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Abstract: Obtaining reasonable estimates for transmission rates from observed data is a challenge
when using mathematical models to study the dynamics of ?infectious? diseases, like Ebola. Most
models assume the transmission rate of a contagion either does not vary over time or change in a fixed
pre-determined adhoc ways. However, these rates do vary during an outbreak due to multitude of
factors such as environmental conditions, social behaviors, and public-health interventions deployed
to control the disease, which are in-part guided by changing size of an outbreak. We derive analytical
estimates of time-dependent transmission rate for an epidemic in terms of either incidence or
prevalence using a standard mathematical SIR-type epidemic model. We illustrate applicability of
our method by applying data on various public health problems, including infectious diseases (Ebola,
SARS, and Leishmaniasis) and social issues (obesity and alcohol drinking) to compute transmission
rates over time. We show that time-dependent transmission rate estimates can have a large variation,
depending on the type of available data and other epidemiological parameters. Time-dependent
estimation of transmission rates captures the dynamics of the problem better and can be utilized to
understand disease progression more accurately.

Keywords: transmission coefficient; infectious disease dynamics; compartmental model; parameter
estimation; epidemic modeling

1. Introduction

An epidemic is a function of environmental factors and a contact structure that varies
over time, which in turn leads to varying transmission potential of an “infection”. We
also refer the word “infection” to describe social influences exerted by a typical influential
individual with a particular social problem that results in a naive (to the social problem)
individual becoming involved in the problem. For example, an alcohol drinker might
influence an abstainer into imitating drinking behavior and initiating alcohol drinking.
Many authors have studied outbreaks of social problems and infectious diseases using
compartmental transmission/influence model. Qualitative aspects of homogeneous mixing
models with constant transmission potential of an infection are well understood for various
applications. These models are relatively easy to analyze and can answer questions, at the
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population level, with good precision. Homogeneous mixing compartmental models have
a long history; however, quantification of temporal transmission potential of an infectious
agent, an input variable for this type of model, has been a challenge.

William Hamer first published a paper in 1906 containing an epidemic model for the
transmission of measles where his observation included the incidence of new cases, in a
time interval, is proportional to the product, SI, of the density of susceptibles (S) and the
density I of infectives (I) in the population. The formulation of incidence can be explained
by considering some epidemiological quantity. Consider a single susceptible individual in
a homogeneously mixing population of size N. This individual contacts other members
of the population at the rate c, per unit time, and a proportion I/N of these contacts are
with individuals who are “infectious”. If the probability of transmission of infection given
contact is ρ, then the rate at which the infection is transmitted to a susceptible is ρcI/N,
per unit time, and the rate at which the susceptible population becomes infected is ρcSI/N.

The contact rate is often a function of population density, reflecting the fact that
contacts take time and saturation occurs. If c is assumed approximately proportional to N
or equal to constant, incidence can be represented by terms such as βSI (referred as mass
action incidence) or βSI/N (referred as standard incidence), respectively. The parameter β,
which includes the contact rate c, is known as a “transmission coefficient” (or “effective
contact rate” or “transmission potential”) with units as time−1. At low population densities
mass action is a reasonable approximation of a much more complex contact structure;
however, in general, standard incidence is more appropriate for modeling transmission for
human diseases or influences for social problems. The term βI/N is sometimes referred
as the force of infection, i.e., per-capita rate at which susceptible members of the host
population are becoming infected. On the other hand, the transmission rate, represents
the number of new infections per unit of time generated by an infected individual. The
transmission rate is calculated by dividing incidence for a given time period by a disease
prevalence for the same time interval.

Most infectious disease data are collected in form of incidence and/or prevalence.
Prevalence of a “disease” in a population is defined as the total number of cases of the disease
in the population at a given time, whereas prevalence proportion is computed by dividing
the total number of cases in the population by the number of individuals in the population.
It is used as an estimate of how common a condition is within a population over a certain
period of time. Incidence is a measure of the risk of developing some new condition within
a specified period of time. Incidence proportion (also known as cumulative incidence)
is the number of new cases within a specified time period divided by the size of the
population initially at risk. When the denominator is the sum of the person-time of the at-
risk population, it is also known as the incidence density rate or person-time incidence rate.
Using person-time rather than just time handles situations where the amount of observation
time differs between people, or when the population at risk varies with time. Prevalence
is a measurement of all individuals affected by the disease within a particular period of
time, whereas incidence is a measurement of the number of new individuals who contract
a disease during a particular period of time. So, prevalence and incidence proportion at
the time t is given by I(t)/N(t) and β× (S(t)/N(t))× (I(t)/N(t)), respectively.

In compartmental mathematical models, varied assumptions are made based on char-
acteristics of a modeling disease which lead modelers to focus on more important aspects
of the epidemic. For example, an epidemic that occurs on a timescale that is much shorter
than that of the population replenishment (that is, epidemic occurs at a much faster rate
than births and deaths in the population), constant population size can be assumed. Addi-
tional common features of these models might include temporary or permanent recovery
of infected individuals and a birth rate into infective class. Whether establishment or a
major outbreak of an infectious disease or a social problem will occur in a population,
requires extensive experience or a mathematical model of disease dynamics and estimates
of the parameters of the disease model. Here, we provide a method for estimating the
transmission coefficient (β), which is a key parameter in shaping the epidemic dynamics
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generated from the model because of nonlinearity associated with the term containing it. A
suitable set of data for estimation of β includes prevalence and incidence of the outbreak in
question. There are many different methods for estimating β but most of them results in
an aggregate value over time. The methods in the literature include estimation using re-
gression of prevalence and time since start of an epidemic [1], estimating from equation for
basic reproductive rate when threshold density is known [2], estimating from equilibrium
prevalence [3,4], using age prevalence curves [5], inferring from behavior or contact data
[6], and iterative comparison of field prevalence data with model predictions [7].

