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Abstract: Ebolaviruses continue to pose a significant outbreak threat, and while Ebola virus (EBOV)-
specific vaccines and antivirals have been licensed, efforts to develop candidates offering broad
species cross-protection are continuing. The use of pseudotyped virus in place of live virus is
recognised as an alternative, safer, high-throughput platform to evaluate anti-ebolavirus antibodies
towards their development, yet it requires optimisation. Here, we have shown that the target cell
line impacts neutralisation assay results and cannot be selected purely based on permissiveness. In
expanding the platform to incorporate each of the ebolavirus species envelope glycoprotein, allowing
a comprehensive assessment of cross-neutralisation, we found that the recently discovered Bombali
virus has a point mutation in the receptor-binding domain which prevents entry into a hamster
cell line and, importantly, shows that this virus can be cross-neutralised by EBOV antibodies and
convalescent plasma.
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1. Introduction

The 2013–2016 outbreak of Ebola virus in West Africa, which was declared a public
health emergency of international concern (PHEIC) and caused over 28,000 cases and
11,000 deaths [1,2], re-focused the world’s attention on the public health threat the Ebolavirus
genus represents. This included the establishment and inclusion of Ebola virus on the
World Health Organization’s research and development blueprint [3], which prioritizes
fundamental research and supports the development of vaccines and therapeutics along
with preparedness activities to mitigate future outbreaks.

The first documented cases of viral haemorrhagic fever caused by an ebolavirus
occurred in 1976, with nearly simultaneous outbreaks of Ebola virus (EBOV) [4] and Sudan
virus (SUDV) [5] in Central Africa. Up until 2013, they had each caused sporadic outbreaks
limited to this region [6,7] and this trend has continued since the PHEIC with a further
5 outbreaks of EBOV, as well as an outbreak in West Africa [8]. Human cases have also
occurred with two further species identified; these are the Bundibugyo virus (BUDV) and
the Ta
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1. Introduction 
The 2013–2016 outbreak of Ebola virus in West Africa, which was declared a public 

health emergency of international concern (PHEIC) and caused over 28,000 cases and 
11,000 deaths [1,2], re-focused the world’s attention on the public health threat the Ebo-
lavirus genus represents. This included the establishment and inclusion of Ebola virus on 
the World Health Organization’s research and development blueprint [3], which priori-
tizes fundamental research and supports the development of vaccines and therapeutics 
along with preparedness activities to mitigate future outbreaks. 

The first documented cases of viral haemorrhagic fever caused by an ebolavirus oc-
curred in 1976, with nearly simultaneous outbreaks of Ebola virus (EBOV) [4] and Sudan 
virus (SUDV) [5] in Central Africa. Up until 2013, they had each caused sporadic out-
breaks limited to this region [6,7] and this trend has continued since the PHEIC with a 
further 5 outbreaks of EBOV, as well as an outbreak in West Africa [8]. Human cases have 
also occurred with two further species identified; these are the Bundibugyo virus (BUDV) 
and the Taϊ Forest virus (TAFV). Distinctly, Reston virus (RESTV), which has been iden-
tified in primate and swine populations within the Philippines, is non-pathogenic in hu-
mans [9,10]. In 2018, as part of the PREDICT project to detect known and unknown viruses 
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Forest virus (TAFV). Distinctly, Reston virus (RESTV), which has been identified in
primate and swine populations within the Philippines, is non-pathogenic in humans [9,10].
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In 2018, as part of the PREDICT project to detect known and unknown viruses within
wildlife reservoirs [11–13], the genome sequence of a further ebolavirus, Bombali virus
(BOMV), was isolated from free-tailed bats in Sierra Leone [14]. Subsequent surveys have
also found it to be present in bats in Kenya and Guinea [15–17]. Through in situ sequence
analysis and the use of a recombinant vesicular stomatitis virus (rVSV) encoding the BOMV
glycoprotein (GP), it was determined that entry into human cells occurs via the Niemann–
Pick C1 (NPC1) receptor, similar to other ebolaviruses [14]. However, the potential to cause
disease in humans remains unknown.

