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Abstract: The distribution of diseases caused by vector-borne viruses and parasites are restricted by
the environmental requirements of their vectors, but also by the ambient temperature inside the host
as it influences the speed of maturation of the infectious agent transferred. The launch of the Soil
Moisture Active Passive (SMAP) satellite in 2015, and the new ECOSTRESS instrument onboard the
International Space Station (ISS) in 2018, established the leadership of the National Aeronautics Space
Administration (NASA) in ecology and climate research by allowing the structural and functional
classification of ecosystems that govern vector sustainability. These advances, and the availability of
sub-meter resolution data from commercial satellites, contribute to seamless mapping and modelling
of diseases, not only at continental scales (1 km2) and local community or agricultural field scales
(15–30 m2), but for the first time, also at the habitat–household scale (<1 m2). This communication
presents current capabilities that are related to data collection by Earth-observing satellites, and draws
attention to the usefulness of geographical information systems (GIS) and modelling for the study of
important parasitic diseases.

Keywords: GIS; remote-sensing; satellite; international space station; ECOSTRESS; worldview;
spatio-temporal epidemiology; climate change; parasite; schistosomiasis, leishmaniasis

1. Introduction

Disease and location were already linked by Hippocrates in the fourth century before the Christian
era, and Snow famously traced a cholera outbreak to a particular water pump in London in the
mid-1800s. Interestingly, this was before anybody had any idea about bacteria and viruses, even
though van Leeuwenhoek probably saw the former in his rudimentary microscope, 170 years before
Snow’s findings. However, some decades later, communicable diseases and their propagation were
already quite well understood, but what was now missing was the technology needed to translate the
data collected over large areas into reliable risk maps. Remote sensing (RS), first from airplanes, since
the 1970s from satellites, and very recently also from drones, changed all that. RS became the impetus to
the merger of Earth sciences, computer technology, and advanced statistics eventually granting access
to an array of advanced tools that are highly suitable for epidemiological investigation [1–4]. Such
techniques are particularly useful for the study of those parasitic infections that rely on intermediate
hosts (vectors) to complete their life cycles, since these vectors (commonly insects but also molluscs)
are highly sensitive to a range of environmental variables. In addition, temperature also limits the
maturation of the parasite’s intermediate stage(s) inside the vector which, together with other variables,
makes it possible to estimate disease distributions with a good level of accuracy. Indeed, the number
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of publications promoting the use of remotely sensed variables, such as land use, temperature,
rainfall, humidity, vegetation etc., to effectively decide the distributions of infectious microorganisms,
is increasing exponentially, as exemplified by Rogers and Randolph [5], Foley [6], Bergquist [7],
Lord et al. [8], Misslin et al. [9], and a multitude of other authors. Temperature plays a major role
for vector presence, and climate change has by now made it possible for diseases to start expanding
their endemic areas, or can be expected to do so. For example, several tick-borne infections around
the world [10], dirofilariasis in northern Europe [11], and schistosomiasis in northern China [12,13]
are currently on the move. Pollution, and resistance to pesticides and drugs, as well as the general
fall-out from globalization, are other factors driving such changes [14]. Previously locally confined
infections that have lately become wide-spread are becoming more numerous on a monthly basis, e.g.,
the parasite Babesia, the spirochete Borrelia, and viruses such as chikungunya, Rift Valley virus (RFV),
West Nile virus (WNV), and the Zika virus, to mention the most well-known [15].

2. Data Collection

Advanced laptop computers and widespread access to the Internet have created a broad
accessibility of RS data from Earth-observing satellites. While this has made epidemiology more
dependent on satellite-generated data, the discipline has also undergone a paradigmatic change,
thanks to geographical information systems (GIS) that facilitate the management and processing
of epidemiological data. The stronger potential to match the suitability of various environments
to parasite life cycles and transmission dynamics provides a new way to address the nidality
concept introduced by Pavlovskii as far back as 1945 [16]. Based on his ideas, geography and
environmental variables associated with health data have led to the concept of disease ecology,
where RS provides useful insights on the different factors related to transmission levels and disease
distributions, while mapping and modelling facilitates interpretation, synthesis, and recognition of
outbreak frequencies [17].

The GIS approach supports overlay and network analysis by documenting neighborhoods, buffers
and spatial parameters, and today’s epidemiologists have access to a multitude of ecological and
climatic data that were never before available in such amounts and with such ease. The visualization
of epidemiological datasets in a geographical context, e.g., linking spatial data from virtual globes with
GIS software packages supports prediction and risk profiling [18], while sharing epidemiological data
in real-time, is helpful, not only for individual researchers, but also for decision-makers. The growth
of the Internet has distributed GIS widely, connecting with other platforms, such as web map
servers, libraries, spatial database management systems, and software development frameworks.
The field has thus become multi-participatory, such as allowing the advantage of cloud computing
opportunities that facilitate GIS access for anyone, anywhere. However, while the development of
near real-time surveillance systems, based on GIS, global positioning systems (GPS) and RS, facilitate
the establishment of accurate, up-to-date early-warning systems (EWS), it is important to understand
that GIS neither makes the actual field collection of parasites and vector easier, nor does it assure the
quality of the information gained [19,20].

