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Abstract: Data-driven methods based on artificial intelligence (AI) are powerful yet flexible tools for
gathering knowledge and automating complex tasks in many areas of science and practice. Despite
the rapid development of the field, the existing potential of AI methods to solve recent industrial,
corporate and social challenges has not yet been fully exploited. Research shows the insufficient
practicality of AI in domain-specific contexts as one of the main application hurdles. Focusing
on industrial demands, this publication introduces a new paradigm in terms of applicability of AI
methods, called Usable AI (UAI). Aspects of easily accessible, domain-specific AI methods are derived,
which address essential user-oriented AI services within the UAI paradigm: usability, suitability,
integrability and interoperability. The relevance of UAI is clarified by describing challenges, hurdles
and peculiarities of AI applications in the production area, whereby the following user roles have
been abstracted: developers of cyber–physical production systems (CPPS), developers of processes
and operators of processes. The analysis shows that target artifacts, motivation, knowledge horizon
and challenges differ for the user roles. Therefore, UAI shall enable domain- and user-role-specific
adaptation of affordances accompanied by adaptive support of vertical and horizontal integration
across the domains and user roles.

Keywords: artificial intelligence; usable AI; explainable AI; applicable AI; domain-specific AI;
cyber–physical production systems; human–computer interaction; Internet of Things; industrial
Internet of Things

1. Introduction

Artificial intelligence (AI), as one of the most potent methods of data science, greatly
enriches data processing and is expected to be applied as a powerful yet flexible tool for
gathering knowledge and automating complex tasks in many areas of science and practice.
Unfortunately, the adoption rate of AI does not yet adequately reflect the extent of its
application potential [1]. As the academic domain of AI is developing rapidly, AI still needs
to become a general part of standard education and general knowledge. Furthermore, it
appears to be unstructured, as it branches in different directions [2]. At the same time,
enormous amounts of methods, approaches, information and educational formats for AI
applications are open-source. However, the rise of AI utilization does not proceed without
widespread resistance to the new opportunities associated with AI applications [3,4]. New
technology appears to potential users like an offer that comes with invisible hidden costs.
An answer to whether to accept an offer or not is most likely linked to the consideration,
“Can it be used sufficiently?”. Trying to answer that question raises three further questions:
“Does it even work?”, “Is it worth the implications?”, such as footprint, power and noise,
and “Will the use of it be comfortable?”.
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The aspect of user-friendliness in the sense of an item being easy and ergonomic to
use addresses all three of these questions. Nevertheless, to take into account the wider
sense of usability proves to be highly advantageous. Although rightly considered as
interrelated, usability in the sense of user-friendliness only acts as a sub-condition of the
broader sense of usability [5]. To apply to this broader understanding of usability, an AI
application must be both effective, providing users with insights they demand, and efficient,
providing a solution of which the value added exceeds the caused effort [6]. Moreover, the
application needs to be operable in a satisfying manner. How to fulfil these criteria has
been researched and described in the field of software engineering [7]. However, the area
of AI-based applications still suffers from a lack of usability and operability, especially in
domain-specific contexts [8].

A characteristic key aspect of any data science field is the very interdisciplinary subject
nature. Typically, AI draws on research from different domains such as computer science,
psychology, neurology, mathematics and logic, communication studies, philosophy and
linguistics. AI research, in turn, has also influenced other fields, such as engineering [9,10].
Therefore, AI application often involves collaboration between experts from multiple disci-
plines, data science specialists and practitioners in the application domain [11,12]. Typically,
there is a risk of staff turnover, shortage of experts and shortage of resources in the usual ap-
plication environment [13]. Therefore, managing method knowledge and meta-knowledge
are invaluable in AI application [14]. For system developers, special requirements arise in
view of the wide scope covered by AI. Developers’ proactive coverage of the specific needs
of the application context is required to contribute to wider AI utilization.

The hurdles in using AI-based methods include unfulfilled legal, economic or technical
requirements [15]. In many cases, however, the black-box characteristics that make up
artificial intelligence cause application difficulties [16]. In contrast to numerical solutions,
simulations or classic prediction models, it is difficult or even impossible to observe and
understand the solution path of AI algorithms. The need for more transparency of AI repre-
sents a major matter in addressing user demands. The research field of explainable artificial
intelligence (XAI) contributes intensively to reducing AI opacity [17]. XAI rigorously and
extensively reveals the inner workings of AI algorithms. However, XAI does not fully meet
the need to explain the principles upon which AI-based solutions work to non-data science
practitioners, as formally correct explanations are often not easy to follow either. In order
to ensure user-friendliness, users must be provided with comprehensible concepts whose
implications are understandable in practice. As XAI does not consider the non-data science
perspective, XAI struggles to contribute to an understanding of AI methods in a broader
end-user oriented manner.

The publication introduces a novel paradigm regarding the usability of AI-based
methods, called UAI, focusing on tailoring AI methods for practitioners of non-data expert
domains. The new UAI paradigm summarizes methods, solutions and approaches to meet
requirements of usability of artificial intelligence in an end-user-centric sense, addressing
the lack of practical applicability of AI methods for domain experts and aiming towards
development of solutions tailored to the needs of different user roles. Thus, the publication
addresses the research question (RQ): what constitutes usable AI?

2. Materials and Methods
2.1. Problem Description

A gap exists between data science and the application perspective with regard to the
development of AI algorithms and the provision of AI-based methods. Data scientists tend
to develop algorithms in a straightforward way to uncover hidden relationships in data sets,
regardless of which physical, technical, sociological or other functional contexts actually
underlie the data. In contrast, domain experts are inclined to take into account or anticipate
familiar physical, technical, sociological or other technical contexts upon which the data are
actually based, and thus exhibit a bias, even when actively trying to act in an open-ended
manner. However, this gap between the algorithmic view and the application view can
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be problematic. Algorithms typically lack direct applicability to real problems. Computer
scientists make solution details available without being able to provide domain-specific
explanations or contexts, which makes direct application in practice difficult. As data
analysts in turn lack necessary domain knowledge, it is not trivial to apply found solution
principles to real tasks [18–21].