Currently, EBOV-specific vaccines and antivirals have been licensed for use following
expedited development [18]. Prior to this, supportive care and convalescent plasma had
been applied as an empirical treatment during filovirus outbreaks [19,20]. Yet in light of
the disease potential (i.e., documented human cases or ability to infect human cells in vitro)
posed by all 6 Ebolavirus species, there are efforts to develop cross-protective candidates [21].
To evaluate their effectiveness and further study serological responses against existing and
newly discovered ebolaviruses, species-specific neutralisation assays are required. The use
of live ebolavirus is restricted to biosafety level 4 (BSL4) laboratories [22]; therefore, EBOV
GP-pseudotyped virus (PV) has been used as an alternative, showing good correlation in the
results between the live virus assay and the pseudotype system [23–25]. Previous work has
suggested PV systems based on vesicular stomatitis virus (VSV) correlate better with the gold
standard live neutralisation assay [26,27]. However, a caveat in these analyses is the variability
of target cell lines used in the different reports. Here, we have optimised a lentiviral-vector
based (LVV) neutralisation assay for EBOV antibodies and applied it in the evaluation of
cross-neutralising antibodies against the other ebolavirus species, including BOMV.

2. Materials and Methods
2.1. Cell Lines and Virus Envelope Plasmids

The highly transfectable human embryonic kidney 293T clone-17 cells (HEK 293T/17;
American Type Culture Collection (ATCC), CRL-11268) were used for pseudotyped virus
production as well as subsequent titration and neutralisation assays, together with a human
lung carcinoma (A549; ATCC, CCL-185), African green monkey clone-E6 kidney (Vero
E6; CRL-1586), feline kidney (CRFK; ATCC, CCL-94) and Chinese hamster ovary cell line
(CHO-K1; ATCC, CCL-61). Cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) with high glucose and GlutaMAX (Gibco), except for CHO-K1 cells which were
cultured in Ham’s F-12 nutrient mix (Gibco). Both were supplemented with 10% fetal
calf serum (Pan-Biotech GmbH) and 1% penicillin/streptomycin (Sigma-Aldrich) and
maintained at 37 ◦C, 5% CO2.

The vesicular stomatitis virus (VSV) envelope glycoprotein was cloned in the pMD2.G
expression vector [28]. The envelope glycoprotein sequences of Ebolavirus species studied
were each cloned within the pCAGGS expression vector [29]. This included the Ebola
virus (EBOV) isolate Makona/GIN/2014/Kissidougou-C15 (GenBank accession: KJ660346),
Bundibugyo virus (BDBV) isolate UGA/2007 (FJ217161) and Bombali virus (BOMV) isolates
Mops condylurus/SLE/2016/PREDICT_SLAB000156 (MF319185), Chaerephon pumilus/SLE/
2016/PREDICT_SLAB000047 (MF319186) and Mops condylurus/Kenya/B241 (MK340750),
which were chemically synthesized (BioBasic, GeneWiz and GeneArt, respectively). The
glycoprotein sequences of Tai Forest virus (TAFV) isolate CIV/1994 (FJ217162), Sudan
virus (SUDV) isolate Boniface/SUD/1976 (FJ968794) and Reston virus (RESTV) isolate
Pennsylvania/USA/1989 (AY769362) were kindly provided by Prof. Graham Simmons
(Vitalant Research Institute). The S146P mutation was introduced into the BOMV envelope
GP sequence (residue 142) via Q5 site-directed mutagenesis (New England Biolabs) and
confirmed by Sanger sequencing.

2.2. Human Plasma and Monoclonal Antibody Samples

The WHO 1st International Standard for Ebola virus antibodies–Sierra Leone Convales-
cent Plasma Pool (NIBSC catalogue code: 15/262) was reconstituted as per the instructions



Trop. Med. Infect. Dis. 2021, 6, 155 3 of 12

for use in 0.5 mL sterile distilled water to give a working potency of 1.5 IU/mL. Similarly,
the WHO Reference Panel of anti-Ebola virus convalescent plasma (NIBSC catalogue code:
16/344) was reconstituted in 0.25 mL sterile distilled water. It comprises samples from four
individuals donated through the American Red Cross (ARC; 15/280), UK National Health
Service Blood and Transplant (NHSBT; 15/282), Oslo University, Norway (NOR; 15/284)
and National Institute for Infectious Diseases Lazzaro Spallanzani, Italy (INMI, 15/286), as
well as a negative control (NEG, 15/288).

The broadly neutralising pan-ebolavirus mAb CA45 [30], isolated from an immunised
cynomolgus macaque, was kindly provided by Dr. M. Javad Aman (Integrated BioTher-
apeutics). Two potently neutralising mAbs were derived from a vaccinated human [31],
demonstrating some ebolavirus cross-reactivity, P6, or EBOV-specific, P7.