In the published literature on health applications of the geospatial sciences since the 1980s, malaria
and schistosomiasis are the focus of the first and second most numerous articles, respectively. It is likely
that schistosomiasis will continue to be a barometer of progress in geospatial health sciences, when
the attention of researchers is drawn to emerging issues, such as the efficiencies of integrated control
of malaria, and the neglected tropical diseases (NTDs), which include schistosomiasis. The spatial,
temporal, and spectral resolution of the satellite-based sensors, and the capabilities of computer-based
models has led to an improved understanding of geographical areas, and how they can support the
transmission of various infections. In addition, improved surveillance, risk-mapping, and access to
large databases promise stronger possibilities for understanding the complex relationship between the
environment and infection with regard to infections. For example, like so many other parasitic diseases,
the interaction between the human definitive host and the intermediate snail host in schistosomiasis,
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depends strongly on ambient environmental variables, above all temperature. While the latter
and accessibility to water, humidity, vegetation, and shade limit the snail distribution, the ambient
temperature in the snail governs the speed of maturation of the infectious agent inside [21].

3. GEOHealth: Part of the Global Earth Observation System of Systems (GEOSS)

Major scientific groups are interested in public health applications of the geospatial sciences,
e.g., the Earth Science area of the National Aeronautics Space Administration (NASA) (http://www.
nasa.gov/) has moved towards a strategic goal that includes the study of climate and environmental
change and the potential impact on public health issues, such as infectious diseases, emergency
preparedness and response (https://www.earthobservations.org/documents/cop/he_henv/2011032).
NASA’s Public Health Program, chronicled by Luvall [22], is a growing part of the organization.
In addition, the Group on Earth Observations (GEO) (https://www.earthobservations.org/geoss.php),
an international agency with support from over 100 governmental departments, non-governmental
organizations (NGOs), and scientific organizations has an interest in health, and so has the International
Society for Photogrammetry and Remote Sensing (ISPRS) (http://www.isprs.org/). Yet another group,
the International Medical Geology Association (MEDGEO) (http://rock.geosociety.org) has similar
goals in its stated mission focused on the science dealing with the relationships between geological
factors and health.

The growing availability of digital data for geospatial studies made possible by RS and resources
from national space agencies, such as NASA in the USA, the French National Centre for space studies
(Centre National d’Études Spatiales (CNES) [23], the European Space Agency (ESA) and the Japan
Aerospace Exploration Agency (JAXA) [24] has led to the establishment of scientific teams that are
interested in exploiting geospatial health applications for specific pursuits, e.g., public health research.
Several dedicated journals have emerged, e.g., Geospatial Health (http://www.geospatialhealth.
net) [25], the International Journal of Health Geographics (http://www.ij-healthgeographics.com)
and Spatial and Spatio-Temporal Epidemiology (http://www.journals.elsevier.com/spatial-and-
spatiotemporal-epidemiology/). The net result is that geospatial mapping and multidisciplinary
modelling are becoming mainstream science in the health community at large. It is therefore of great
potential value to cross-fertilize and reinforce linkages of diverse interest groups on health applications
of the geospatial sciences. NASA programs promote linkages with the Group on Earth Observations
(GEO) mission to build and utilize GEOSS (https://www.earthobservations.org/geoss.php) under
the public health societal benefit area in which health scientists working on very different health
issues can collaborate in the use of a standardized, interoperable, open-source global resource data
portal. It would be expedient if the Earth observations health network (GEOHealth) within the GEOSS
framework would gain stronger traction along the lines in the Box 1 below.

Box 1. The GEOHealth Mandate.