Some researchers have modeled time-varying transmission coefficients for diseases
that follow seasonal patterns but using a predefined functional form [8]. On the other
hand, a study by Finkenstadt and Grenfell [9] uses a discrete time model that allows for a
temporally varying transmission parameter with a period of one year with no assumption
on functional form. However, their estimation is computationally intensive and assumes
that reporting interval of the available data must be an integer fraction of the serial interval
of the disease. Another study by Pollicott et al. (2012), suggested first to fit the data
with a pre-defined continuous function and then provide an analytical estimate of the
transmission rate. However, their method was only applicable to prevalence data, with
some restrictive assumptions on the initial number of susceptible or vital rates [10]. In
the current study, we provide an analytical estimation of transmission coefficient using
distinct and novel mathematical approach that is not only applicable to both prevalence
and incidence data but also has its applicability to wide public-health problems including
social issues. Table 1 provides a brief comparison of the estimation procedures in the
Pollicott et al and the present study.

Table 1. Some common differences and similarity in estimation methodology between the current
study and that in Pollicott et al. (2012).

Pollicott et al. (2012) [10] Mubayi et al. (Current Study)

Data Modified (fitted to a
functional form)

X ×

Applicable to Prevalence X X
Applicable to Incidence × X
Requires β(0) X ×
Requires S(0) × X
Multiple Applications × X

Examples of social problems such as alcohol drinking and obesity and infectious
diseases such as Ebola, Visceral Leishmaniasis (or Kala-azar), and SARS are used to show
relevance of the analytical work. The available data of US college alcohol drinking and
obesity outbreak in US include prevalence trends, whereas incidence data of Ebola outbreak
in West Africa (Guinea, Sierra Leone, and Liberia), Kala-azar outbreak in Bihar, and SARS
epidemic in Hong Kong are used for the estimation.

In this paper, we compute time-dependent and -independent transmission coefficient
of Ebola virus disease along with other health care problems such as college alcohol
drinking, the obesity epidemic in United States, the spread of Visceral Leshmaniasis, and
the spread of the 2003 SARS Outbreak in Hong Kong. The remaining paper is stratified as
follows: Section 2 provides a compartmental SIR model and two analytical expressions of
transmission coefficients based on prevalence and incidence data; examples for computing
coefficient over time using each of the two expressions and field data are shown in Section 3;
and finally, the results are discussed in Section 4. Figure 1 represents the overview of
this paper.
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Figure 1. Overview of the paper.

2. Materials and Methods
2.1. Formulation for Time-Dependent Estimation

Epidemics in a population are typically captured via an SIR-type (Susceptible-Infectious-
Recovered) epidemic models. It is assumed that in a well-mixed population, individuals
interact with each other at random. The model considers a population of size N, where S(t),
I(t) and R(t) represents number of susceptible, infectious, and removed individuals at
time t. Individuals are recruited in the population at the rate b(t), die at the µ constant per-
capita mortality rate and recover from infection at a α constant per-capita rate. The model
assumes that the recruitment rate is governed by immigration, emigration and natural
births, and the recovered individuals are immune to the infection but after temporary
immunity period a recovered individual may lose immunity and move to S class. Hence, a
“disease” outbreak in population can be captured by the following system of differential
equations:

dS
dt

= pb(t)− β(t)SI + γ(t)R− µ(t)S (1)

dI
dt

= p̄b(t) + β(t)SI − α(t)I − µ(t)I (2)

where R(t) = 1− S(t)− I(t) and parameters are defined in Tables 2 and 3, Figure 2.

 Mortality rate  Mortality rate  Mortality rate

 Recruitment rate

Recovery rate

 Recruitment rate

Incidence 

Relapse rate

Prevalence

S I R

Figure 2. Schematic diagram for the SIR model.
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Following steps carried out in Hadeler [11] and using Equations (1) and (2), we derive
two explicit expressions for β(t): one based on prevalence data and other on the incidence
of the disease. The main derivation steps for are mentioned below.

Table 2. Definition of variables and parameters in the model given by Equations (1) and (2).

Variables Definitions

S Proportion of susceptibles
I Proportion of “infected and infectious”
R Proportion of recovered individuals

Parameters Definitions
b(t) Rate of recruitment in the population
p Proportion of new recruits that are susceptibles

p̄ = 1− p Proportion of new recruits that are infectious
β(t) Transmission or influence coefficient
α(t) Per-capita recovery rate (its reciprocal is infectious period)
γ(t) Per-capita rate of losing immunity or relapse rate
µ(t) Per-capita mortality or departure rate

Table 3. Definition of variables and parameters in the model given by Equations (1) and (2).

Parameters ——– Estimates ——–
Ebola Alcohol Obesity Kala-Azar SARS

p 1.0 0.35 [12,13] 0.94 [14] 1.0 1.0
(per month) (per year) (per year) (per month) (per day)

b 0.0 0.29 [15] 0.01 0.003 [16] 0.0
α 0.003 [17] 0.17 [4] 0.22 [18] 0.211 [7] 0.04 [19]
γ 0.008 [20] 0.0 0.14 [18] 0.0 0.0
µ 0.0 0.27 [4] 0.013 0.001 [7] 0.0

2.1.1. Derivation of β(t) Expression in Terms of Prevalence

Suppose prevalence data are available. Derivation of β(t) as a function of prevalence
is carried out as follows. Adding Equations (1) and (2) we obtain

(S + I)′ = (b(t) + γ(t))− (γ(t) + µ(t))(S + I)− α(t)I (3)

Setting c(t) = b(t) + γ(t) and d(t) = γ(t) + µ(t) in Equation (3) and solving it
we obtain

S(t) = (S(0) + I(0))Z(0, t) +
∫ t

0
Z(s, t)[c(s)− α(s)I(s)]ds− I(t) (4)

where Z(a, b) = exp
(
−
∫ b

a d(s)ds
)

.
Isolating β(t) from Equation (2) we obtain β(t) as function of prevalence (I)

β(t) =
I′ + (α(t) + µ(t))I − p̄b(t)

SI
(5)

where S(t) is given by Equation (4).
Note, beside prevalence (I), we also need I′ to compute β(t) using Formula (5).

However, I′ can be approximated using prevalence data.