2.3. Pseudotyped Virus Production and Titration

Pseudotyped virus production was based on methods previously described [28,32,33].
HEK 293T/17 cells were seeded into a 10 cm culture dish (Nunc) to reach 60–80% conflu-
ence after 24 h. The HIV-1 gag-pol plasmid, pCMV-∆8.91, and the firefly luciferase reporter
plasmid, pCSFLW, were then co-transfected with the pCAGGS plasmid-containing enve-
lope sequence at a ratio of 1:1.5:1 µg, respectively, using 10.5 µL Fugene-HD transfection
reagent (Promega) in 175 µL serum-free Opti-MEM (Gibco). Culture supernatant con-
taining pseudotyped virus was harvested at 48 and 72 hrs post-transfection, then passed
through a 0.45 µm pore filter (Millipore); aliquots were prepared for storage at −80 ◦C.

Titres of pseudotyped virus stocks were determined via end-point dilution on target
cells. Starting from a 1:5 dilution, 5-fold serial dilutions were prepared within culture
medium in triplicate across 8 points. Each dilution was transferred to a 96-well culture
plate containing target cells seeded at 2 × 104 cells/well and incubated for 60 hrs at 37 ◦C,
5% CO2. Following incubation, culture medium was removed and the target cells were
incubated for 5 mins with a 1:1 mix of phenol-free DMEM (Gibco) and Bright-Glo reagent
(Promega), with luciferase activity detected as relative light units (RLU) using a Glomax
Navigator microplate luminometer (Promega). Titres were calculated as the 50% tissue
culture infective dose (TCID50)/mL following the Spearman and Kärber method [34].

2.4. Neutralisation Assays

In a 96-well plate, doubling dilutions of human plasma or mAb sample, prepared
in duplicate across 10 points from a 1:20 or 25 µg/mL starting dilution, respectively,
were incubated with 50 TCID50 of pseudotyped virus for 1 hr at 37 ◦C and 5% CO2.
Following incubation, the antibody and pseudotyped virus dilutions were added to target
cells seeded in a 96-well culture plate at 2 × 104 cells/well and incubated for a further
60 h at 37 ◦C and 5% CO2. Luciferase activity as RLU was detected as described above.
Percentage neutralisation was calculated in GraphPad Prism, as described elsewhere [35],
by normalising RLU data to pseudotyped virus and cell-only controls before non-linear
regression analysis, fitting a 4-parameter dose-dependent inhibition curve to interpolate
50% inhibitory concentrations (IC50).

2.5. Protein Structure Modelling and Sequence Alignment

Analysis of residues at the GP-NPC1 interface was performed using the crystal struc-
ture of EBOV GP bound to domain C of human NPC1 (PDB ID: 5F1B) [36], with 3D
modelling and images generated in NGL viewer [37].

Sequence alignment used representative sequences of NPC1 from the species of target
cell lines, including HEK293T/17—Homo sapiens (GenBank accession: AAB63982.1), CRFK—
Felis catus (AAF72187.1) and CHO-K1—Cricetulus griseus (AAF31692.1). In addition to
the ebolavirus GP sequences used experimentally, all publicly available Bombali ebolavirus
sequences were identified from the NIAID Virus Pathogen Database and Analysis Resource
(ViPR) [38] through the website at http://www.viprbrc.org/ (accessed on 15 July 2021)
The NPC1 and ebolavirus GP sequences were each aligned using Clustal Omega [39] and

http://www.viprbrc.org/
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then input into ESPript [40] to determine amino acid similarities of residues identified as
involved in GP-NPC1 binding.