GEOHealth collaborates on activities relating to the GEO societal benefit area on Public Health and GEOSS,
enabling the collaboration of governmental, inter-governmental, and non-governmental organizations to
organize and improve mapping and predictive modelling of the distribution of infectious, vector-borne, and
non-contagious diseases globally and make these data, information, and forecasts more accessible to policy
and decision-makers, managers, experts, and other users. Such a network would progress from a Community
of Practice to an Initiative and then a Flagship in the GEO work plan. This voluntary partnership would be
guided by a steering committee comprising the key stakeholders, initially the ISPRS VIII/2 Working Group
(http://www2.isprs.org/commissions/comm8/wg2.html) and the International Society of Geospatial Health
(GnosisGIS) (www.gnosisgis.org) actively recruiting other organizations to join. GEOHealth draws on GEO’s
data-sharing principles to promote full and open exchange of data, and on the GEOSS common infrastructure,
to enable interoperability through the adoption of consistent standards. To assist both holders and users of
health information to engage with GEOHealth, an active website would need to be established, containing links
to information resources, activities, GEOHealth documents, meetings, and other resources that are relevant to
the this mandate, including GnosisGIS, ISPRS VIII/2, the American Society of Tropical Medicine and Hygiene
(ASTMH), and other groups interested in this endeavor to commit to the global vision of GEOHealth [26].
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Is it possible to develop a dynamical 3-dimensional (3D) or even 4D (adding the temporal
dimension) models of disease, such as bi-weekly global reports on the major endemic diseases?
We are close to succeeding in this endeavor, facilitated by new satellite systems, big data, climatology
advances, and novel sensors, such as the global precipitation model (GPM), the soil moisture active
passive (SMAP), the Operational Land Imager (OLI), and the Thermal Infrared Sensor (TIRS), which
replaces the Thematic Mapper Plus (ETM+) onboard the Landsat 8 satellite (summarized in Table 1).
In addition, ESA’s Copernicus Sentinel mission includes a range of satellites carrying radar and
multi-spectral imaging instruments for land, ocean, and atmospheric monitoring. Perhaps most
importantly, the sub-meter resolution data now available from the image-focused Worldview 2, 3,
and 4 satellites (https://www.digitalglobe.com/about/our-constellation) can provide community risk
assessments. Adding to this, the elective value-added potential of the low-altitude sensors on drone
airborne vehicles as a source of very high-resolution data collection within a user-set agenda [27,28].

Future NASA satellite missions, such as the Hyperspectral Infrared Imager or HyspIRI (http:
//hyspiri.jpl.nasa.gov/), will provide further enhanced capability to map vector-borne and other
environmentally sensitive diseases, based on global hyperspectral visible and multispectral thermal
data products (5-day, 60 m2 thermal and 19-day, 30 m2 hyperspectral repeat intervals) that will enable
structural and functional classification of ecosystems, and the measurement of key environmental
parameters, such as temperature and soil moisture. A new generation of sensors offer new capabilities,
e.g., the ECOSTRESS instrument added to the International Space Station (ISS) on 29 June, 2018 (http:
//www.nasa.gov/jpl/nasas-ecostress) has started to monitor plant health using surface temperature
measurements (and derived evapotranspiration values) with a 3-day to 5-day diurnal pair coverage,
38 × 57 m spatial resolution at varying times during the day due to the ISS orbit precession [22].
Timely adoption of these data resources in health surveillance and response systems will require close
cooperation between NASA and public health scientists. In addition, very high-resolution satellite
data collected by GeoEye-1, Worldview1-4, Quickbird-2 are available for both historical and current
time periods from Digital Globe (https://www.digitalglobe.com/), a company recently acquired by
Maxar Technologies (https://www.maxar.com/). These advances finally allow seamless mapping
and modelling of diseases, not only at continental scales (1 km2) and local community-agricultural
field scales (15–30 m2), but for the first time, also at the habitat-household scale (<1 m2) within
individual communities.

A geospatial surveillance and response system resource for vector-borne disease in the Americas
is currently being constructed using NASA satellite data, GIS, and ecological niche modelling to
characterize the environmental and socioeconomic suitability, and the potential for the spread of
selected endemic and epizootic vector-borne diseases in the Americas. The initial focus will be on
developing prototype geospatial models on visceral leishmaniasis, an expanding endemic disease in
Latin America, and models for dengue and other emerging Aedes aegypti-borne viruses (dengue, Zika,
chikungunya) that have potential for epizootic spread from Latin America and the Caribbean to North
America. We are planning to use the same resource data and modelling methods for surveillance and
response systems for other vector-borne diseases, including schistosomiasis in the elimination phase.
The GEOHealth concept would be a convenient way for incorporating the results into the interoperable,
open-access standards of the GEOSS. Dissemination and training programs can then be implemented
to promote geospatial mapping and modelling of vector-borne diseases, as envisioned in GEOSS.
Implementation of GEOHealth requires, however, an initial effort to compile, design, and construct
interoperable data structures that are anticipated to be useful for vector-borne disease surveillance
and response systems based on the project investigators’ experience, literature reports and availability.
In this way, all data will be resampled and projected in geographic formats compatible with other
GEOHealth project data parameters, and available in ASCII form needed, e.g., for use in Maxent
(https://www.gbif.org/tool/81279/maxent) [29] or Bayesian (OpenBUGS) mapping and modelling
software. Data portal construction methods would be similar to that reported for a prior Pan American
Health Organization (PAHO) project on mapping and modelling six neglected tropical diseases in
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Latin America and the Caribbean region [30]. To economize on the size of data storage requirements,
data available for multiple years, e.g., the United States Geologic Survey (USGS) Landsat Legacy data
would be acquired and archived in the data portal archive at 5-year intervals (2005, 2010, and 2015)
with a step-by-step tutorial on how investigators can download additional data in the same format.
Investigators would be able to examine data to evaluate usefulness using limited example data, with
instructions on how to obtain similar additional complete data on specific time frames and scales,
as needed from open-source archives linked to specified internet sites, e.g., the USGS Earth Resources
Observation Systems (EROS) Data Center (https://eros.usgs.gov) which was established to study land
change and to produce land change data products used by researchers, resource managers, and policy
makers around the world.