As shown in Figure 1, for data science applications, it is necessary to extend approaches
by specific peripheral aspects originating from the corresponding domain. One aspect is
to consider the form in which data can be accessed, i.e., retrieval from domain-specific
sources and processing via hardware and middleware to ultimately obtain an assessable
database [11]. In this context, a key issue is a lack of sufficient cross-domain knowledge
among data scientists and practitioners in each of the domains involved.
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It is essential to ensure a fit of quality and quantity of the data available, collected,
processed and analyzed with the analysis methods applied [21]. In addition to data
collection, data quality and data analysis, incorporating domain-specific knowledge and
contextual information becomes indispensable in order to enable a holistic data-based
collaborative response for all involved recipients. Context-related causal relationships
or domain-specific boundary conditions afford efficient access to knowledge and enable
better interpretability of results. The aspects of domain-specific data analysis are highly
intertwined and must be considered throughout the data-driven system development
and application.

The interdisciplinary nature of data processing science and its technical implementa-
tion leads to communication problems, as experts in a particular field are naturally biased.
Usually, individuals and organizations are unaware of this fact, making it difficult to
bridge [23]. Too strict timelines, lack of resources and lack of skilled workers make the
implementation of complex software such as AI applications difficult [24]. Closing this
gap requires algorithm-based approaches that offer both a sufficient degree of flexibility
and satisfactory degree of user-friendliness. Provision of methods and concepts that make
AI software more accessible, transparent and easier to communicate paves the way for
efficient application of AI-based methods. Moreover, a high level of usability assists the
establishment of a common understanding of system properties, solution details and im-
plications, providing a basis for communication, which makes the derived results more
reliably applicable for the entire user community.

Data are heterogeneous and complex and, in addition, data collection often require
specialized hard- and middleware, so close cooperation between domain experts and data
scientists proves to be crucial for success [25]. Hence, linking cross-domain knowledge
across practitioners of all fields involved marks a superordinate encounter.

Technical systems merging hard- and software are sociotechnical and socioeconomic
systems with people involved in their use and further development. However, user
overload leads to inefficiency, while supporting the user directly contributes to a better



Multimodal Technol. Interact. 2023, 7, 27 4 of 23

outcome [3,4]. Dualistic system properties, which constitute a matter of complexity on their
own, can ultimately provide further means to solve the problems in management of tacit
knowledge [26,27]. Users must be able to approach the system intuitively to benefit from
insights, rather than drowning in a complexity of possibilities.

2.2. Foundations
2.2.1. Artificial Intelligence

Reflecting the origins of the field of artificial intelligence, which has evolved from and
is associated with several research fields, multiple definitions of artificial intelligence exist,
some of which relate to reasoning, while others relate to behavior. Some definitions measure
success in terms of consistency with human performance, while others measure rationality
in terms of an ideal performance measure. Disciplines that contribute ideas, viewpoints, and
techniques to AI include Philosophy, Mathematics, Economics, Neuroscience, Psychology,
Computer Engineering and Cybernetics, amongst others [2]. Popularity of AI as field
of computer science has risen in recent years through automation of intelligent behavior
and machine learning. In general, the definition of the term AI remains difficult, as
no precise definition of “intelligence” is yet commonly established. One among many
circulating definitions of artificial intelligence originates from Winston, 1992: “The study of
the computations that make it possible to perceive, reason, and act.” [28]. Nevertheless,
the term AI is referred more and more frequently in research and development. Strong AI
systems can handle difficult creative tasks on par with humans. Weak AI systems solve
specific application problems. The ability to learn is a main characteristic for AI systems,
constituting an integral part, accompanied by the ability to deal with uncertainty and
probabilistic information [2].

2.2.2. Usability

In a common sense, “usability” draws its meaning directly from its stem “to use” and
describes the possibility to properly use an item or artifact for a sensible purpose. The
international standard ISO 9241-11 “Ergonomics of human-system interaction—Usability
Definitions and concepts” states that “usability relates to the outcome of interacting with a
system, product or service”, not as an attribute of a product, but as “a more comprehensive
concept than is commonly understood by “ease-of-use” or “user-friendliness”” [5]. Espe-
cially in computer science the narrower sense of the term usability describes user friendly,
ergonomic design. Nielsen describes this specific understanding of the term based on the
defining attributes learnability, efficiency, memorability, errors and satisfaction [29].

2.2.3. Explainable Artificial Intelligence

Assumptions and simplifications are vital for modeling of complex systems, but
complexity reduction comes at the cost of validity drop. AI models are typically considered
as black boxes. AI algorithms take vast numbers of data points as inputs and correlates
certain data features to produce an output. This process is largely self-directed and generally
difficult for data scientists, programmers and users to interpret. This carries the risk of
incorrect application of AI models. A user not understanding how a model works cannot
recognize where the model works incorrectly. The user hands over the responsibility to the
model and lacks supervision because of the poor transparency of the model. Furthermore,
in using AI, there remains little possibility to influence the outcome quality actively. As
AI is hard to inspect or understand, errors can remain unnoticed until they cause major
problems. To tackle the black box problem and to explore reasoning behind AI models, the
term XAI was introduced by van Lent et al. in 2004 [30]. However, efforts exist already in
the 1980s to explain intelligent systems (Refs. [31–33] and in the 1990s [34]) to explain neural
networks though without calling them XAI. More recently, the success of AI applications
in various high-interest domains and the rising usage of complex and nontransparent
models, such as deep learning, have elevated attention to the need for explainable AI [35].
However, no uniform definition of XAI exists. Barredo Arrieta et al. established a widely
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accepted definition of XAI: “Given an audience, an explainable Artificial Intelligence is one
that produces details or reasons to make its functioning clear or easy to understand.” [17].
Understandability remains a two-sided topic: understandability of the model versus the
human ability to understand. In addition to the understandability of the model, the
cognitive abilities and goals of users must also be considered. Overall, XAI supplies
knowledge on a specific AI model. However, recognizing all given information on AI
specifics is neither possible for an inexperienced human mind nor efficient for solving
an average domain-specific task. Thus, XAI fails to satisfy the needs in domain-specific
application contexts as XAI neither assists model implementation nor supports performance
tailoring towards particular domain burdens. To bridge the gap, users must be provided
with approachable and low-level solution concepts, increasing usability of AI within the
application domain.