3. Results
3.1. Target Cell Line Is Critical for Optimal Ebolavirus Pseudotype-Based Neutralisation Assay

Ebola virus lentiviral-pseudotyped virus (EBOV-LVV) incorporating a firefly luciferase
reporter gene was titrated on different cell lines to select for those most permissive to
EBOV-LVV entry (Figure 1a). EBOV-susceptible human HEK 293T/17 and A549 cells were
evaluated in parallel to feline CRFK, hamster CHO-K1 and African green monkey Vero E6
cells. The EBOV-LVV reporter signal (RLU/mL) on Vero E6 was too low to be usable; this
is not surprising, as monkey cells possess a restriction factor inhibiting post-entry steps
of HIV-1-based particles [41]. Indeed, the VSV-G LVV control had a signal over 100-fold
lower on Vero E6 than on the other cell lines. It is more unclear why the EBOV-LVV entry
signal on human A549 was lower than the envelope-less LVV control.
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Figure 1. Comparison of EBOV-pseudotyped virus infectivity and neutralisation on various target cell lines. (a) Infectivity
of the EBOV-pseudotyped lentiviral particles measured as relative luminescent units (RLU/mL) were assessed on 5 target
cell lines. A vesicular stomatitis virus G protein (VSV-G) pseudotype was used as a positive control for the LVV system.
LVV without an envelope protein (∆Env) was used to determine the background signal. (b) The percentage neutralisation
of dilutions of monoclonal antibodies P6 or CA45 (µg/mL) and WHO IS (20/262; mIU/mL) following incubation with
50 TCID50 of EBOV-pseudotyped virus on each of the target cells, with the fit (R2) of the dose-response curve annotated.
Error bars indicate SEM (n = 2).

Therefore, the 3 remaining cells lines, HEK 293T/17, CRFK and CHO-K1, were then
used to evaluate EBOV-LVV neutralisation performance using a normalized input of
50 TCID50, with well-characterised anti-EBOV mAbs (P6 and CA45) and the WHO Inter-
national Standard (IS) comprising a pool of convalescent plasma from Ebola-recovered
individuals. Both visual and mathematical analysis of the fit of dose-dependent inhibition
curves showed that performance was poor across all samples on CRFK cells, with an R2

value of 0.33 for each of the mAbs P6 and CA45 and 0.28 for the WHO IS plasma sample
(Figure 1b). There was a similarly poor fit for the WHO IS plasma sample and the mAb P6
on HEK 293T/17 cells (R2 = 0.36 and 0.47, respectively). A superior dose-response profile
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was observed using the CHO-K1 target cell line, with a robust fit (R2 ≥ 0.70) across all sam-
ples tested, supporting its selection as the optimal target cell line to evaluate cross-reactivity
across the ebolavirus-pseudotyped viruses.

3.2. CHO-K1 Cells Are Refractory to Bombali Virus Entry

Following identification of the hamster cell line CHO-K1 as the optimal cell line for
EBOV LVV-pseudotype neutralisation, we expanded the analysis of the neutralisation activ-
ity to other species of the genus Ebolavirus, including the most recently identified BOMV.
Pseudotyped LVV titres were evaluated via end-point titration to determine TCID50/mL
values on the HEK293T/17, CRFK and CHO-K1 target cell lines used for the EBOV-LVV
neutralisation assay (Figure 2). All the Ebolavirus LVV presented the same pattern with
the highest titres (>1 × 105 TCID50/mL) obtained using HEK293T/17 cells. The titres
on the CHO-K1 cells, previously identified as the most suitable target cells line for the
neutralisation assay, were lower (3–60 fold), similar to titres on CRFK (8–30 fold reduction),
but still suitable for the downstream neutralisation assays. The only exception was for the
BOMV-LVV, which showed a 750-fold reduction when titrated on CHO-K1 cells, with a
negligible titre of 259 TCID50/mL, which is not sufficient for performance of downstream
neutralisation assays.
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3.3. Identification of a Critical Residue Involved in Bombali Virus Binding to the NPC1 Receptor

To investigate the cause of CHO-K1 cells being refractory to BOMV entry, we looked
to analyse sequence residues at the interface of ebolavirus GP binding to the NPC1 receptor
(Figure 3a). Analysis of NPC1 residues in direct contact with the EBOV GP [36] from
the different target cell species revealed mutations of two residues (Q421E and F504Y)
within the Cricetulus griseus CHO-K1 cell line, which are conserved between the Homo
sapiens HEK293T/17 and Felis catus CRFK cell lines (Figure 3b). While this may contribute
to species-specific susceptibility to BOMV, sequence alignment of the interacting regions
across the ebolavirus GP was undertaken to identify a determining factor (Figure 3c).
The receptor-binding residues are highly conserved across the ebolaviruses, with a single
proline to serine mutation (P146S) unique to the BOMV GP identified. Further analysis of
the alignment of the five complete Bombali ebolavirus isolate sequences available reveals
this mutation is common across four identified in the bat species Mops condylurus, yet the
conserved proline occurs in a single isolate identified in another bat species, Chaerephon
pumilus (Figure S1). Of note, attempts in our lab to produce pseudotyped virus expressing
the BOMV GP isolated from the C. pumilus bat has not yielded titres high enough for
downstream studies, while BOMV GP from both viruses isolated from M. condylurus
achieved usable titres (Figure S2).
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Figure 3. Analysis of NPC1 receptor binding to the ebolavirus glycoprotein. (a) The structure of human NPC1 receptor
(blue) in complex with the EBOV glycoprotein (white) which highlights three NPC1-interacting regions (red) covering
glycoprotein amino acids 79–88, 111–118 and 141–152. Alignment of the interface of (b) NPC1 sequence from HEK293T/17
(Homo sapiens), CRFK (Felis catus) and CHO-K1 (Cricetulus griseus) cell lines and (c) ebolavirus glycoprotein sequences, with
residues in direct contact highlighted in squared boxes. Virus-specific polymorphisms are shaded yellow and red for amino
acids similar or dissimilar to the consensus, respectively. The BOMV glycoprotein proline (P) to serine (S) polymorphism
(P146S) is outlined.