Data from the GEOHealth common resource data portal could then be used to demonstrate
the feasibility of improved disease risk assessment models in prototype surveillance and response
system models, as compared to previously reported models for vector-borne diseases that have a
fundamentally different epidemiology, including schistosomiasis. We aim to develop geospatial
development rate models that can simulate and display temporal progression (e.g., as 8-day snapshots)
of vector–parasite life cycles and geospatial risk, based on comprehensive daily climate re-analysis data,
night and day land surface temperatures (LSTnight, LSTday), the normalized difference vegetation index
(NDVI), the normalized difference moisture index (NDMI), and the normalized difference wetness
index (NDWI) available from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board
the Terra and Aqua satellites The Visible-Infrared Imaging Radiometer Suite (VIIRS) will extend the
MODIS program in the future. These data should used in the context of topography, land use, and
population patterns. A major gap in the past has been environmental moisture data, which can now be
addressed using newly available sensor systems data from SMAP, GPM, GOES-16, and ECOSTRESS
(Table 1).

https://eros.usgs.gov


Trop. Med. Infect. Dis. 2019, 4, 15 6 of 16

Table 1. Recently launched Earth-observing satellite resources for mapping and modelling GeoHealth applications.

Satellite Platform Frequency Swath Sensor Spatial Resolution Applications/Comments

GPM a

Launched
Feb. 2014

Integrated
multi-satellite

retrievals (IMERGE)
0.5 hours

Dual-frequency
Precipitation Radar (DPR)

125–245 km;
Global Microwave Imager

(GMI) 885 km

Core Observatory
radar/radiometer system 1 km

Measures precipitation using a reference
standard to unify measurements from a

constellation of related research and
operational satellites. Extends Tropical

Rainfall Measuring Mission (TRMM) records

GOES b 16
Launched Nov. 2014

5–15 min
Full disk image of the
Earth consisting of 22

swaths

Advanced Baseline Imager
(ABI) with 16 bands 0.5–1 km–2 km Meteorology; Geostationary orbit over the

western hemisphere

Suomi-NPP c

Launched
Oct. 2011

Daily 3000 km Visible-Infrared Imaging
Radiometer Suite (VIIRS) 1 km

8-day Land Surface Temperature (LST)
measurements for day and night. Extends

MODIS d, AVHRR e

Soil Moisture Active
Passive (SMAP) 3 h L band Radar and Microwave

Imager 3–10 km Measures water content in the top 5 cm of
the soil

Landsat 8
Launched
Jan. 2013

16 days 185 km Operational Land Imager (OLI),
Thermal Infrared Sensor (TIRS)

OLI: Panchrom. = 15 m
VIS-NIR-SWIR f = 30 m

TIRS:
thermal bands = 100 m

OLI and TIRS replace the Thematic Mapper
(TM) and the enhanced Thematic Mapper

Plus (ETM+) on previous Landsat satellites
(Landsat legacy data has a continuous record

since 1972

Sentinel 1 (A&B)
A launched 2014
B launched 2015

12 days 250 km
C-band Synthetic Aperture

Radar (C-SAR)
Multi-spectral instrument

5 and 20 m EU contribution to GEOSS with applications
related to land, coastal water with respect to

natural disasters, resources, environment,
weather, seasonal forecasting and climate.