2.2.4. Usability of Artificial Intelligence

Many publications address the usability of software. With regard to AI, the description
of the state-of-the-art in the following focuses explicitly on usability in relation to AI. Harris
refers to the understanding of AI in the domain of natural language processing (NLP) with
tasks such as translation, question answering or named entity recognition (NER) [36]. The
authors also base their work on the ISO standard for software design ISO-9241 Part 11.
Their approach is to design the system and then measure how efficient the software makes
the user, how effective it makes the users in solving the task, how often they actually do it
and how satisfying the solution is; the software is a delight, easy to use and represents a
significant competitive advantage.

Jameson et al. state that the term usable is known in the field of human–computer
interaction (HCI), but not so much in AI [37]. They claim that systems intended for use
by individuals should be usable. AI systems do not have to adhere to the requirement
of usability if they “are working on the technical optimization of algorithms, as they are
already being used successfully in usable interactive systems” or if the aspect of user
interaction can be left “to HCI people to design and test usable interfaces”. On the contrary,
Xu claimed that HCI experts should take a leading role by providing explainable and
understandable AI [38]. He argued that the third wave of AI is technology enhancement and
application with a human-centric approach and advised HCI professionals to proactively
engage in AI research and development.

Gajos and Weld referred to usable AI for the quick construction of personalized and
personalizable interfaces [39]. Gao et al. stated that the barrier to realization of mass
adoption of AI on various business domains is too high because most domain experts
have no background in AI [1]. Developing AI applications involves multiple phases: data
preparation, application modeling, product deployment while the main focus in AI research
is at new AI models. Usability, efficiency and security of AI on the other hand are neglected.
The authors explicated the development of an AI platform to face the above challenges and
support the fast development of domain-specific applications. Pfau et al. presented a use
case of AI in videogames showing the transfer of academic algorithms to the videogames
industry, increasing both explainability and usability [40]. Lau worked on programming
by demonstration (PBD) systems for no-code programming. PBD systems typically use AI
methods for predicting future behavior [41]. A set of guidelines to consider when designing
usable AI-based systems based on lessons learned from 3 PBD systems was presented.
Bunt et al. presented an approach based on interface personalization. An interface was
provided for users, adapted specifically to their needs [42]. They proposed mixed-initiative
customization assistance, a compromise between an adaptable approach, where personal-
ization is fully user controlled, and an adaptive approach, where personalization is fully
system controlled. Other work relating to the topic of usability in AI includes: Song and
Jung conducting a study on the usability of a specific AI-based application [43], Bécue et al.
providing a survey and discussion on opportunities and threats of AI in the manufacturing



Multimodal Technol. Interact. 2023, 7, 27 6 of 23

domain [44], Pekarciková et al. describing the impact of digitization on the usability of lean
tools [45], and Ozkaya focusing on data preparation from the view of a data scientist [46].

In summary, publications explicitly addressing the usability of AI-based applications
already exist but address special use cases and originate from different domains. A system-
atic determination of the requirements regarding user-friendliness (e.g., based on existing
standards) has not yet been carried out.

3. Results
3.1. Usable Artificial Intelligence (UAI) Paradigm

ISO 92411-11 defines usability as usable in a specific context of use, emphasizing the
dependency on specific circumstances, specified goals and specified users. In addition,
the properties of usable software are described as efficient, effective and satisfying [5].
Therefore, data science must address the user’s need for analytical insights in a way that
the user can understand. Addressing user, goal and context involves considering relevant
user roles and their specific needs. When attempting to examine the pains and gains
of users looking for specific insights into a domain, the value proposition concept is a
viable approach [47]. Originally intended as a strategy for marketing activities, the value
proposition concept describes the basic principle of the value creation partnership, which
is applicable in any pairing of provider and consumer. While a company tries to offer its
customers a benefit in the original value proposition concept, software development tries
to satisfy users through requirements engineering. Starting from the value proposition
concept, the success of user-centric requirement engineering consequently depends on the
analysis of the user profile, i.e., the pains and gains of potential users. Defining customer
jobs, or “user jobs” for that matter, can either alleviate a specific pain and/or help achieve a
specific gain [48]. Accordingly, the value proposition analyzes which products and services
can act as profit makers or pain relievers. Transferred to the statement of usable AI, gain
creators are all solutions that provide access to data-based insights, painkillers are all
methods that reduce effort or limit the user’s status quo. In order to examine user pains
and gains and to create viable AI methods to accomplish relevant user tasks, it is essential
to explicate specific user roles, goals and contexts, as the definition of usability suggests [5].

As shown in Figure 2, users within a domain fulfill different user roles, although the
described user roles do not have to be fulfilled by one person or organization, but describe
certain types of domain-specific AI implementations [14]. Using data analysis, each user
role urges insights to their specific goals. Delivering UAI solutions insists that each user
role is provided with useful insights that correspond to their specific context and goal.
Despite being specific, goal and context are not independent. Consequently, methods for
AI systems are supposed to follow a hierarchical structure, building on and relying on one
another, which is suggested to be structured according to user roles, as depicted in Figure 2.
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Table 1 provides an overview of the domain-specific user roles, their specific arti-
facts, and a description of how they operate in their domain. In order to derive the final
domain-specific outcome, practitioners in a domain rely on processes creating a perceived
deliverable. AI can be useful to practitioners by supporting process control or by pushing
limitations, while exhibiting a flexibility that is not achievable with conventional imperative
software [49]. Preceding the operation of the process, planners can enhance process charac-
teristics by analyzing the system executing the process and providing predictions [50,51].
During system development, researchers can include AI-based methods enhancing system
functionality [52–54]. UAI method development is dedicated to the user groups of practi-
tioners, planners and researchers, providing them with usable approaches suited to their
needs. In attempting the tasks mentioned, UAI method developers can draw on any AI
method and evolve it into propositions fulfilling usability requirements.

Table 1. Domain-specific user roles.

User Artifact Description

Researcher in Domain Cyber–physical system Uses AI-based methods to enhance
system

Planner in Domain Data-driven process within
cyber-physical system

Uses enhanced system and AI-based
methods to control process

Practitioner in Domain Outcome of data-driven
process Generates process outcome

User jobs in domain-specific data analysis comprise the provision of insight. System
and process information is supposed to be valuable in enhancing the outcome of the use
case specific process. To provide added value, the gained insight enables users to exceed
process limitations or to achieve process outcomes with less effort. To achieve these goals,
it is necessary to inquire:

• What does the user perceive as costing too much or taking too long?
• What are the main difficulties and challenges the user faces?
• Where do existing solutions fall short of user expectations, e.g., missing features?
• What makes the user feel bad, concerning social and basic needs? What risks does the

user fear?