2.1.2. Derivation of β(t) Expression in Terms of Incidence

On the other hand, suppose incidence data are available. To calculate expression of
β(t) as a function of incidence (w(t) = β(t)SI) we first solve Equation (2) for I with initial
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condition I(T) (where T ∈ [0, L] is a time at which the prevalence proportion, I(T), is
available) and obtain

I(t) = I(T)H(T, t)−
∫ T

t
H(s, t)[w(s) + p̄b(s)]ds (6)

where H(a, b) = exp
(
−
∫ b

a (α(s) + µ(s))ds
)

.
Using this expression of I(t) in Equation (1) and solving the resultant equation for S

with initial condition S(0) we obtain

S(t) =Z(0, t)S(0) +
∫ t

0
Z(u, t)[pb(u)− w(u)]du

+
∫ t

0
Z(u, t)γ(u)

[
1− I(T)H(T, u) +

∫ T

u
H(s, u)[w(s) + p̄b(s)]ds

]
du

(7)

Thus,

β(t) =
w(t)
SI

(8)

where S(t) and I(t) are given by Equations (6) and (7), respectively.
Note, we need prevalence at time point T, I(T), to compute β(t) using Formula (7).

The time point T can be appropriately chosen, close to maximum of prevalence and not
towards starting or end of epidemic.

2.2. Time-Independent Estimation: Bayesian Analysis

The Bayesian Monte Carlo Markov Chains (MCMC) approach can be used to quantify
uncertainty around the transmission rates and compare our analytical estimates with it.

Let θ represents vector of our transmission parameters and y = (y1, y2, . . . . . . , yT)
T is

the available data set. We can take likelihood function in our Bayesian approach as

L(y|θ) =
T

∏
i=1

(
1√

2πσ2

)
× exp

(
− [ logit(yi)− logit( fi(θ)) ]

2

2σ2

)
(9)

where T is the total number of data points in the data set, σ is the appropriately chosen
variance and f (θ) is the model output function for which data are used. If more than one
data sets are used then the likelihood can be modified as follows:

L(y|θ) = ∏
k

L(yk|θ)

Although a Bayesian approach can provide uncertainty around time-independent
average transmission rate, it does not inform how the transmission rate varied over time
and uncertainty itself is constant over time. Therefore, this approach, while assists in
understanding uncertainty in disease progression, it does not address the challenge of
capturing changing transmission rates over the progression of an epidemic with respect to
time.

3. Results

We use four examples to show how to estimate β over time from the available epidemi-
ological data. The examples provide a method to study social and public-health issues. To
compute estimates of β(t), we use first order discretization for derivatives and composite
trapezoidal rule for integration as given below

f ′(t) ≈ f (t + h)− f (t)
h
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∫ t

0
f (x)dx ≈ h

(
f (0) + f (t)

2
+

n−1

∑
k=1

f (kh)

)
.

These discretizations are used in the formulas given in Equations (5) and (8).
We can avoid this discretization by choosing a function, for example, a polynomial that

can be fitted to the prevalence and incidence temporal data. This fitted function can then be
used directly in Equations (5) and (8). Additional demographical and epidemiological data
that we require in the β(t) estimation for both incidence and prevalence case are duration
of infectious period, recruitment rate, natural mortality rate, and relapse rate.

3.1. Using Incidence Data

In this section, we apply available incidence data to three past epidemics: the 2014–
2016 Ebola outbreak in West Africa, the 2005 outbreak Visceral Leishmaniasis in the Indian
state of Bihar, and the 2003 SARS outbreak in Hong Kong.

3.1.1. 2014–2016 Ebola Outbreak in West Africa

In this section, we estimate the transmission coefficient, β(t) for the 2014–2016 Ebola
epidemic in West Africa using available incidence data. The number of reported cases per
month were retrieved from the Center for Disease Control and Prevention (CDC) and are
shown totaled as West Africa (Figure 3a), and individually for Guinea (Figure 3c), Sierra
Leone (Figure 3e), and Liberia (Figure 3g) [21]. For these estimates, prevalence is taken as
31 May 2015, as this point is close to the maximum prevalence and not towards the start of
the epidemic (see Section 2.1.2). Incidence is calculated by dividing these case counts by the
2016 population for each country, as reported by the United Nations (UN) [22]. We assume
a constant recovery rate of 10 days (α(t) = α), a constant relapse rate of 10 years (γ(t) = γ),
no vertical transmission (p = 1), and a constant population (b(t) = µ(t) = u = 0); since
the CDC data provides monthly case counts, these parameters are adjusted to per month
rates. We estimate β(t) by simplifying Equation (6) as follows:

β(t) =
w(t)(

S(0)−
∫ t

0
w(u)du

)(
I(T)eα(T−t) −

∫ T

t
eα(s−t)w(s)ds

)
(10)

On discretizing Equation (10) we obtain the following expressions. If t ≤ T,

β(t) ≈ w(t)
a1b1

(11)

where

a1 = S(0)− h

[
w(0) + w(t)

2
+

n−1

∑
k=1

w(kh)

]
and

b1 = I(T)eα(T−t) − he−tα

[
g1(t) + g1(T)

2
+

n−1

∑
k=1

g1(kh)

]
If t > T,

β(t) ≈ w(t)
a1b2

(12)

where

b2 = I(T)eα(T−t) + he−tα

[
g1(t) + g1(T)

2
+

n−1

∑
k=1

g1(kh)

]
where g1(x) = em1xw(x) and m1 = α.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3. β(t) estimates for the 2014–2016 Ebola outbreak: (a) Cases per month for West Africa; (b) β(t) estimates for West
Africa; (c) Cases per month for Guinea; (d) β(t) estimates for Guinea; (e) Cases per month for Sierra Leone; (f) β(t) estimates
for Sierra Leone; (g) Cases per month for Liberia; (h) β(t) estimates for Liberia.