Monitors plant growth and forests, changes
in land cover marine and ecosystems

through leaf chlorophyll and water content
indexes

Sentinel 2
A launched 2015
B launched 2016

10 days 290 km
(MSI) with 13 channels in

VIS-NIR-SWIR f

Radar altimeter, micro wave
10, 20 and 60 m

Sentinel 3
A launched 2015
B launched 2016

27 days 1270 km radiometer, sea and land
surface temperature radiometer 300 m

Worldview 3 Aug. 2013
Worldview 4 Nov. 2016 <1 day 13.1 km Pan, 8 Multi-spectral, 8 SWIR Panchromatic = 31 cm

Multispectral = 1.24 m
Optical data collection at the

habitat-household level

International Space
Station (ISS) 3 days 385–415 km ECOSTRESS g

Launched July 2018 38 × 57 m Measures plant evapotranspiration (ET)

a Global Precipitation Measurement (mission); b Geostationary Operational Environmental Satellites; c National Polar-Orbiting Partnership; d Moderate Resolution Imaging
Spectroradiometer (MODIS); e Advanced Very High Resolution Radiometer; f Visual, Near Infrared and Short-Wave Infrared; g ECOsystem Spaceborne Thermal Radiometer Experiment
on International Space Station. Table sources: https://earthdata.nasa.gov/user-resources/remote-sensors. Additional info pm Sentinel: https://directory.eoportal.org/web/eoportal/
satellite-missions/c-missions/copernicus-sentinel-1.

https://earthdata.nasa.gov/user-resources/remote-sensors
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-1
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-1


Trop. Med. Infect. Dis. 2019, 4, 15 7 of 16

4. Mapping and Modelling NTDs in the Americas

Disease and vector occurrence data that are available at the national, state-wide and local
community scale from earlier NTD studies in Brazil [30,31] funded by PAHO served as input for
mapping disease and vector data using climate- and satellite-derived environmental data at the
regional scale (1 km2 spatial resolution), the state-wide scale (15–30–60 m2 spatial resolution) and
individual community scales (sub-meter spatial resolution). High-frequency climate and satellite
sensor data can be made available in near real-time by access to Internet linkages to active program
data. The selection of relevant environmental parameters to include in geospatial models, e.g., for
visceral leishmaniasis, was based on results of regression analysis of disease and vector occurrence
data, with variance inflation factor analysis to eliminate autocorrelation bias, according to the method
of Mischler et al. [30]. Significantly associated Bioclim risk factors were included in Maxent as variables,
and run with known vector and disease occurrence point data to develop probability risk surface maps
that can be generated and incorporated as data layers in ArcGIS 10.6 mapping and modelling software.
The relative contribution of each environmental variable to geospatial risk maps was evaluated by
jackknife statistics, a part of the Maxent software package, to evaluate seasonality and relative risk as
seen in Figure 1, Figure 2, and Figure 3 (from the doctoral thesis by Moara de Santana Martins [31]).

High resolution, biology-based geospatial mapping, and modelling methods can be developed
and implemented by government agencies as the key to more rational, targeted control in surveillance
and response systems for schistosomiasis that can interrupt and reverse the expansion to new endemic
areas. Schistosomiasis in the elimination phase will require more sensitive case-finding diagnostic
methods and satellite surveillance at the habitat–household resolution to pick up diminishing numbers
of cases as control program success progresses. Sustained continuing surveillance programs are then
required to prevent re-emergence.
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Figure 1. (A) Maxent-generated ecological niche model for predicting suitability for visceral
leishmaniasis in Brazil based on the national surveillance program incidence data and Bioclim variables.
(B) The accuracy of the model (0.838) was evaluated using Maxent by the area under the curve (AUC)
of the receiver operating characteristic (ROC).
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Figure 2. Maxent-predicted suitability for sand fly species of medical importance collected in Bahia
state, Brazil. The output maps for the distribution of species incriminated as vectors of parasites that
cause cutaneous leishmaniasis (A,B,D) and visceral leishmaniasis (C) were based on MODIS vegetation
indices and Bioclim variables. Red areas indicate a higher suitability for vector occurrence.
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Figure 3. Maxent predicted the suitability for Lutzomyia longipalpis in Monte Gordo community-based
on CDC trap data points and sub-meter spatial resolution WorldView2 imagery. The administrative
boundaries of the municipality and districts (red lines) of Camacari, Bahia, Brazil are shown in the
left panel. The predicted suitability of Lutzomyia longipalpis in Monte Gordo district is shown in
the right panel based on CDC trap data and three vegetation indices derived from WorldView2
imagery, normalized difference vegetation index (NDVI), normalized difference soil index (NDSI),
and normalized difference water index (NDWI). The inset box shows the model output and CDC trap
locations. Highly suitable areas for the vector are shown in red.
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5. Schistosomiasis