In order to define user activities based on specific user roles and their respective
application goals, it is necessary to elaborate the usability definition further. Usability
implies that specified users for specified goals in a specified context can apply software with
effectiveness, efficiency and satisfaction. Potential users will not even consider application
of a new approach that appears to attach additional workload to their individual status
quo. On the contrary, a concept seamlessly integrated into the users’ daily business and
promising value added will be considered. In other words, any task needs to be regarded
worth its time and effort. The two ways to fulfill this requirement are either minimizing
necessary time and/or effort to apply a new concept or maximizing its perceived value.
However, even if a user considers the trade-off between benefits and additional workload
to be positive, there remains the question of whether the user is able to recognize the
proposition of that positive potential. The provision of AI solution approaches represents
a proposal to potential users for their specific problems. This proposition must also be
regarded as such by a potential user. Motivation to actively embrace and respond to a
proposition only occurs when the effort required to embrace it does not exceed the benefit.
In terms of data-analysis this means presenting AI solutions to the user in an appealing
and promising way, being easily accessible and understandable (matching the cognitive
capacity) for each potential user addressed.

As described in Table 2, when applying a concept or method within a domain, to
have it be of any use to the domain expert, questions arise: “Does it work?”, asking for its
effectiveness, “Is it worth its effort?”, questioning the efficiency of the approach, and “Will
the use be pleasant?”, desiring it to be satisfactory. To fulfill these criteria in the application
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of AI methods, usable AI methods can provide a supporting layer between the AI model
itself and the users within the domain, as shown in Figure 3.

Table 2. Definition of usability characteristics.

“Why...?”
Usability Provides:

Effectiveness Efficiency Satisfactory

Intuition “Does it work at all?” “Is it worth its effort?” “Does it provide enjoyable achievements?”

Description Ability to achieve a
particular outcome Ratio of input vs. output Good feeling when achieving something

ISO 9241-11 (2018)

“Accuracy and
completeness with

which users achieve
specified goals”

“Resources used in relation to
the results achieved”

“Extent to which the user’s physical,
cognitive and emotional responses that result
from the use of a system, product or service

meet the user’s needs and expectations”
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The UAI paradigm places an interactive communicative layer between the user-centric
bottom-up view and the modeling-based top-down view. The concept aims for this com-
municative layer to proactively be approached by both sides. The UAI layer is supposed to
provide structure, comprehensible methodological knowledge and guidance fitted to the
respective users. To address the user roles described in Table 2, the provided methods need
to relate to each of the user roles, providing the means to grasp complex concepts to the
necessary extent for application. Most importantly, the communicative UAI layer not only
supports the provision of AI solution concepts to potential users, but also forms a common
basis for rendering domain-specific requirements visible. By providing domain context
for method developers, supporting goal communication within the domain context and
presenting data science insights to users in a comprehensible manner, UAI establishes a
major leap towards applicability of AI methods.

Attributes of the UAI paradigm. The UAI concept is based on broader understanding
of the term usability as denoted in the standard ISO 9241-11 in terms of a more comprehen-
sive concept such as user-friendliness, and is guided by its literal meaning as described in
Table 3 [5].
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Table 3. Definition of the term usability.

“What...?”

Usability Usable Use

“Extent to which a system, product or service
can be used by specified users to achieve

specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”

[ISO 9241-11(2018), 3.1.1]

Allowing an
intended use

Do something with a
machine, a method, an

object, etc., for a
particular purpose

The characteristics defined in Table 3 constitute a synthesis with the characteristics of
the target definition derived by applying the concept of value proposition described in ISO
9241-11 [5]. Similar to Nielsen’s definition of five attributes constituting the understanding
of usability in a narrow sense [29], the UAI paradigm relies on four fundamental user
expectations for the properties of AI solutions in order to make the provided methods
suitable for application in specific domains: Usefulness, Suitability, Integration and Inter-
operability. Based on the four key attributes, further sub-attributes can be derived to clarify
the understanding of the term and to provide an anatomy of the UAI paradigm.

To make applying a concept or method effective, efficient and satisfactory, users within
a specific domain will ask, as detailed further in Figure 4:

• “Is it applicable right away?”, demanding usefulness;
• “Does it fit my purpose?”, questioning suitability;
• “Does it work with what we are working with around here?”, asking for integrability;
• “Does it also work when we are dealing with third parties?”, requesting interoperability.
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Concise descriptions of the sub-attributes provided in Table 4 exemplify the UAI
concept, while Section 3.2 discusses examples from the field of production engineering.
The elements of the UAI paradigm serve as a blueprint for addressing and accommodating
all user needs. The sub-attributes must be considered to achieve the usability of an AI
application. Consequently, it is crucial to consider all attributes in determining user
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requirements for a particular use case and to tailor solution approaches to user role, goal
and domain context in each of these categories.

Table 4. Description of attributes of the UAI paradigm.

Usability = ∑( . . . )

Usefulness

“Can it be applied right away?”

Comprehensibility

Easy to understand

Explainability Ability to explicate the working principles of solution
approaches/algorithms

Interpretability Ability to understand the results of applied methods within
the specific application context

User-friendliness

Perceived ease of use, attributes [29]

Learnability How easy is it for users to accomplish basic tasks the first
time they encounter the design?

Task efficiency Once users have learned the design, how quickly can they
perform tasks?

Memorability When users return to the design after a period of not using
it, how easily can they re-establish proficiency?

Error proneness How many errors do users make, how severe are these
errors, and how easily can they recover?

Pleasantness How pleasant is it to use the design?

Accessibility Are tools, methods and instructions directly available for use?

Suitability

“Does it fit my purpose?”

Aptitude
Domain-specificity Does it work within my context of use?

Use-case specificity Does it fit my field of application?

Transferability Can the solution set-up be re-used or adapted to other
contexts of use?

Integrability

“Does it work with what we are working with around here?”