For the estimation of β(t) with regards to available incidence data, the estimates are
found in Table A1 (see Appendix A) and are shown for West Africa (Figure 3b), Guinea
(Figure 3d), Sierra Leone (Figure 3f), and Liberia (Figure 3h). Comparing the results for
each region, we find the largest temporal estimate for both the mean and median β(t) to be
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that of Guinea (see Table 4 and Figure 4). Analyzing the estimates for transmission rate
temporally, we observe that transmission rate follows the incidence pattern reflecting the
effects of exponential incline in the beginning of epidemic as well as impacts of disease-
acquired immunity as well as non-pharmaceutical interventions implemented over the
course of epidemic (Figure 3).

Table 4. Summary statistics of Ebola results for β(t).

Minimum Mean ± SD 25th Percentile Median 75th Percentile Maximum

West Africa 0.00 1.57± 2.36 0.14 0.43 2.01 10.38
Guinea 0.00 2.73± 3.34 0.10 1.36 3.50 11.74

Sierra Leone 0.00 1.51± 2.30 0.02 0.68 1.65 6.23
Liberia 0.00 1.40± 2.52 0.00 0.03 1.71 10.50

West Africa Guinea Sierra Leone Liberia

0

2

4

6

8

10

12

β(
t)

Minimum

25th
         percentile

Median

75th
        percentle

Maxium

Figure 4. Box-and-Whiskers plot for estimates of β(t) using available incidence data for the 2014–2015
Ebola epidemic of West Africa.

3.1.2. 2005 Occurrence of Visceral Leishmaniasis in Bihar, India

Visceral Leishmaniasis (VL) is a vector borne infectious disease that is spread from
person to person by a bite of the tiny insect, sandfly. Large population suffers from VL
in some tropical and subtropical countries of the world. The highest burden of the VL is
found in Indian state of Bihar. We obtained underreporting adjusted 2005 incidence data
of Bihar from [7]. The data contain number of new cases during past month adjusted for
underreporting. The Expression (13) is used to estimate β(t) via two different models. The
first model was for a single outbreak and hence demography was not considered whereas
the second model assumed birth and death though with a same per-capita rate.

If t ≤ T then

β(t) ≈ w(t)
a2b3

(13)

where

a2 = 1− e−µt(1− S(0))− he−tm2

[
g2(0) + g2(t)

2
+

n−1

∑
k=1

g2(kh)

]
and

b3 = I(T)e(α+µ)(T−t) − he−tm3

[
g3(t) + g3(T)

2
+

n−1

∑
k=1

g3(kh)

]
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If t > T

β(t) ≈ w(t)
a2b4

(14)

where

a3 = 1− e−µt(1− S(0))− he−tm2

[
g2(0) + g2(t)

2
+

n−1

∑
k=1

g2(kh)

]
and

b4 = I(T)e(α+µ)(T−t) + he−tm3

[
g3(t) + g3(T)

2
+

n−1

∑
k=1

g3(kh)

]
where gi(x) = emixw(x) (for i = 2, 3), m2 = µ and m3 = α + µ.

Since annual epidemic during 2005 started showing clear trend of decaying in the
month of October, we took this time to compute the prevalence of VL in Bihar. Prevalence
during October 2005 was computed under assumption that 25% of worldwide leishmaniasis
prevalence is from VL cases whereas remaining is from other forms of Leishmaniasis. It
also assumed 20% of global burden is in Bihar. Since some proportion of a population
are naturally immune to the disease, we carried out estimation for three different values
of initial proportion of susceptibles, namely 0.1, 0.5 and 0.8. Recovery rate of 0.21 per
month and influx/outflux rate of the population of 0.00138 was computed using data from
Mubayi et al. (2010) [7]. The other assumptions of the model include constant recovery
(i.e., α(t) = α), no vertical transmission (i.e., p = 1), permanent recovery (i.e., γ(t) = 0)
and same constant per-capita incoming and outgoing rates (i.e., b(t) = µ(t) = µ). We only
model human population and do not take into account vector population explicitly. Thus,
β(t) could be interpreted as vectorial capacity of sandfly population transmitting infection
between humans.

The obtained estimates of β(t) are given in Table A2 (see Appendix A) and Figures 5a,b
and 6a,b. The β estimates that we have computed here are comparable to corresponding
estimates in [7] (in this reference the mean estimates are βh = 0.13 (with median = 0.11,
SD = 0.08, Q1 (25th percentile) = 0.07, Q3 (75th percentile) = 0.17) and βv = 0.12 (with
Median = 0.11, Std = 0.08, Q1 (25th percentile) = 0.07, Q3 (75th percentile) = 0.16) where
around 75% of the population was susceptible).
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(a)

(b)

Figure 5. Estimates of β(t) for the 2005 outbreak of Visceral Leishmaniasis in the Indian state of Bihar,
using available incidence data: (a) Estimates of β(t) related to an outbreak of Visceral Leishmaniasis,
when the initial value of susceptibles, S(0) = 0.1; (b) Estimates of β(t) for two initial proportion of
susceptibles in a population affected with Visceral Leishmaniasis. Estimates of β(t) obtained for two
different values of the mortality rate, µ, (0.0 and 0.00138) are almost same.
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S(0) = 0.1 S(0) = 0.5 S(0) = 0.8

0.0

0.5

1.0

1.5

2.0

Initial value for susceptibles: S(0)

β(
t)

Minimum

25th
         percentile

Median

75th
        percentle

Maxium

(a)

S(0) = 0.1 S(0) = 0.5 S(0) = 0.8

0.0

0.5

1.0

1.5

2.0

Initial value for susceptibles: S(0)

β(
t)

Minimum

25th
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Figure 6. Box-and-Whiskers plot for estimates of β(t) for two different values of µ in a Visceral
Leishmaniasis outbreak: (a) Estimates for µ = 0.0; (b) Estimates for µ = 0.00138.

3.1.3. 2003 SARS Outbreak in Hong Kong

Severe acute respiratory syndrome (SARS) is a viral respiratory illness caused by a
coronavirus. SARS epidemic in Hong Kong is shown in Figure 7a. We estimated transmis-
sion coefficient using a single outbreak model with parameters values given in Table A3.
The formula used for estimating β(t) is

β(t) =
w(t)(

S(0)−
∫ t

0
w(u)du

)(
I(T)eα(T−t) −

∫ T

t
eα(s−t)w(s)ds

) (15)
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(a)

(b)

Figure 7. The 2002–2003 SARS outbreak in Hong Kong: (a) Daily reported cases; (b) Estimation of
β(t) using available incidence data. Prevalence for 16 April 2003 was taken in the calculation when
number of symptomatic cases started declining [23].