Of all the vector-borne diseases, schistosomiasis was the topic of pioneer GIS studies done by Cross
et al. [32], using the Landsat MSS (https://lta.cr.usgs.gov/MSS) satellite data and rainfall–temperature
weather variables for geospatial risk assessment in the Philippines. Other early work was done as
part of the Schistosomiasis Research Project (SRP) in Egypt, funded by the United States Agency
for International Development (USAID), which showed that the Advanced very-high-resolution
radiometer (AVHRR) temperature difference (dT) imagery could be used to map the risk of
schistosomiasis in the Nile Delta [33], and that this was associated with the effect of the local
hydrologic regime and shallow water table on the snail host–schistosome development cycle [34]. This
work showed how well the GIS could address the classic concept of the ‘landscape epidemiology’,
and Pavlovskii’s ‘essential nidality of disease’ concept [16] by virtue of its potential to match the
relative suitability of various environments to the parasite life cycle and the transmission dynamics of
host–parasite systems [35]. A more modern aspect is the attempt to predict the potential for future
areas becoming endemic for schistosomiasis, due to the spread of the intermediate snail host, due to
climate change [36].

5.1. Africa

With the African continent carrying the main burden off schistosomiasis by far, key countries
in sub-Saharan Africa were selected for implementation of the ‘Schistosomiasis Control Initiative’
(SCI) (http://wwwsci-ntds.org), now the major control program in Africa. Basically a programme
for the distribution of praziquantel, SCI, which applied GIS and RS to collect and record the
cross-sectional national surveys on the distribution and intensity of schistosomiasis at the regional
scale that were eventually used to guide optimal treatment strategies [37]. In this way, geospatial
technology became linked to spatial information on climate, elevation, proximity to streams and
water bodies activating innovative Bayesian geostatistical prediction models. Another activity
was the Contrast project—a multi-disciplinary, 4-year alliance to optimize schistosomiasis control
and transmission surveillance—that complemented the CSI by introducing an interactive agenda
operating simultaneously at the molecular, biological, spatial, and social levels to identify risk factors
governing the frequency and transmission dynamics of schistosomiasis [38]. The overall approach
emphasized detailed knowledge of the distribution and abundance of snail hosts, bringing together
existing information into a single database in an open-source Google Earth platform with Internet
connection [39].

The accumulated experience on the transmission control of the Contrast program, facilitated
by geospatial methods, contributed to the shift from an exclusive focus on morbidity control, to the
adoption of the schistosomiasis elimination agenda in low-transmission countries [40]. In May 2012,
the World Health Assembly passed a resolution calling upon member states to intensify schistosomiasis
control and to initiate interventions towards local elimination [41]. This resulted in a focus on what
was to be called the NTDs, and marked the start of a new era in the ambitious goal of elimination
of schistosomiasis as a public health problem. The emergence of GIS, and access to Earth-observing
satellite data as major tools in schistosomiasis research, and their integration into control strategies,
has been excellently reviewed from the African scene by Mayangadze [42].

5.2. China and Southeast Asia

The International Symposium on Schistosomiasis, held in Shanghai, China [43] marked the
beginning of geospatial tools for schistosomiasis control there. Using the NDVI, Land Surface
Temperature (LST) and the Digital Elevation Model (DEM) extracted from MODIS and the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors onboard the Terra satellite,
Zhu et al. [44] found that an ecological niche model integrated with NDVI, LST, elevation, slope,
and distance from every village to its nearest stream could adequately predict snail habitats in the
mountainous regions.

https://lta.cr.usgs.gov/MSS
http://wwwsci-ntds.org
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Even if snails can survive dry periods, water is the guarantee for their long-term survival and
reproduction. The focus on snail habitats made GIS and RS necessary tools for the identification of land
use, water bodies, vegetation, temperature, humidity LST, and vegetation and water indices [45]. These
tools, including spatial statistics, are exceptionally useful for extracting and handling environmental
data [46–49], and emphasized the importance of detailed updated information with wide geographical
coverage. They further highlighted the advantages of RS technology over manual snail documentation,
while Wang et al. [49] reported that a simple combination of the two indexes, normalized difference
wetness index (NDWI) and normalized difference vegetation index (NDVI), made it possible to directly
estimate the snail habitats quantitatively. This type of information should be useful for areas endemic
for schistosomiasis japonica outside China, such as The Philippines and strongly limited endemic
areas, such as those in the Sulawesi Island of Indonesia, where the exact borders of endemicity are
difficult to settle. This could also be of value in the areas endemic for S. mekongi in Cambodia and Laos.

Schistosomiasis has a long history in The Philippines, with the disease ensconced in more than half
of the country’s 78 provinces. Apart from the paper by Cross et al. [32], referred to above, relatively few
papers on geospatial technology have appeared in the Philippines. Malone et al. [50], focusing on the
implementation of a geospatial health infrastructure in Southeast Asia for the control of schistosomiasis,
pointed out that health workers have not rapidly taken advantage of the widely available, low-cost
spatial data resources for epidemiological modelling. Although the situation has since improved in
China, the use of geospatial tools in The Philippines is still at the build-up stage [51,52].