Interfaces Smooth interaction with other internal systems

Software Solution compatible with on-site software

Hardware Solution compatible with on-site hardware

Interoperability

“Does it work with what we need to work with during cooperation?”

Socio-economy Smooth interaction with external subjects and organizations

Technical Systems Smooth interaction with embedded and external systems

Regulations Legal, organizational or contractual requirements

In order to achieve usability in the sense of the UAI paradigm, methods and proposed
implementations are prepared and presented in such a manner that all attributes of the UAI
paradigm are attainable during utilization. Therefore, to provide UAI methods, developers
shall be encouraged to:

• Proactively support the generation and provision of method knowledge.

a. Deliver concepts and functionality for connecting interdisciplinary background
knowledge, methods and experiences.

b. Provide instruments and methods to not only produce the aimed-at insight for
each use case, but also produce insight about used methods exceeding one use
case, aiming at problem solving in this domain setting in general.

• Collect, simplify, abstract, systematize and comprehensibly communicate methodolog-
ical knowledge.
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• Provide generic, visual solution approaches such as, for example, reference models,
procedure models, problem structuring, visual inquiry tools.

• Deliver support for finding parameters and boundary conditions, provide “help for
self-help”.

• Make room to contextualize method and parameter selection.

a. Allow for the integration of domain-specific causal relationships and logical
connections and thereby detach from pure combinatorics in data-based solution
finding;

b. Include domain-specific knowledge and explanations regarding certain prefer-
ences to identify optimum constraints rather than conducting complete combi-
natorial exploration.

UAI-based methods are effective in solving user problems according to user goals
and context by supplying knowledge and answering user questions in a manner provid-
ing insights to the use case. The application of AI methods is intended to enhance the
outcome of domain-specific processes. According to UAI principles, the application of AI
methods shall not increase the overall user workload. By fulfilling domain-specific work
tasks and lowering user overload, UAI-based solution approaches lead to better efficiency.
Additionally, incorporating UAI principles into data-based decision-making increases the
ability to transfer solution approaches to adjacent application domains, thus preventing
unnecessary repetition. A more clearly and vividly communicated and comprehensibly
described solution approach lowers excessive solution bias and therefore reduces the risk
of failure and erroneous results.

3.2. Translating the UAI Paradigm to AI Application in Industry
3.2.1. Cyber–Physical Production Systems in Industry 4.0

Industrial production is focused on manufacture of products under specification
of economic and quality-oriented performance indicators. Therefore, expertise of the
personnel is concentrated towards economic and quality-oriented target criteria. This
includes operation and maintenance of machines and tools used as well as planning
activities for the production process. While data-based methods can greatly support these
tasks, details regarding their application are not a core competency of production engineers,
neither in terms of work capacity nor typical qualification set. The problem of low expertise
on data science in production–engineering especially holds true in small and medium-sized
enterprises [55,56]. The conditions still render it difficult to introduce AI applications
without help of data scientists.

As an exemplary application, predictive maintenance is one of the most beneficial data-
based approaches used in manufacturing engineering. Machine downtime can account for
up to 20 percent of total production costs [50,51]. Artificial intelligence-based solutions can
prevent downtime and thus maximize machine availability. In addition, AI can measure
machine efficiency and determine optimum production cycles. In addition to predictive
maintenance, many other applications are conceivable, for example, in the field of pro-
duction quality, warehouse and servicing, or in the context of supply chains. Moreover,
current industrial production is characterized by strong customization of products down to
batch size 1, which is subject to highly flexible mass customization. Automation technology,
required for intelligent and flexible mass production, must become smarter by introducing
processes of self-optimization, self-configuration, self-diagnosis and cognition to better
support and assist operators in their increasingly complex tasks. Scientific studies confirm
high potential benefits for reducing production time, increasing automation, manufacturing
customized products and integrating unexploited data [57].

Particular responsibility in the application of AI arises from contexts linking cyber
and real worlds. Cyberworld errors can cause real-world damage, e.g., destruction of
machines, injuries to humans, destruction of nature, resulting in justified reluctance to
implement AI. However, data-driven methods provide opportunities to understand the
complex relationships between materials, machines and tools in terms of quality and pro-
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ductivity. This applies, in particular, to process chains in manufacturing, where quality
correlations exist across several manufacturing steps, sometimes even across company
boundaries. Consequently, companies see a need to adopt digitization and AI to survive in
a harsh and rapidly evolving market environment. Market developments include aspects
such as increasing individualization of products, which leads to smaller batch sizes and
thus to increased set-up efforts. The use of new materials further accelerates complexity
in manufacturing. Existing empirical knowledge, accumulated over years, in some cases
decades, often encounters limitations when faced with current complex economic chal-
lenges. Another aspect of increasing complexity is the inclusion of environmental and
social sustainability criteria, requiring additional data collection and verification.

Cyber–physical systems form a networked complex of informatics and software with
mechanical and electronic parts communicating via data infrastructure. The formation of
cyber–physical systems arises from the networking of embedded systems through wired
or typically wireless communication networks and is characterized by a high degree of
complexity [58]. Next-gen industrial production shall be fully interlinked with informa-
tion and communication technology, making autonomous intelligent systems one key
technology for plenty of management tasks in the cyber–physical factory environment.
Self-organized production will be enabled with people, machines, equipment, logistics and
products communicating and cooperating with each other. Networking permits optimizing
not just single production steps, but entire value chains. The network is intended to include
all phases of a product’s life cycle from the idea from development, production, use and
maintenance to recycling. Efforts remain to be carried out across industries to further digi-
tize production and to utilize data with suitable methods, as companies still see need for
development towards conditions making AI applications shop-floor ready. Manufacturing
zones deploy devices from a range of vendors. Embedded systems can include legacy
and nonlegacy components, with some operators upgrading all devices simultaneously,
and others upgrading single devices when required. The challenge is to integrate many
different data sources with their typically vast number of signals into different tools. The
configuration of interfaces is time-consuming, as signals need to be examined and extensive
documentation needs to be studied, requiring both IT and plant knowledge carried by
domain-specific trained personnel, which limits the digitally networked connection of
machines and production systems. Ensuring data quality is another major challenge. In
this regard, AI can be assigned the task of providing actively self-configuring machine data
interfaces with integrated quality monitoring.