On discretizing Equation (15) we obtain following expressions. If t ≤ T,

β(t) ≈ w(t)
a4b5

(16)

where

a4 = S(0)− h

[
w(0) + w(t)

2
+

n−1

∑
k=1

w(kh)

]
and

b5 = I(T)eα(T−t) − he−tα

[
g4(t) + g4(T)

2
+

n−1

∑
k=1

g4(kh)

]
(17)

If t > T,

β(t) ≈ w(t)
a4b6

(18)
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where

b6 = I(T)eα(T−t) + he−tα

[
g4(t) + g4(T)

2
+

n−1

∑
k=1

g4(kh)

]
(19)

where g4(x) = em4xw(x) and m4 = α.
The temporal estimates of β(t) are shown in Table A3 (see Appendix A) and Figure 7b.

3.2. Using Prevalence Data

We use US national college alcohol drinking and obesity data as examples in this
section. In Appendix A, We also present a hypothetical example with synthetic prevalence
data and known time-varying transmission rate to illustrate the ability of our analytical
expression to accurately capture the time-dependent transmission rate

3.2.1. College Alcohol Drinking

The available alcohol drinking data represent prevalence (proportion of cases at a
certain time) and not incidence (new cases over time period). This is because the data
are based on the survey where the drinking pattern estimates are obtained by asking
individuals their drinking behavior during past one year. Hence, data can be interpreted
as the number of individuals in certain drinking category at a particular time. Therefore,
we use formula given in Equation (5) to estimate β(t). We assume that drinking is a
result of social influences exerted by drinkers (I) on susceptibles (S) or social drinkers.
Individuals recovered from drinking at a constant rate α (i.e., α(t) = α). The recovery is
assumed to be permanent (i.e., γ(t) = 0). The incoming and departure rates are same (i.e.,
µ(t) = b(t) = µ) and p = 1. These assumptions are reasonable in context of the type of
data (college population) used here.

Alcohol drinking data, obtained from Engs et al., 1997 and 1999, is given in the
Table A4 [12,13] that represent the trend observed in national college drinking surveys.
The recovery rate, α is taken to be 0.17 [4]. We estimate β(t) using simplified Equation (5)
and above assumptions as follows

β(t) ≈
I(t)−I(t−h)

hI(t) + α + µ− p̄µ
I(t)

(S(0) + I(0))e−µt − I(t) + e−µthc1
(20)

where

c1 =
f2(0) + f2(t)

2
+

n−1

∑
k=1

f1(kh),

and
f2(x) = eµx[µ− αI(x)].

If µ = 0, this equation can be reduced, where f2 is −αI(x).
We found that mean estimate of β is 1.04 (std = 0.3; Table A4 see Appendix A and

Figure 8) during 1982–1994 for the national college drinkers. The estimates of β are
comparable to the estimates obtained in the [4]. These estimates of β(t) are all contained in
95% CI of the estimates in the [4], which are β0 = 1.69 (95% CI [0.63, 2.75]) and β2 = 0.75
(95% CI [0.29, 1.21]).

Engs et al., 1994 and 1997 suggest that 65% of freshmen are drinkers during the
start of Fall semester. Hence, we assumed that 0.65 proportion of incoming students are
drinkers, i.e., p = 0.35. We assumed negligible change in size of a college population and
consider rate of enrollments equal to combined rate of graduation and dropout rates (i.e.,
b(t) = µ(t) = µ).
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Figure 8. Estimates of β(t) related to alcohol drinking college population, when µ = 0.

3.2.2. Obesity Epidemic in US

We use model to see whether weight gain in one person is associated with weight
gain in his or her family members and friends. Obese persons are an individual whose
body-mass index (the weight in kilograms divided by the square of the height in meters)
is greater than or equal to 30. It is found that there has been increasing number of obese
persons in a community and a person’s chances of becoming obese increases dramatically if
he or she had a parent, sibling, friend or spouse who became obese in a given interval [24].
The most reasonable explanations for the obesity epidemic, include changes in which
luxuries and food consumption are being promoted in the society and has not spared any
socioeconomic class. An obesity is a result of individual’s choice and behavior which is
influenced by appearance and behavior of others in the community. Hence, it suggests that
just as with the spread of drug-use or infectious diseases, weight gain in one person might
influence weight gain in other person, i.e., it is not that obese or non-obese people simply
find other similar people to hang out with. This influence could be direct or indirect, which
can vary continuously over time and may depend on demographic and social factors of
the community as well.

We used annual CDC data from references [14,18] to estimate parameters for our
obese epidemic model. The data obtained from [25] include an age-adjusted prevalence
of obesity in US using the projected 2000 U.S. population. The model assumes constant
population and hence b(t) = µ(t) = µ. It is assumed that 6% of children are born
obese [14]. The value of recovery rate is assumed to be equal to an average of rate at which
an overweight individuals move on diet (4.068× 10−3 per week [18]) and rate at which
an obese individual stops or reduces bakery, fried meals and soft drinks consumption
(4.4379× 10−3 per week [18]). We assume obesity reduces life span by 6 to 7 years. Hence
if average life span in US is 78.4 years than average life span of at-risk population for obese
is (78.4− 6.5) years. The estimated β from [18] ranges from 0.02 to 0.04. These estimates are
much lower than our estimated values in Table A5 (see Appendix A) with range of (0.36,
3.02) (Figure 9). This is because the region of our study differs from the region modeled
by [18]. Our results suggest that estimates of transmission coefficient increase with increase
in µ and decrease in initial size of susceptible population, S(0).

β(t) ≈
I(t)−I(t−h)

hI(t) + α + µ− p̄µ
I(t)

(S(0) + I(0))e−(γ+µ)t − I(t) + e−(γ+µ)thc2
(21)

where

c2 =
f3(0) + f3(t)

2
+

n−1

∑
k=1

f3(kh)
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and
f3(x) = e(γ+µ)x[γ + µ− αI(x)].