5.3. Latin America

Adoption of geospatial approaches to schistosomiasis control in Latin America emerged in
a similar timeframe as that in Africa and Asia. Analysis of the role of environmental factors for
prevalence in representative Brazilian municipalities in a GIS shows that the population density and
the duration of the annual dry period are the most significant determinants [53]. A follow-up study
has given additional data on the temperature difference, and NDVI collected by the satellite-borne
AVHRR sensor that was used for a GIS environmental risk assessment model for schistosomiasis in
Brazil [54]. Joining the consensus in Brazil on the potential value of geospatial methods, Gazzinelli
and Kloos [55] promoted use of spatial tools, while Guimarães et al. [56,57] reported the successful
use of social, meteorological, and RS-derived digital elevation and NDVI data to delimit the risk for
schistosomiasis at the municipality level in the state of Minas Gerais.

A special issue of Geospatial Health, published in 2012, was devoted to geospatial applications
for NTDs, including schistosomiasis, in South America and the Caribbean [58]. Of particular interest
for the Brazilian distribution of schistosomiasis is the presence of two compatible snail host species:
Biomphalaria glabrata, and B. straminea and that competitive selection makes B. glabrata dominate in
irrigation systems, while B. straminea is more common in natural water sources [38,59]. Given the
importance of socioeconomic and environmental risk factors in the persistence of transmission of
NTDs, geospatial mapping and modelling was recognized early on, to be useful for the prediction of
the distribution, and the prevalence of these diseases, and to identify areas where hotspots or disease
overlap occurs. Significantly, the potential influence of climate change was often considered [16,35,60].

6. Healthy Futures

Concerns about the potential effects of impending climate change on vector-borne diseases was
the focus of a major project funded in 2010–2014 by the European Commission’s 7th Framework
(FP7)—Healthy Futures. The aim of his project was to contribute to reducing the future burden of
three, water-related high-impact vector-borne diseases (VBD) in Africa—malaria, schistosomiasis, and
rift valley fever (RVF). The project consortium comprised an inter-disciplinary group of climatologists,
disease modellers, and experts in the environmental, health, and socio-economic sciences, together
with staff in government health ministries in the East African Community (EAC).
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A total of 15 institutions made up the consortium, located in 10 different countries, five African
(Rwanda, Kenya, Uganda, Tanzania, South Africa) and five European (Ireland, Sweden, Austria,
Italy, UK). VBD’s were expected to be sensitive to changes in environmental conditions, such as
increased ambient temperature or changes in the timing and levels of rainfall associated with climate
change. Dynamical simulation models were developed for each of the three targeted diseases based
on data generated by the MODIS and the Tropical Rainfall Measuring Mission (TRMM) sensors. The
climate surrogate data gathered covered the EAC at 1-km resolution at Earth surface. Model output
risk maps were produced using ArcGIS software (http://www.esri.com/software/arcgis) based on
current climate data and long-term climate change projections, as proposed by the Intergovernmental
Panel on Climate Change (IPCC) in 2013. Predicted changes in the distribution and transmission
patterns for malaria [61,62] schistosomiasis [63]), and RVF [64] were represented as maps covering
the EAC, and decision support frameworks were developed for use by the scientific community and
stakeholders in the EAC.

Notably, an integrated, open-source Atlas based on the key results of the Healthy Futures project
was produced [65]. This online resource provides information on past, present, and future conditions
of the risk for malaria, schistosomiasis, and RVF and allows the exploration and visualization of results
through web-based interactive tools. The Atlas embodies a guided access to information on climate
change, the potentiality of disease occurrence, and population vulnerability, with respect to these three
diseases in the EAC region through direct access to downloadable datasets and metadata integrated in
the Healthy Futures Metadata Portal. Current available information can be directly accessed through
the Healthy Futures website (http://www.healthyfutures.eu).

Information can be queried based on three prime selection criteria: (i) the infectious diseases
targeted; (ii) time, allowing for comparisons of current conditions with a range of future projections,
while allowing access to information on historic outbreaks; and (iii) different components of risk.
Future climate change projections based on two representative concentration pathways (RCPs)
emission scenarios RCP4.5 (mid-level change) and RCP8.5 (high-level change) for each decade to 2100
throughout the EAC study area can thus be made available. Relative values of social vulnerability are
mapped based on a range of indicators, such as susceptibility to disease (e.g., immunity, malnutrition,
poverty, conflict, remoteness) and lack of resilience (e.g., education level, access to health facilities,
number of dependents), while social and susceptibility indicators are weighted and combined in
the form of a composite map indicator of geospatial risk [66]. The original Metadata Portal is
hosted by the International Livestock Research Institute in Nairobi (ILRI). The metadata platform
software used is freely available from ESRI (http://www.esri.com/software/arcgis/geoportal).
The Portal uses the CSW (Catalogue Service for the Web) standard of the Open Geospatial Consortium
(OGC) (http://www.opengeospatial.org), which makes it interoperable with other metadata portals
and programs.

