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Abstract: Human granulocytic anaplasmosis (HGA) is a debilitating, non-specific febrile illness
caused by the granulocytotropic obligate intracellular bacterium called Anaplasma phagocytophilum.
Surveillance studies indicate a higher prevalence of HGA in male versus female patients. Whether this
discrepancy correlates with differential susceptibility of males and females to A. phagocytophilum
infection is unknown. Laboratory mice have long been used to study granulocytic anaplasmosis.
Yet, sex as a biological variable (SABV) in this model has not been evaluated. In this paper,
groups of male and female C57Bl/6 mice that had been infected with A. phagocytophilum were
assessed for the bacterial DNA load in the peripheral blood, the percentage of neutrophils harboring
bacterial inclusions called morulae, and splenomegaly. Infected male mice exhibited as much as a
1.85-fold increase in the number of infected neutrophils, which is up to a 1.88-fold increase in the
A. phagocytophilum DNA load, and a significant increase in spleen size when compared to infected
female mice. The propensity of male mice to develop a higher level of A. phagocytophilum infection is
relevant for studies utilizing the mouse model. This stresses the importance of including SABV and
aligns with the observed higher incidence of infection in male versus female patients.

Keywords: anaplasmosis; anaplasmataceae; mouse model; sex as a biological variable; morula;
intracellular bacteria; gender differences to infection

1. Introduction

Sex as a biological variable (SABV) is an important criterion to include in vertebrate animal
studies. As part of its approach to increase rigor and reproducibility, the United States (USA) National
Institutes of Health recently changed its guidelines to ensure that its funded vertebrate animal studies
address SABV. As many as 37% of published preclinical animal studies and 9% of published cell
culture studies may have been affected by these new guidelines [1]. Biological differences between
males and females have been shown to affect infection rates and variable gene transcription of
multiple pathogens including Mycobacterium tuberculosis [2,3], Legionella spp. [4], and Coxiella burnetii [5].
Even though infections caused by bacteria in the order Rickettsiales have led to the loss of millions
of lives throughout history, have impacted wars, and continue to threaten global health today [6–13],
no study to date has addressed SABV for any rickettsial organism.

Anaplasma phagocytophilum is a tick-transmitted obligate intracellular bacterium of the order
Rickettsiales that preferentially infects granulocytes and bone marrow progenitor cells to cause human
granulocytic anaplasmosis (HGA). The emerging infection typically presents as a non-specific febrile
illness that is self-limiting in otherwise healthy individuals. In the elderly, the immunocompromised,
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and, in some instances, when proper antibiotic therapy is delayed, HGA can result in potentially
deadly sequelae including rhabdomyolysis, septic shock, and pneumonia [14]. The first HGA case was
documented in Minnesota, USA in 1994 [15]. Since then, the disease has been increasingly reported in
the USA, Europe, and Asia [14]. From the year 2000, when HGA was reported to the USA Centers
for Disease Control (CDC), up to 2016, the number of annually reported cases rose from 350 to 4151,
which represents a 1186% increase [16]. Seroepidemiologic data indicate that its incidence may be
several-fold higher in some endemic areas [17,18]. Notably, it has been reported that male HGA
patients outnumber female HGA patients three to one [19].

The mouse model has been utilized to study A. phagocytophilum infection in vivo for more than
20 years. Infected mice develop laboratory markers that occur during HGA. One of these markers
shows that neutrophils harboring intravacuolar A. phagocytophilum colonies, called morulae, can be
detected in peripheral blood smears using light microscopy. A. phagocytophilum infected mice also
develop splenomegaly [20–26]. Whether male or female mice exhibit differential susceptibility to
infection with the bacterium has yet to be explored. This fact has led to the current study. In this paper,
we demonstrate that male mice exhibit significantly higher peripheral blood bacterial burdens and
splenomegaly than female mice after infection with A. phagocytophilum.

2. Materials and Methods

2.1. Cultivation of Uninfected and A. phagocytophilum Infected Cell Lines

Uninfected and A. phagocytophilum (NCH-1 strain) infected human promyelocytic HL-60 cells,
CCL-240 (American Type Culture Collection (ATCC), Manassas, VA, USA) were cultured as described
previously [27].

2.2. Literature Search

To determine if prior publications that utilized the mouse model of granulocytic anaplasmosis
examined the influence of SABV on A. phagocytophilum infection, queries of PubMed (https://www.
ncbi.nlm.nih.gov/m/pubmed) were performed using combinations of the following keywords or
keyword combinations: A. phagocytophilum, granulocytic anaplasmosis, granulocytic ehrlichiosis,
human granulocytic anaplasmosis, human granulocytic ehrlichiosis, agent of human granulocytic
ehrlichiosis, mouse, murine, and in vivo. The time period examined was 1980 to present. The searches
returned a total of 61 different publications.