Figure 9. β(t) estimates of Obesity with initial (1997) prevalence of 19.5%.

3.3. Estimation of Time-Dependent Transmission Coefficient Using Synthetic Prevalence and
Incidence Data

We demonstrate our method of using prevalence and incidence data to estimate
time-dependent transmission coefficient using synthetic prevalence and incidence data
generated with two choices of transmission coefficients and the model ((1) and (2)) with
rest of parameters given by (Table 5).

Table 5. Parameters for generating synthetic prevalence data.

Parameters p b(t) γ(t) µ(t) α(t)

Values 1 33/1000 0 33/1000 8

In the first case, we assumed transmission coefficient to be constant over time and in
the second case, we consider a transmission coefficient that is seasonal. They are given by

1. β(t) = 20,
2. β(t) = 20(1− ε cos 2πt), with ε = 0.1.

We generate daily prevalence and incidence data for two years and estimated monthly
transmission coefficient using Equations (5) and (8) respectively. We used MATLAB’s
’pchip’ function to interpolate the synthetic prevalence and incidence data in the formula-
tion and integrated using ’integral’ function. The monthly estimates for time-dependent
transmission coefficient were reasonably accurate and close to the true values of the trans-
mission coefficients used to generate prevalence and incidence data in both the cases
when transmission coefficient was constant and when it was periodic (Figure 10). As birth
rates, mortality rates and recovery rates are often considered constant in models, we used
constant terms for these variables to limit simulation time. However, if time-dependent
information on these variables is available they can easily be incorporated and simulated.
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Figure 10. Monthly estimates of transmission coefficients and their true values used to generate syn-
thetic prevalence data (A,C) and synthetic incidence data (B,D) for constant transmission coefficient
(A,B) and periodic transmission coefficient (C,D).

4. Discussion

Compartmental models have provided valuable insights into the epidemiology of
many infectious diseases. Transmission coefficient, a product of contact rate and probability
of transmission given a contact, is a parameter in the compartmental model which naturally
varies over time. This coefficient had the greatest effect on predictions of dynamics of
disease or social problem and difficult to estimate. However, due to lack of detailed data as
well as complexities involved in numerical estimating this parameter, most studies estimate
it as a time-independent parameter averaging it over the course of epidemic. In this study,
we present a method to estimate time-dependent transmission rate using two types of data
commonly reported during infectious disease outbreaks: the time series of the number of
infectives (or prevalence) and the number of new cases generated during a period of time
(or incidence). By deriving an analytical method that uses a standard deterministic model
and these data sets to directly estimate β(t), this new approach resolves the computational
challenges often involved with more complex model. By applying our approach to several
infectious diseases, we illustrate applicability of our methods in various contexts. Moreover,
similar approaches can be applied with any appropriate mathematical model to derive
time-dependent transmission rate for diseases whose dynamics may need to incorporate
other factors such as environment (for. e.g., role of waterbodies in cholera spread) or vector
dynamics (for. e.g., impact of mosquito in dengue transmission).

Utility of approach presented in this manuscript is demonstrated using several public-
health problems including Ebola, Visceral Leishmaniasis, US college alcohol drinking and
obesity outbreak in the US. In particular, we estimated the temporal estimates of transmis-
sion rate for Ebola during 2014–2016 outbreak in West Africa (aggregated) as well as for
individual countries of Liberia, Guinea and Sierra Leone. Our results though limited by the
accuracy of data, demonstrated the wide-variability in transmission risks across the three
countries. Moreover, we found that our temporal estimates of transmission risk followed
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the pattern of incidence closely, but slightly delayed, reflecting the substantial contribution
of transmission risk towards the nature of disease progression. During the times of public-
health emergencies due to an infectious disease outbreaks such as Ebola outbreak in West
Africa or ongoing COVID-19 pandemic, effective reproductive numbers are often estimated
using incidence data to understand the progression of disease and inform strategies to
curb the transmission. Although estimates of effective reproductive numbers are useful,
combining it with estimation of time-varying transmission risk through our approach
can be more informative to inform public-health decision-making. Transmission risk at a
particular time is a product of contacts and probability of transmission. Thus, it can be used
to make short term predictions about new infections as well as it can inform how much
reduction in contact patterns or risk of transmission (through mask/vaccination/hygiene)
can reduce the transmission parameter sufficiently to reverse the trend of an epidemic.

In the current study, we used simple deterministic model along with simple integration
numerical techniques to show how commonly reported data (incidence and prevalence) can
be used in informing temporal transmission risk, and thus manage public-health challenges
more effectively. Practical application of our approach would improve with use of more
complex models (appropriate) as well more sophisticated integration techniques. Moreover,
analytical derivation can be used to understand the impact of changes in any other input
parameter (such as smaller/longer quarantine periods) on transmission risk in a straight-
forward way. Similarly, an area of future research can expand presented framework to
understand how incomplete data may alter the quality of parameter estimation. Therefore,
value of analysis reported here is as a beginning point for future research that will build
on current approach to develop computational models that can inform policies in swift
manner during public-health emergencies. We believe using our methods can provide good
approximation of time-dependent transmission coefficients and goodness of approximation
should increase with use of more sophisticated modeling techniques.
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Appendix A. Tables

Table A1. 2014–2016 Ebola outbreak in West Africa. Estimates of β(t) for incidence data.