If successfully adopted and further developed, the Atlas will be among the first of its kind in
geospatial health research to offer public health practitioners, scientists, and stakeholders a tool
to enable the identification of likely VBD hotspots under different climate change scenarios at
policy-relevant time-intervals over the coming century. Twelve articles emanating from the Healthy
Futures ’Remote Sensing of Environment project’ were published in a special issue of Geospatial
Health (http://www.geospatialhealth.net) in 2016. The emergence of GIS and Earth-observing satellite
data as a major tool in schistosomiasis research, and their integration into real-world control strategies
has been acknowledged by a large number of research teams.

7. Future Potential

The NASA GEOSS program is currently divided geographically into an AfriGEOSS and
AmeriGEOSS data resource effort, with the potential to add other defined regions, and it is these
continental databases that will be used to develop GEOHealth applications, consistent with the NASA

http://www.esri.com/software/arcgis
http://www.healthyfutures.eu
http://www.esri.com/software/arcgis/geoportal
http://www.opengeospatial.org
http://www.geospatialhealth.net
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societal benefit area of public health. The members of the GEOHealth CoP (www.geohealthcop.org/)
aim to both use and contribute GEOSS interoperable resource databases.

The results of the Healthy Futures project provide an excellent candidate for developing
public health applications within the AfriGEOSS program. The current NASA project ’GeoHealth:
A Surveillance and Response System Resource for Vector Borne Disease in the Americas’ aims to
contribute interoperable resource data and methods that are essential for vector-borne disease mapping
and modelling in the Western Hemisphere, as part of the AmeriGEOSS program. Other data from
Health and Air Quality Applications of the Applied Sciences program offer broader potential geospatial
resources [66]. Global health databases, e.g., on schistosomiasis [38] and on sand flies [6] are emerging,
that can be accessed for relevant health data to develop mapping and modelling applications, along
with the addition of data from the existing literature, and results of new research projects in the future.

The virtual globe concept is not new, but the essential idea is now coming into its own. Many and
various efforts in this direction have been made over the last 10–15 years. However, the field did not
take off until user-friendly applications started to appear [67]. Intuitive technologies, such as Google
Earth, enable scientists around the world to share data in a readily understandable fashion without the
need for much technical assistance. In 2008, Elvidge and Tuttle felt that three-dimensional software
modelling of the Earth leading to virtual globes would revolutionize Earth observation, data access,
and integration [68]. Stensgaard et al. [38] and Yang et al. [18] used Google Earth for the management
and control of vector-borne diseases, including schistosomiasis. The authors of this paper believe that
the use of this approach can lead to a better understanding of the epidemiology and ecology of the
neglected tropical diseases, including schistosomiasis, and other environmentally sensitive infectious
diseases in the multidimensional environments in which they occur.

8. Conclusions

Currently available global geospatial data are underutilized by medical researchers. This may be
due to the lack of the ability to bridge barriers to awareness, prioritization, or training deficits, which
are needed for the interdisciplinary interaction of medical scientists with environmental scientists.
The development of a GEOHealth platform would facilitate and encourage research to utilize and
implement currently available geospatial analysis tools and new global data systems in surveillance
and response systems for vector-borne diseases.

Recently launched earth-observing satellite systems provide new opportunities to improve
existing geospatial risk models that have already been effectively used to guide control programs
for both filariasis [69] and soil transmitted helminths (STH) [70]. In particular, higher-resolution
environmental analysis and the ability to evaluate life cycle drivers, as well as limiting moisture factors
by new sensors such as SMAP and ECOSTRESS, are very promising tools for ecological niche modeling.

What is needed is an open-source, inter-operable platform that is freely accessible by the global
health community to link public health workers with the most current potential earth observation
resources from the geospatial sciences community. We propose that geospatial data resources from
NASA and other national space agencies can be organized through a GEOSS virtual globe to make this
possible. The vision, organization, and structure of the GEOHealth network is offered as a framework
for initial effort as a vehicle for translational research, dissemination, and implementation in national
public health systems in collaboration with GEO.

Given the strong progress on schistosomiasis elimination in several countries, China in particular,
and the strong follow-up of the pioneer RS and GIS studies centered on this disease, it might well be
used as model for the development and application of the new generation of space-based tools for
NTD elimination.
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