3.2.2. Challenges in AI Application in Industry

The core element of the UAI paradigm is user role centricity. User perspectives
in industrial production from studies on challenges in the application of AI form the
basis for the deduction of typical AI user roles in industry. Thirteen surveys examining
companies implementing AI were analyzed and summarized in Table 5. The surveys were
carried out by various associations and institutes such as acatech (German Academy of
Science and Engineering) [59], bitkom (industry association of the German information and
telecommunications sector) [60,61], Stiftung Arbeit und Umwelt der IG BCE [62], BDI [63],
Verband der TÜV e. V. [64] and the German Federal Ministry for Economic Affairs and
Energy (BMWi) [65,66]. A total of 4696 industrial companies were interviewed about
existing obstacles to digitization and use of AI. Some companies may have participated
multiple times. However, this plays a subordinate role in the overall view, as a qualitative
representation of the general need for action is intended.

The questions in these surveys have been grouped into key points and grouped
into four categories: strategy and management; technology and R&D; functionality and
applicability; and legislative. Within the key points listed, some points can be assigned
to several categories. In order to avoid redundancies, each point is only assigned to the
most suitable category. Table 5 shows the resulting overview of the surveys evaluated. Key
points that apply to UAI are highlighted in grey.



Multimodal Technol. Interact. 2023, 7, 27 13 of 23

Table 5. Overview of surveys to barriers to the digitization and use of AI-technologies in industrial
production.
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Strategy and Management

Shortage of skilled employees X X X X X X X X X X 10
High investment costs X X X X X X X X X 9

Lack of IT affinity and IT competence among employees X X X X X X X 7
No meaningful areas of application X X X X 4

Uncertainty regarding the benefits of the application X X X X 4
No clear idea of the “appropriate” value of the data X X 2

Lack of trust in AI-driven decision making X 1
Lack of acceptance by customers X 1

Necessary time requirement to implement X 1
Lack of cooperation partners for Implementation X 1

Lack of integration into the corporate strategy X X 2
Missing business models X X 2

Inadequate digital infrastructure X X 2
No clear responsibilities in the company X 1

Adaption difficulties in organization of operations and work X 1
Lack of contribution options for employees X 1

Missing marketplaces X 1
Lack of digital maturity within the company X 1

Ethical and moral considerations X 1

Technology, Production and R&D

No suitable data sets available X X X X 4
Lack of acceptance of AI applications in the workforce X X X X 4

Data preparation costs time and resources X X X 3
Complexity of the topic X 1

Lack of data quality X 1
Lack of knowledge of best practice example X 1

Functionality and Applicability

Susceptibility of the systems to failures X 1
Technical barriers X 1

Lack of possibilities for the technical protection of the data X 1
No high-performance broadband network X X 2

Inadequate digital infrastructure X X 2

Legislative

Data security requirements X X X X X X X X 8
Data privacy requirements X X X X X 5
Lack of reliable standards X X X X X 5
Lack of legal framework X X X 3

Competition or antitrust hurdles X 1
Fear of legal problems X 1

Communication and cooperation with data protection authorities X 1
AI regulation X 1

In the category of strategy and management, the main challenges are the availability
of skilled employees, the proportionality of investment costs and the IT affinity of the
workforce. In the category of technology, production and R&D, the availability of suitable
data sets, the acceptance of AI by the workforce and the effort involved in data preparation
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represent the main challenges. Critical for the category of functionality and applicability
are the data infrastructure and the broadband network connection. On the legislative side,
the main focus is on data security, privacy and establishing reliable standards. Only one
company indicated the issues “Ethical and moral considerations”, “AI Regulation”, “Com-
munication and cooperation with data protection authorities” as barriers to digitization
and the use of AI. It is not known to which field the interviewees belonged. The initiative
originated with associations from various industries, and it can be assumed that industry
interests and perspectives were incorporated. The evaluation was carried out with the aim
of compiling the main requirements expressed by industry with regard to usability.

3.2.3. User Roles in AI Application in Industry

Table 6 describes typical user roles in the context of digitized production and examples
of typical use cases for them. Development engineers of different domains are involved in
designing cyber–physical production systems. The target artifact of development engineers
is the CPPS itself. Manufacturing process automation, AI-supported digital twins and
connected factories, as well as data-based correction of system behavior constitute typical
use cases. In contrast, development engineers in production technology are concerned
with researching and optimizing the production processes. The target artifacts of process
engineers are formed by the data-driven production process, which includes embedded
systems as part of its data infrastructure. In this context, predictive maintenance, process
and logistics optimization, supply chain management and edge analytics constitute com-
mon use cases. Process engineers are tasked with managing the production process and
ensuring the target criteria of running production. AI-based product development, quality
assurance, material delivery forecasting, robotics, design customization and shop floor
performance optimization comprise representative use cases.

Table 6. Typical user roles in the production–engineering domain.

User Target Artifacts Use-Case Examples

Engineer designing cyber–physical
production systems (CPPS)

Cyber–physical production system
(CPPS)

Manufacturing process automation [52,71]
AI-powered digital twin [53,72]

AI-based connected factory [73,74]
Data-based correction of system behavior [75,76]

Engineer optimizing production
processes

Data-driven production process
embedded system

Predictive maintenance [50,51]
Process optimization [77–79]
Logistics optimization [80,81]

Supply Chain Management [82,83]
Edge analytics [84,85]

Engineer running production
processes

Produced product
raw materials, semi-finished
products and components

AI-based product development and generative
design [86,87]

Quality Assurance [88,89]
Inventory management [90,91]

Forecast supply of raw materials and parts [92,93]
Robotics [94]

Design customization [95,96]
Shop floor performance optimization [97]

Although target artifacts and use cases of the user roles differ, the user roles affect each
other in causality because development engineers and process engineers utilize the CPPS
that the interdisciplinary designers of the CPPS have developed, and process engineers run
the process that the development engineers have evolved. However, the target criteria of
the user roles differ fundamentally. The design of the CPPS is very much influenced by
strategic considerations. As a result, aspects such as the magnitude of investment costs,
meaningful areas of application, certainty of benefits from the application, integration into
the corporate strategy, as well as ethical and moral considerations draw attention. The
optimization of processes, on the other hand, is characterized more by product quality
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criteria, but still by strategic considerations. In process optimization, the complexity of the
topic, time constraints, provision of suitable data, data preparation effort and suitability of
the data infrastructure rank among the key considerations. The management of production
processes is primarily concerned with the achievement of strict minimum requirements
for various key figures of product quality, production efficiency and legal specifications.
In this respect, the availability of capable employees, IT affinity and IT competence of the
employees, acceptance of AI in the workforce, availability of data in the required quality and
clear assignment of responsibility are decisive factors in production process management.