West Africa Guinea Sierra Leone Liberia

Incidence: Incidence: Incidence: Incidence:
Date ω(t) β(t) ω(t) β(t) ω(t) β(t) ω(t) β(t)

20
14

31-Mar 5.1 × 10−6 0.20 9.5 × 10−6 2.93 0 0 1.7 × 10−6 0.03
30-Apr 4.8 × 10−6 0.19 9.3 × 10−6 2.78 0 0 1.1 × 10−6 0.02
28-May 3.2 × 10−6 0.13 5.1 × 10−6 1.50 2.2 × 10−6 0.05 0 0
24-Jun 1.2 × 10−5 0.49 9.3 × 10−6 2.68 1.9 × 10−5 0.47 8.5 × 10−6 0.16
31-Jul 3.1 × 10−5 1.23 6.0 × 10−6 1.69 5.1 × 10−5 1.24 6.1 × 10−5 1.12

28-Aug 7.3 × 10−5 2.89 1.6 × 10−5 4.41 6.7 × 10−5 1.62 2.3 × 10−4 4.14
26-Sep 1.5 × 10−4 5.62 3.6 × 10−5 9.35 1.4 × 10−4 3.20 4.5 × 10−4 7.75
31-Oct 3.0 × 10−4 10.38 5.1 × 10−5 11.74 4.5 × 10−4 10.01 6.7 × 10−4 10.50
28-Nov 1.5 × 10−4 4.92 4.2 × 10−5 8.75 2.4 × 10−4 4.98 2.4 × 10−4 3.51
31-Dec 1.4 × 10−4 4.33 4.7 × 10−5 9.08 3.2 × 10−4 6.23 8.4 × 10−5 1.20

20
15

28-Jan 8.0 × 10−5 2.42 1.8 × 10−5 3.26 1.5 × 10−4 2.74 1.3 × 10−4 1.87
25-Feb 6.9 × 10−5 2.06 2.0 × 10−5 3.58 1.1 × 10−4 1.96 1.3 × 10−4 1.88
31-Mar 6.3 × 10−5 1.84 2.9 × 10−5 4.88 9.2 × 10−5 1.66 1.0 × 10−4 1.43
29-Apr 4.7 × 10−5 1.37 7.3 × 10−6 1.21 5.8 × 10−5 1.04 1.3 × 10−4 1.81
31-May 3.6 × 10−5 1.03 6.3 × 10−6 1.03 5.9 × 10−5 1.04 7.5 × 10−5 1.01
30-Jun 1.7 × 10−5 0.48 7.9 × 10−6 1.29 4.1 × 10−5 0.73 0 0
31-Jul 1.3 × 10−5 0.36 3.1 × 10−6 0.50 3.5 × 10−5 0.62 1.3 × 10−6 0.02

31-Aug 9.5 × 10−6 0.27 7.7 × 10−7 0.12 2.9 × 10−5 0.52 0 0
29-Sep 1.4 × 10−5 0.39 1.3 × 10−6 0.21 4.2 × 10−5 0.74 0 0
30-Oct 6.7 × 10−6 0.19 2.6 × 10−7 0.04 2.1 × 10−5 0.37 0 0
30-Nov 2.3 × 10−6 0.07 0 0 7.5 × 10−6 0.13 6.6 × 10−7 0.01
30-Dec 0 0 0 0 0 0 0 0

20
16

27-Jan 8.5 × 10−8 2.44 × 10−3 0 0 2.7 × 10−7 4.81 × 10−3 0 0
17-Feb 0 0 0 0 0 0 0 0
30-Mar 3.0 × 10−7 0.01 6.0 × 10−7 0.10 0 0 0 0
13-Apr 2.5 × 10−7 0.01 2.6 × 10−7 0.04 0 0 6.6 × 10−7 0.01
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Table A2. 2005 Visceral Leishmaniasis incidence data from Bihar, India. Estimates of β(t) of models
with and without demography.

Month Incidence S(0): 0.1 0.5 0.8 0.1 0.5 0.8

(ω(t)) β(t) : µ = 0 β(t) : µ = 0.00138

Jan 3.4 × 10−5 0.44 0.09 0.05 0.42 0.08 0.05
Feb 6.2 × 10−5 0.92 0.18 0.11 0.88 0.18 0.11
Mar 1.0 × 10−4 1.65 0.33 0.21 1.57 0.32 0.20
Apr 1.2 × 10−4 1.97 0.39 0.25 1.87 0.39 0.24
May 1.3 × 10−4 2.10 0.42 0.26 1.98 0.41 0.26
June 1.0 × 10−4 1.76 0.35 0.22 1.64 0.35 0.22
July 1.1 × 10−4 1.98 0.39 0.25 1.83 0.39 0.24
Aug 9.5 × 10−5 1.71 0.34 0.21 1.57 0.34 0.21
Sept 9.2 × 10−5 1.73 0.34 0.22 1.58 0.34 0.17
Oct 6.8 × 10−5 1.36 0.27 0.17 1.23 0.27 0.17
Nov 6.5 × 10−5 1.41 0.28 0.17 1.25 0.28 0.17
Dec 9.2 × 10−5 2.06 0.41 0.26 1.82 0.40 0.26

Table A3. Estimates of β(t) using incidence data from the 2003 Severe Acute Respiratory Syndrome (SARS) epidemic in
Hong Kong.

Date Incidence Date Incidence Date Incidence
ω(t) β(t) ω(t) β(t) ω(t) β(t)

14-Feb 1.5 × 10−7 8.11 × 10−4 23-Mar 1.6 × 10−5 1.49 × 10−1 29-Apr 1.5 × 10−6 1.33 × 10−2

15-Feb 0 0 24-Mar 1.6 × 10−5 1.31 × 10−1 30-Apr 2.9 × 10−7 2.73 × 10−3

16-Feb 0 0 25-Mar 1.2 × 10−5 8.84 × 10−2 1-May 7.3 × 10−7 7.06 × 10−3

17-Feb 1.5 × 10−7 9.07 × 10−4 26-Mar 9.1 × 10−6 6.34 × 10−2 2-May 1.0 × 10−6 1.02 × 10−2

18-Feb 0 0 27-Mar 7.8 × 10−6 5.25 × 10−2 3-May 7.3 × 10−7 7.45 × 10−3

19-Feb 1.5 × 10−7 9.78 × 10−4 28-Mar 5.9 × 10−6 3.90 × 10−2 4-May 4.4 × 10−7 4.61 × 10−3

20-Feb 1.5 × 10−7 1.01 × 10−3 29-Mar 4.7 × 10−6 3.10 × 10−2 5-May 7.3 × 10−7 7.92 × 10−3

