circular
formations due to the formations appearance being closely related. The overall accuracy
of the approach was 72%, which shows that our approach worked well with the said
formations overall. Still, for more robust approaches and evaluation processes, there is a
need for a real-time human scenario dataset from an egocentric view using a robot.

To summarize, EFCR worked efficiently, with an average overall accuracy of 90%.
The individual formations accuracies were also very good; EFCR was tested with Scene
1 for all the robot positions, which resulted in an overall accuracy of around 80%, with a
good individual formations accuracies. At the same time, EFLG also worked well, with an
overall accuracy of around 70%, and the individual formations accuracies are encouraging.

7. Limitations and Future Works

There are some technical limitations in our framework, which are presented in this
section along with the future research directions.

First, our framework works with single images from the robot and does not track
persons and their movements. This would result in wrong prediction during movement.
For example, when two persons are interacting in an L-shape formation, and one person
is frequently turning their body towards the other person, this would result in a wrong
prediction as a vis-a-vis formation. So, future research could be directed towards solving
this issue by adding short temporal duration, which could keep track of persons in the
group or scene. Second, the methods in our framework use hand-engineered features,
but there is a preference for data-driven approaches. Third, our framework constitutes a
pipeline of approaches for different tasks. This means a failure or malfunction in one of
the approaches leads to a failure or malfunction in the complete framework. To address
the second and third limitations, future research could be directed towards training deep
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learning approaches, which would result in an end-to-end framework and could improve
accuracy. This process may also lead to new features to detect groups and estimate F-
formations in social interactions. Regarding the experimental scenes, using a simulation
scene could have impacted the results obtained in this paper. If the experiments were
conducted in a real human environment, a change might be noticed in our framework’s
performance, which is indeed worth investigating in future studies. For this, future research
could be directed towards building large coffee break datasets from an egocentric view,
with a number of persons interacting in multiple groups of varying group sizes, in all the
different F-formations. Such datasets could also be useful in evaluating frameworks such as
ours, in training deep learning approaches, and in studying socially acceptable behaviour,
path, and placement for the robot to join the ongoing social group interactions. Finally,
this paper presents seven different formations, and proposes approaches for six different
formations, except the rectangle formation, because this formation occurs around a table,
i.e., a dinner table or in conference room.

8. Conclusions

In this paper, we proposed a framework, AGIR, which incorporates different approaches:
computing head orientation of people in the scene, detecting groups, and estimating F-
formations. For head orientation, V6KP considers the visibility of six key points and models
into four distinct classes, i.e., facing directions. For detecting groups, we proposed DGO,
which initializes O-spaces, models transactional segments for people, and then optimizes the
O-spaces, which results in estimating groups and their members. For estimating F-formations,
we proposed two approaches—EFCR and EFLG. In EFCR, we used a polynomial SVM
classifier, and in EFLG, we proposed an algorithm for larger groups. For evaluation purposes,
two simulation scenes were built, one based on a replica of the so-called coffee dataset and
the second from our previous work. Scene 1 was built with 20 VAs, interacting in 7 different
groups of varying sizes and 3 different formations. Scene 2 was built with 36 VAs positioned
in 13 different groups of varying sizes and 6 different formations. A virtual Pepper robot
was endowed with AGIR and placed in both the scenes in randomly generated positions to
evaluate the presented approaches. The obtained results for our different approaches present
significant performance with high accuracies, and also demonstrate that AGIR works well
when using a robot from an egocentric view in a real-time simulation.
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