To test our theory, we performed site-directed mutagenesis to revert the serine at position
146 of the BOMV GP to the conserved proline. Pseudotyped virus was then produced with the
mutant S146P alongside the wild type BOMV GP sequence and titrated on each of the target
cell lines. As expected, the S146P mutation restored entry of BOMV pseudotyped virus into
the CHO-K1 cell line, with no impact on entry into the alternative target cells (Figure 4). The
titre on CHO-K1 cells was 70-fold higher, at 1.6 × 104 TCID50/mL, than that of PV bearing
the wildtype glycoprotein and was comparable to the titre of other ebolavirues on this target
cell line (Figure 2). This confirmed the S146 residue is critical in the ability of BOMV to
bind the NPC1 receptor of C. griseus and allowed entry to be restored for the performance of
neutralisation experiments using the optimal CHO-K1 target cell line.
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Figure 4. Restored infectivity of BOMV lentiviral-pseudotyped virus into CHO-K1 target cells after
reversion of a serine at position 146 of the glycoprotein to a conserved proline (S146P). Infectivity, measured
as TCID50/mL, calculated relative to a pseudotyped virus incorporating the wild type BOMV glycoprotein
sequence on HEK293T/17, CRFK and CHO-K1 target cell lines. Error bars represent SEM (n = 2).
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3.4. Ebola Virus Convalescent Serum and Monoclonal Antibodies Cross-Neutralise Bombali Virus

The level of cross-neutralisation afforded against BOMV in comparison to other
ebolaviruses was evaluated using both convalescent plasma and existing cross-reactive
mAbs. Given CHO-K1 are refractory to BOMV, BOMV P146 was used. The panel of con-
valescent plasma samples collected from survivors during the 2013-2016 EBOV outbreak in
West Africa included a pool of high titre samples from patients in Sierra Leone (15/262) and
individual samples of mid-low titres from repatriated patients (15/280–15/286), along with
a negative control (15/288) [42]. Dose-response curves plotting the level of neutralisation
across the dilutions tested shows a reducing degree of cross-reactivity based on titre of the
sample tested (high-low), with four out of five samples cross-reacting with BOMV (Figure 5a).
The high titre pool 15/262 cross-reacts with all the ebolavirus PV, with the BOMV IC50 of
83 being the second most potently neutralised in comparison to EBOV (IC50 120), the virus of
exposure (Figure 5b). Interestingly, in the case of the mid-titre sample 15/280, BOMV is the
most potently neutralised PV, with an IC50 titre 1.5× higher than EBOV.