A key aspect is the linking of the different user roles, whose work results depend
on one another, but whose pains and gains are fundamentally different. The flow of
information between different levels or across different divisions is already well known
to be a key property of organizations, so approaches from knowledge management are
considered as useful. Anyway, no expert knowledge in data science can be expected from
the respective user roles at any of the levels. For this reason, all user roles must also be
provided with comprehensible access to relevant expert knowledge of the data science
domain. AI already demonstrates a very broad application potential via human-oriented
signal channels, i.e., image and speech processing. Thus, it is obvious that AI will integrate
the required add-on functionalities for user support into its functional scope and provide
them by default for future applications.

3.2.4. Application Example Material Design in Industry

The UAI paradigm can be applied in other domains, respectively, as long as the
constraints and goal described in Section 3.1 hold true for the targeted domain as well.
The field of material design fulfils these criteria and represents another example for the
application of the UAI paradigm. AI is applied in Material Design for material property
analysis, material discovery and quantum chemistry [98]. Typical user roles in this domain
and target artifacts are given in Table 7.

The challenges for the application of AI described in Section 3.2 for the production-
engineering domain are equally valid for the domain of material design. Differences result
from the fact that the field of material design is more laboratory-based. This leads to the
same data integration issues as in production engineering but mitigates the data quality
problem to some extent. Moreover, compared to other fields, materials data are typically
much smaller and more diverse [99], while extreme values are often of the most interest.
These challenges make it especially necessary to validate the results of AI models in this
domain very carefully.

Table 7. Typical user roles in the material design domain.

User Target Artifact Use-Case Examples

Engineer discovering
new materials

Produced material
and its synthesis

Materials discovery of piezoelectrics with large electrostrains [100]
Machine learning in solid-state materials science [101,102]

Synthetic organic chemistry driven by artificial intelligence [103]

Engineer optimizing
given materials

Process of material
production/

synthesis

Prediction of mechanical behavior of textile reinforced concrete [104,105]
Steel production quality control via process data [106]

Process optimization for a copper alloy considering hardness and electrical
conductivity [107]

Engineer running
materials production

processes
Produced material

Control bead geometry in additive manufacturing of steel [108]
Artificial neural networks applied to polymer composites [109]

Application of intelligent technology in functional material quality control [110]

3.3. UAI Attributes

The evaluation of relevant characteristics of software is typically achieved with quality
models, and with the emergence of AI, models for evaluating the quality of AI solutions
have also been derived. This involves adapting the principles of developing AI quality
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models and their sequence, and developing approaches to formulating definitions of AI
features, methods for representing dependencies and hierarchies of features [8]. Recent
research using systematic mapping studies shows that quality models for AI systems and
software exist; however, so far, work on AI software components is still lacking [7].

To address the challenges examined, the UAI paradigm is proposed. The sub-attributes
of explainability and interpretability are already well covered in this regard by implement-
ing existing XAI concepts. As XAI, due to its still strong data science orientation, falls
short to provide actual user-friendliness for end users, e.g., in user roles in production
technology, further affordances are addressed by following UAI attributes: accessibility,
user-friendliness, transferability, aptitude, integration and interoperability.

Recently, a variety of AI frameworks and libraries have emerged that improve accessi-
bility (Tensorflow, Keras, Caffe, PyTorch, Scikit-learn, to name a few). The frameworks are
built to enable the application of advanced AI without requiring in-depth knowledge of AI
algorithm implementation or software development. Additional tools are implemented
within these ecosystems, such as tools for visualization, data validation, preprocessing,
build model analysis and deployment. Nevertheless, it can be assumed that accessibility
will be further improved, for example by implementing many AI tools with graphical user
interfaces, browser-based and automatic provision of packages.

In addition to the already greatly simplified frameworks, libraries and APIs, the
concept of automated machine learning (AutoML) further simplifies the application of AI
by automating the effort of finding best model architecture and hyperparameters [111].
This increases the learnability, as it makes AI application easier to learn for beginners. In
addition, AI solutions will be expectation-compliant by matching user expectations that
users carry along from experiences with workflows. For this purpose, AI with natural
language processing (NLP) can derive and leverage suitable analogies from existing dialog
systems, user manuals or training materials [112].

The task efficiency of the AI application makes it imperative that the perceived benefit
for the user role is greater than the additional effort caused by AI implementation. This can
be ensured, on the one hand, by maximizing the perceived benefit (forecasting, predictive
maintenance, quality control and risk reduction) or by minimizing the effort (learnability
of new AI applications).

The memorability will have to be improved by findings from the psychology of
perception. People only perceive what they want to perceive based on their motivational
disposition, their abilities and their experience. These criteria differ depending on the user
role and depending on the domain. Accordingly, the different motivational dispositions,
skills and experiences of user roles and domains must be taken into account in the outputs
of the AI. In process control, for example, it is recommended that the AI solution is
oriented towards established forms of representation familiar to process engineers, such as
Ishikawa diagrams. In material discovery, AI solutions should be aligned with established
representations for materials, such as structure graphs.

In order to address error proneness, AI developers need to be aware of the fact that
errors can be caused by users and also by environmental influences, such as poor internet
connection, small screens, bright sunlight, excessive noise, etc. The developer needs to
be aware of the circumstances under which the AI will be used. In particular, due to the
black box nature of most AI solutions, errors can remain undetected for long durations and
lead to far-reaching dire consequences recognized too late. Therefore, efficient possibilities
for regular plausibility checks and efficient measurements of the AIs confidence must be
provided at the earliest stage possible.

Pleasantness can be enhanced through accounting natural human abilities to respond.
AI can learn right reward functions by querying human experts. Asking easy questions
constitutes a goal for an information gain formulation for optimally selecting questions
that naturally account for the human’s ability to answer. Questions that optimize the
trade-off between robot and human uncertainty shall be identified, and questions becoming
redundant or costly shall be determined. In robotics, for example, not only the script form
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will be available for human-machine interaction in the future, but also the speech form
and, at best, in combination with gesture recognition, in order to make human–machine
interaction as pleasant as possible.