2.3. Infection of C57/Bl6J Mice

Seven-week-old female and male C57Bl/6J mice (Jackson Laboratories, Bar Harbor, ME, USA)
were housed in animal biosafety level-2 laboratories prior to and during all experiments. Mice were
intraperitoneally inoculated with 1 × 108 A. phagocytophilum organisms that had been recovered
following sonication of infected HL-60 cells and differential centrifugation, which is a method that
specifically isolates the infectious dense-core but not the non-infectious reticulate cell form [28].
Sterile PBS was used as a mock inoculum to inject negative control animals. Blood was collected from
the tail vein on days 0, 4, 8, 12, 16, 21, and/or 28. On day 28, the mice were euthanized, blood was
collected via cardiac puncture, and spleens were harvested. All animal research was performed
under the approval of the Institutional Animal Care and Use Committee at Virginia Commonwealth
University (Protocol Number AM10220).

2.4. Evaluation of A. phagocytophilum Infection

Peripheral blood smears were fixed and stained with FisherBrand Hema 3 solutions
(ThermoFisher, Waltham, MA, USA) and examined by light microscopy for the presence of neutrophils
with morulae. Three blood smears were examined per time point per mouse in order for the percentage
of infected neutrophils to be determined from a total of at least 300 neutrophils. DNA was isolated
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from heparin-treated blood using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA).
Fifty nanograms of DNA were subjected to quantitative PCR (qPCR) using primers targeting
A. phagocytophilum 16S rDNA and mouse β-actin [29], SsoFast EvaGreen Supermix (Biorad, Hercules,
CA, USA), and the CFX384 Detection System (Biorad). Thermal cycling conditions consisted of an
initial denaturation step of 98 ◦C for 2 min and was followed by 40 cycles at 98 ◦C for 5 s and 60 ◦C for
30 s. The relative 16 S rDNA levels were normalized to that of β-actin using the 2−∆∆CT method [30].
To assess for splenomegaly, spleen-to-body weight ratios were determined on day 28.

2.5. Statistical Analysis

Statistical analyses were performed using the Prism 5.0 software package (Graphpad, San Diego,
CA, USA). Two-way analysis of variance (ANOVA) with the Sidek’s post-hoc test was used to test
for a significant difference among the groups. A paired student’s t-test was used to test for statistical
significance between paired data. Statistical significance was set at p values of <0.05.

3. Results

3.1. A. phagocytophilum Infected Male Mice Have Higher Peripheral Blood Bacterial DNA Levels than Infected
Female Mice

An examination of the literature revealed 61 publications that used the mouse model of
granulocytic anaplasmosis. Of the 61 reports, 32 did not disclose the gender, 14 used only females,
10 used only males, and 6 included both sexes [20–23,25,26,31–85] (Table 1). None of the six studies
that included males and females examined for a correlation between sex and differential susceptibility
to A. phagocytophilum infection [25,39,41,62,65,73,85]. We sought to determine if such a correlation
exists. Following inoculation, the A. phagocytophilum peripheral blood burden in immunocompetent
wild-type mice tends to peak by day 12 and subsides thereafter to undetectable or near undetectable
levels by days 21 to 28 [23,26,38,45,52,58,60,64,68,71,73,75,78,81,84]. C57Bl/6 mice are commonly used
for studying A. phagocytophilum infection [26,34,36,38–41,52,61,62,65,68,70,73,75,76,78,84,85]. Male
and female C57Bl/6 mice were intraperitoneally inoculated with host cell-free A. phagocytophilum
organisms. DNA was isolated from blood obtained on days 4, 8, and 12 and subjected to qPCR using
primers targeting A. phagocytophilum 16S rDNA and mouse β-actin. On day 12, the relative bacterial
load in the peripheral blood of male mice exhibited a statistically significant 1.88-fold increase relative
to the bacterial load in the peripheral blood of female mice (Figure 1).Trop. Med. Infect. Dis. 2018, 3, x FOR PEER REVIEW  4 of 10 
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of infection, the bacterium achieves a significantly higher load in the peripheral blood in male mice. 
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Figure 1. A. phagocytophilum infected male mice exhibit higher peripheral A. phagocytophilum DNA
levels than female mice. Male and female C57Bl/6 mice were intraperitoneally injected with
A. phagocytophilum organisms. DNA samples isolated from heparin-treated blood recovered on days 4,
8, and 12 and were then subjected to qPCR using gene-specific primers. Relative A. phagocytophilum
16S rDNA-to-murine β-actin DNA levels for each mouse generated using the 2−∆∆CT method along
with their standard deviations are presented. Statistically significant (* p < 0.05) values are indicated.
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Table 1. Published studies using the mouse model of granulocytic anaplasmosis.