21-Feb 1.5 × 10−7 1.05 × 10−3 30-Mar 7.8 × 10−6 5.08 × 10−2 6-May 7.3 × 10−7 8.15 × 10−3

22-Feb 1.5 × 10−7 1.09 × 10−3 31-Mar 5.9 × 10−6 3.78 × 10−2 7-May 1.3 × 10−6 1.50 × 10−2

23-Feb 1.5 × 10−7 1.13 × 10−3 1-Apr 3.8 × 10−6 2.46 × 10−2 8-May 4.4 × 10−7 5.14 × 10−3

24-Feb 4.4 × 10−7 3.51 × 10−3 2-Apr 5.1 × 10−6 3.32 × 10−2 9-May 5.9 × 10−7 7.06 × 10−3

25-Feb 1.5 × 10−7 1.21 × 10−3 3-Apr 5.0 × 10−6 3.22 × 10−2 10-May 2.9 × 10−7 3.64 × 10−3

26-Feb 1.5 × 10−7 1.26 × 10−3 4-Apr 6.2 × 10−6 3.95 × 10−2 11-May 7.3 × 10−7 9.38 × 10−3

27-Feb 1.5 × 10−7 1.30 × 10−3 5-Apr 6.5 × 10−6 4.10 × 10−2 12-May 4.4 × 10−7 5.79 × 10−3

28-Feb 2.9 × 10−7 2.70 × 10−3 6-Apr 5.9 × 10−6 3.69 × 10−2 13-May 4.4 × 10−7 5.97 × 10−3

1-Mar 5.9 × 10−7 5.58 × 10−3 7-Apr 4.1 × 10−6 2.58 × 10−2 14-May 4.4 × 10−7 6.16 × 10−3

2-Mar 7.3 × 10−7 7.19 × 10−3 8-Apr 3.5 × 10−6 2.24 × 10−2 15-May 4.4 × 10−7 6.35 × 10−3

3-Mar 2.9 × 10−7 2.97 × 10−3 9-Apr 3.1 × 10−6 1.98 × 10−2 16-May 1.5 × 10−7 2.19 × 10−3

4-Mar 4.4 × 10−7 4.60 × 10−3 10-Apr 4.7 × 10−6 3.04 × 10−2 17-May 2.9 × 10−7 4.52 × 10−3

5-Mar 4.4 × 10−7 4.76 × 10−3 11-Apr 3.4 × 10−6 2.20 × 10−2 18-May 0 0
6-Mar 2.5 × 10−6 2.74 × 10−2 12-Apr 3.1 × 10−6 2.03 × 10−2 19-May 1.5 × 10−7 2.43 × 10−3

7-Mar 4.1 × 10−6 4.49 × 10−2 13-Apr 2.6 × 10−6 1.77 × 10−2 20-May 2.9 × 10−7 5.02 × 10−3

8-Mar 5.0 × 10−6 5.34 × 10−2 14-Apr 4.1 × 10−6 2.78 × 10−2 21-May 7.3 × 10−7 1.29 × 10−2

9-Mar 5.0 × 10−6 5.21 × 10−2 15-Apr 3.4 × 10−6 2.30 × 10−2 22-May 1.5 × 10−7 2.65 × 10−3

10-Mar 1.8 × 10−6 1.83 × 10−2 16-Apr 2.6 × 10−6 1.82 × 10−2 23-May 0 0
11-Mar 3.1 × 10−6 3.23 × 10−2 17-Apr 3.4 × 10−6 2.36 × 10−2 24-May 1.5 × 10−7 2.85 × 10−3

12-Mar 2.9 × 10−6 3.07 × 10−2 18-Apr 2.5 × 10−6 1.77 × 10−2 25-May 1.5 × 10−7 2.95 × 10−3
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Table A3. Cont.

Date Incidence Date Incidence Date Incidence
ω(t) β(t) ω(t) β(t) ω(t) β(t)

13-Mar 2.4 × 10−6 2.47 × 10−2 19-Apr 1.9 × 10−6 1.38 × 10−2 26-May 1.5 × 10−7 3.05 × 10−3

14-Mar 3.8 × 10−6 4.01 × 10−2 20-Apr 1.0 × 10−6 7.60 × 10−3 27-May 1.5 × 10−7 3.16 × 10−3

15-Mar 3.7 × 10−6 3.82 × 10−2 21-Apr 1.8 × 10−6 1.34 × 10−2 28-May 1.5 × 10−7 3.27 × 10−3

16-Mar 5.0 × 10−6 5.11 × 10−2 22-Apr 2.2 × 10−6 1.70 × 10−2 29-May 0 0
17-Mar 4.0 × 10−6 3.99 × 10−2 23-Apr 1.6 × 10−6 1.27 × 10−2 30-May 2.9 × 10−7 7.00 × 10−3

18-Mar 1.9 × 10−6 1.93 × 10−2 24-Apr 1.9 × 10−6 1.54 × 10−2 31-May 0 0
19-Mar 3.7 × 10−6 3.72 × 10−2 25-Apr 1.9 × 10−6 1.57 × 10−2 1-Jun 0 0
20-Mar 2.8 × 10−6 2.82 × 10−2 26-Apr 1.2 × 10−6 9.87 × 10−3 2-Jun 0 0
21-Mar 3.8 × 10−6 3.85 × 10−2 27-Apr 1.9 × 10−6 1.64 × 10−2 3-Jun 0 0
22-Mar 4.6 × 10−6 4.53 × 10−2 28-Apr 4.4 × 10−7 3.88 × 10−3

Table A4. Alcohol drinking data and estimates of β(t).

Years 1982 1985 1988 1991 1994

Drinkers (I(t)) 52% 51% 49% 46% 47%
β(t) when µ = 0 − 0.85 0.84 0.90 1.54

Table A5. Age-adjusted Prevalence of Obesity in US using the projected 2000 U.S. population [25].

Year 1997 1998 1999 2000 2001 2002
Prev. (%) 19.5 20.6 21.5 21.8 22.9 23.8

Year 2003 2004 2005 2006 2007 2008
Prev (%) 23.5 24.3 25.3 26.2 26.6 27.5
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