AI models have demonstrated great success in learning complex patterns and making
predictions about uncovered domains as long as the problem or use case is clearly defined
and sufficiently describable with enough codifiable information. These one-trick horses
are the still common soft AI examples. In contrast, transferability, the ability to apply
patterns learned to other domains, still appears to be weak. So far, the models have limited
applicability to domains beyond the training–learning domain. Advances in deep learning,
e.g., artificial neural networks, transfer learning and combined approaches in feature
selection provide extended opportunities to improve transfer to adjacent domains. For
example, in image-based process monitoring can be applied pre-trained artificial neural
networks in which only the final layers are trained on a particular production engineering
use case. In material design, for structure-based property prediction, pretrained artificial
neural networks can be used as a frozen featurizer of the material structure. Again, only
the final layers are trained on the smaller dataset of the particular materials engineering
use case. This transfer learning strategy does not only reduce the training effort for the
particular production application, but also improves the functionality of the AI model, as
the pretrained layers lead to better generalizability of the AI solution.

The aptitude of the AI must be tailored both to the domain and to the use case. Both
domain specificity and use case specificity are already considered in the design of the CPPS.
In particular, this requires intensive and effective communication, both horizontal and
vertical, along the domain experts and across hierarchy levels. The user roles of process
operation differ from the user roles of process development and the user roles of CPPS
development. Pains and gains of the process operators have to be regarded as well as their
hidden knowledge about the process’ operation. Obtaining the latter is typically particularly
difficult, especially in the context of usability with computer algorithms. Furthermore,
provision for adaptation possibilities is recommended. For example, AI can improve
production planning with assistance in revealing hidden knowledge of assembly workers
from the shop floor. Because hidden knowledge is involved, unsupervised methods,
such as clustering or outlier detection, or reinforcement learning will figure in this. Such
unsupervised AI methods will empower software to an unprecedented degree to adapt
autonomously to the needs of domains and use cases in an agile manner.

As AI evolves from pure research into production use, a significant increase in inte-
grability is to be expected. The integration of AI into the production application involves
hardware and software, as well as interfaces. In a variety of technical application fields, AI-
based systems receive sensor data and return process-influencing information to actuators.
The interactions between information processing, the process as data source and data sink,
and the influences of the quality of the sensor data and the actuator operations are also deci-
sive for the overall system function of the systems. In addition to the particular measuring
principle for the respective process variable, smart sensors include signal preprocessing,
monitoring algorithms to safeguard the sensor function, connectivity and, depending on
the area of application, energy supply functions. Smart actuators also supplement the con-
trol intervention in the technical process with advanced signal processing and monitoring
mechanisms as well as various communication methods. The resultant signal processing
system incorporates additional smart features that further enhance system performance.

Consistent with the overall shared vision of digitized and networked production,
AI solutions must also feature interoperability with applications beyond the boundaries
of their operating environment. In this regard, the issue of interoperability exceeds the
question of technical realization, which, in fact, has progressed to the point where technical
interoperability can be taken for granted. Much more urgent will be the aspects of socioeco-
nomics and legal regulations of all kinds. Tech giants try to control AI with lock-in models,
which has a negative impact on AI development. Smaller companies cannot compete, and
developers are locked into services and providers such as Amazon’s AWS. Anytime this
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occurs, it results in the risk that potentially extremely robust AI architectures developed
by smaller companies will be neglected. For example, Google’s TensorFlow is one of the
most popular AI frameworks due to its high computational power. However, because it
does not have multiple pretrained AI models, it is not the best option when it comes to
innovation and faster time to market. Similarly, Amazon’s AWS offers both comprehen-
sive data analytics tools and a high level of security but falls short in terms of flexibility
for specific AI algorithms. It is much easier for development teams to use best-of-breed
frameworks and multiple related functions if they are all interoperable and flexible. So
far, purely economic aspects at the software level are considered. In the cyber–physical
production context, system developers, production companies, customer groups, among
others, must also be socioeconomically motivated and ultimately be enabled to achieve
interoperability in compliance with legal regulations.

4. Conclusions

To further elevate digitization by the use of AI methods in various application domains,
the paradigm of usable AI, UAI, is introduced. The primary objective of UAI is user
orientation. For this purpose, solutions shall heavily rely on user-specific considerations.
This implies domain-specific adaptation, on the one hand, and adaptation to user roles, on
the other.

Numerous surveys on working with AI-based systems in production practice have
been examined to investigate the relevance of the concept within a specific application
domain. The main difficulties and their causes as perceived by practitioners have been
analyzed. Based on the identified hurdles, possible research directions have been derived.
As a result, to gain maximum leverage for increasing the willingness and prospect of
success in introducing AI applications it is necessary to improve the usability of AI in
practice in a wider sense, especially in terms of solution transparency and user competence.
It is indicated that previous approaches to increasing the transparency of black-box-like AI
algorithms still need to close the gap between Data Science and its users within specific
domains. The need persists to provide sufficient AI application support for engineers and
practitioners within the domain.

It is inferred that AI will evolve towards improved usability like other software
solutions over the past three decades. The UAI paradigm addresses as essential user-centric
AI attributes: usability, suitability, integrability and interoperability.

In the context of CPPS, the following user roles have been abstracted: developer
of CPPS, developer of processes and operator of processes. The analysis shows that
target artifacts, motivation, knowledge horizon and challenges differ for the user groups.
Therefore, in the future, UAI shall enable a domain- and user-role-specific adaptation of
attributes, accompanied by adaptive support for vertical and horizontal integration across
the domain-user-role matrix.

UAI defines a transformational paradigm. It provides orientation and structure for
developers, research and development departments and enterprises. Adoption of the UAI
paradigm in solution development will afford future users to apply AI in an easier, more
competent way. Hence, AI solutions gain appeal and relevance for new user groups and
use cases in a broad variety of domains. An expanded scope of activity and therefore the
ability to work more effectively and efficiently are the result. By proposing the concept of
UAI, we aim at inspiring a new field of research and to initiate the much-needed further
development of methods for easily accessible AI application.
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