Of the mAb samples tested, CA45 has been shown to have neutralising activity against
EBOV, BDBV, RESTV and SUDV. This is supported by our data, with CA45 found to addi-
tionally have activity against BOMV and TAFV (Figure 5a), with its potency against BOMV
ranked moderately (IC50 3.85 µg/mL) amongst the panel of ebolavirus PV (Figure 5c). A
study to isolate P6 from a human vaccinee showed that it had cross-reactivity against
BDBV but not SUDV [31]; this again is supported by our data and extended to include
both BOMV and TAFV (Figure 5a,c). In the same study, P7 was found to be EBOV specific
and is used here as a control, with reactivity solely detected against the EBOV PV. In all
cases except with the low potency sample 15/284, BOMV was found to be neutralised at a
similar or more potent level than other ebolaviruses, which suggests likely efficacy of both
existing and cross-reactive treatments under development.
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Figure 5. Cross-neutralisation of BOMV afforded by a panel of human EBOV convalescent serum and monoclonal antibodies.
(a) Dose-response curves plotted as percentage neutralisation for dilutions of the WHO IS (15/262) and WHO Reference
Panel members from four individuals recovered from EBOV (15/280, 15/282, 15/284, 15/286) and a negative control
(15/288) along with two pan-ebolavirus mAbs (CA45, P6) and an EBOV-specific mAb negative control (P7). (n = 2) (b,c) 50%
inhibitory concentrations (IC50) expressed as reciprocal of the dilution factor for plasma samples (b) or in µg/mL for mAb
(c); IC50 were interpolated via non-linear regression analysis, with potency ranked good to weak based on a 50th percentile
mid-point. Where the IC50 is outside the dilution range tested, values are reported as greater or less than the minimum
serum (1:20) (b) and mAb (12.5 µg/mL) (c) dilution tested.

4. Discussion

Current ebolavirus vaccine and therapeutic development efforts are focused on cross-
neutralising candidates [43,44]. Neutralising antibodies against the envelope GP are consid-
ered both a determinant of infection control and a possible correlate of protection [45–47].
To measure the potency of neutralising antibodies, the gold standard method is a live Ebola
virus neutralisation assay, requiring BSL4 facilities and specialised operators. Implementa-
tion of pseudotyped virus, which has been shown to offer good levels of correlation with
live virus assays [23–25], provides a suitable and safer alternative to investigate neutral-
isation activity of serological samples. An additional advantage is that their production
only requires the envelope GP sequence of the virus of interest. That said, it is important to
take steps to optimise pseudotyped virus production and downstream assays to ensure
reliability of results [48,49].

It is well-understood that the choice of target cell line influences the titre of the
pseudotyped virus stock, due to differences such as the cell surface receptor density or
availability of required protease. Ebolaviruses are known to have a broad host range,
with the Niemann–Pick C1 (NPC1) entry receptor being mostly ubiquitously expressed
across non-lymphoid cells [50–53]. However, there is variability in the activity of cathepsin
B and L proteases required for GP priming [54,55]. This likely contributes towards the
differences in entry efficiency observed within this and other studies [26,56–58]. While
African green monkey Vero E6 cells are commonly used for the propagation and assaying
of live ebolavirus, they are refractory to LVV-based pseudotypes due to the presence of the
intrinsic restriction factor, TRIM5
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note, S142 is not present in the single BOMV sequence isolated from C. pumilus. It has
not been possible to produce viable pseudotyped virus with this envelope, which may be
attributed to mutations within the highly conserved coiled-coil domain shown to impact GP
binding [63] (Figure S1); this warrants further analysis. Yet, it is conceivable that S142 may
represent an adaptation of BOMV to M. condylurus NPC1. It has previously been suggested
that each ebolavirus is adapted to a specific bat host [62], with variation occurring across
the NPC1 binding domain, although a partial M. condylurus NPC1 sequence shows F504 is
conserved [64].

To include the BOMV-pseudotyped virus in our analysis of cross-neutralising activity
of EBOV antibodies and convalescent plasma, the S146 in the BOMV GP was mutated
to a proline. We tested three monoclonal antibodies, two with known cross-ebolavirus
species neutralising activity which target the fusion loop (CA45) and glycan cap (P6) and
one which is EBOV-specific and binds the receptor binding domain (P7), and a panel of
convalescent plasma from Ebola virus disease survivors collected following the EBOV
outbreak in 2013-2016. For the monoclonal antibodies, our results confirm what has been
previously reported in the literature for CA45 [30] and P6 [31] and expands their efficacies
to BOMV and TAFV. Interestingly, BOMV was also neutralised by most of the EBOV
convalescent plasma samples. This builds upon studies that have shown a pan-ebolavirus
neutralising response can be mounted from natural infection [65] and existing therapeutic
mAb candidates can neutralise BOMV [66], supporting the feasibility of developing cross-
protective vaccines and therapeutics able to target all species within the ebolavirus genus.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/tropicalmed6030155/s1: Supplementary Figure S1. Sequence alignment of the EBOV GP
sequence to four BOMV isolates GP; Supplementary Figure S2. Mean titres of lentiviral pseudotypes
bearing different Bombali ebolavirus (BOMV) isolate GP.
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