References Usage of Female and/or Male Mice

[20–22,26,31,32,34–36,38,40,42,45–49,51,54–56,59,60,63,66,72,74–76,78–80] Not disclosed

[23,43,52,53,58,64,67–71,81,82,84] Females

[33,37,44,50,57,61,77,83–85] Males

[25,39,41,62,65,73] Males and females

3.2. A. phagocytophilum Infected Male Mice Exhibit Higher Percentages of Neutrophils Harboring Morulae and
Splenomegaly Compared to Infected Female Mice

The infection experiment was repeated except that each sex group consisted of seven mice.
To address the possibility that A. phagocytophilum might achieve its highest peripheral load in female
mice at a later time point than day 12, blood was drawn on days 4, 8, 12, 16, 21, and 28. In addition,
since qPCR measures the DNA load and, therefore, cannot distinguish DNA derived from live versus
dead bacteria, blood smears were generated and examined for the presence of neutrophils harboring
morulae. Consistent with the qPCR data, both sexes had the highest mean percentage ± SD of
neutrophils with morulae on day 12 (Figure 2A). However, the percentages of infected neutrophils in
female mice never became as high as that observed in male mice, which were significantly 1.97-fold
and 1.85-fold greater on days 8 and 12, respectively. Little to no infected peripheral blood neutrophils
were detectable for either sex by day 28. Overall, these data indicate that, while the kinetics of
A. phagocytophilum infection do not differ between male and female mice over the course of infection,
the bacterium achieves a significantly higher load in the peripheral blood in male mice. On day 28,
the mice were euthanized, spleens harvested, and their spleen-to-body weight ratios determined.
The mean spleen-to-body weight ratio of infected to uninfected male mice increased significantly while
the mean spleen-to-body weight ratio of infected to uninfected female mice did not (Figure 2B).Trop. Med. Infect. Dis. 2018, 3, x FOR PEER REVIEW  5 of 10 
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Figure 2. A. phagocytophilum infected male mice have higher percentages of peripheral blood
neutrophils harboring morulae and greater degrees of splenomegaly than infected female mice.
Male and female C57Bl/6 mice were intraperitoneally injected with A. phagocytophilum bacteria.
(A) Peripheral blood smears were microscopically examined for neutrophils that contained morulae.
Each dot corresponds to the mean percentage of infected neutrophils determined from counting a
total of at least 300 neutrophils from three separate blood smears per mouse. Error bars correspond
to the mean ± standard deviation of the percentages determined for all seven mice per group. Data
are representative of two experiments with similar results; (B) On day 28, the mice were euthanized,
the spleens were harvested, and the spleen-to-body weight ratios were calculated. Data are the mean
± standard deviation of the ratios determined from seven mice per group. Statistically significant
(* p < 0.05, ** p < 0.01, **** p < 0.0001 values are indicated.
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4. Discussion

This study demonstrates for the first time that A. phagocytophilum achieves a higher peripheral
blood load and causes a greater degree of splenomegaly in male versus female mice using the C57Bl/6
strain, which is the most-commonly used murine model of granulocytic anaplasmosis. These results
are consistent with a higher case incidence in males among HGA patients [19]. The biological basis for
this difference is unclear. Given that A. phagocytophilum incorporates cholesterol into its cell wall [86],
replicates better in the presence of cholesterol [61,87,88], and specifically exploits the low-density
lipoprotein (LDL) uptake pathway [88], it is reasonable to speculate that the better infection the
bacterium exhibits in males could be at least partially linked to the fact that men tend to have higher
LDL-cholesterol levels than women [89]. A report using apolipoprotein E-deficient mice and mice
fed high cholesterol diets conspicuously demonstrated that high blood cholesterol levels facilitate
A. phagocytophilum infection. However, that study, which only assessed the relevance of cholesterol
to A. phagocytophilum infection, exclusively utilized male mice [61]. It would be worth revisiting this
study using males and females. Another possible gender-based difference that could account for
the reduced permissiveness of females to A. phagocytophilum is that female mice and humans tend
to produce higher levels of IFNγ and exhibit more robust innate and adaptive immune responses
than males. This difference translates to better clearance, reduced susceptibility, and lower disease
incidence of viral and fungal infections in female mice [90–93]. An IFNγ dominated immune response
is critical for clearing A. phagocytophilum infection [59].

Whether a similar sex bias for better A. phagocytophilum infection exists in other laboratory
mouse strains remains to be determined. Due to the importance of including SABV as a criterion
when designing vertebrate animal experiments unless a sex bias in the model exists, the differential
susceptibility of male versus female mice to A. phagocytophilum infection demonstrated in this paper
should be kept in mind for future experiments using the C57Bl/6 strain.
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